
The Frequent Items Problem in

Online Streaming under

Various Performance Measures ⋆

Joan Boyar, Kim S. Larsen, and Abyayananda Maiti

University of Southern Denmark, Odense, Denmark
{joan,kslarsen,abyaym}@imada.sdu.dk

Abstract. In this paper, we strengthen the competitive analysis results
obtained for a fundamental online streaming problem, the Frequent Items
Problem. Additionally, we contribute with a more detailed analysis of
this problem, using alternative performance measures, supplementing the
insight gained from competitive analysis. The results also contribute to
the general study of performance measures for online algorithms. It has
long been known that competitive analysis suffers from drawbacks in
certain situations, and many alternative measures have been proposed.
However, more systematic comparative studies of performance measures
have been initiated recently, and we continue this work, using competitive
analysis, relative interval analysis, and relative worst order analysis on
the Frequent Items Problem.

1 Introduction

The analysis of problems and algorithms for streaming applications, treating
them as online problems, was started in [2]. In online streaming, the items must
be processed one at a time by the algorithm, making some irrevocable decision
with each item. A fixed amount of resources is assumed. In the frequent items
problem [12], an algorithm must store an item, or more generally a number of
items, in a buffer, and the objective is to store the items appearing most fre-
quently in the entire stream. This problem has been studied in [15]. In addition to
probabilistic considerations, they analyzed deterministic algorithms using com-
petitive analysis. We analyze the frequent items problem using relative interval
analysis [14] and relative worst order analysis [4]. In addition, we tighten the
competitive analysis [17, 16] results from [15].

It has been known since the start of the area that competitive analysis does
not always give good results [17] and many alternatives have been proposed.
However, as a general rule, these alternatives have been fairly problem specific
and most have only been compared to competitive analysis. A more compre-
hensive study of a larger number of performance measures on the same problem

⋆ Supported in part by the Danish Council for Independent Research. Part of this
work was done while the authors were visitng the University of Waterloo.

scenarios was initiated in [8] and this line of work has been continued in [9, 6, 7].
With this in mind, we would like to produce complete and tight results, and for
that reason, we focus on a fairly simple combinatorial problem and on simple
algorithms for its solution, incorporating greediness and adaptability trade-offs
to a varying extent.

Finally, we formalize a notion of competitive function, as opposed to com-
petitive ratio, in a manner which allows us to focus on the constant in front of
the high order term. These ideas are also used to generalize relative worst order
analysis.

Most proofs have been omitted due to space restrictions. These can be found
in the full version of the paper [10].

2 Preliminaries

This is a streaming problem, but as usual in online algorithms we use the term
sequence or input sequence to refer to a stream. We denote an input sequence

by I = a1, a2, . . . , an, where the items ai are from some universe U , assumed
to be much larger than n. We may refer to the index also as the time step. We
consider online algorithms, which means that items are given one by one.

We consider the simplest possible frequent items problem: An algorithm has
a buffer with space for one item. When processing an item, the algorithm can
either discard the item or replace the item in the buffer by the item being
processed. The objective is to keep the most frequently occurring items in the
buffer, where frequency is measured over the entire input, i.e., when an algorithm
must make a decision, the quality of the decision also depends on items not yet
revealed to the algorithm. We define this objective function formally:

Given an online algorithm A for this problem, we let sAt denote the item in

the buffer at time step t. We may omit the superscript when it is clear from the
context which algorithm we discuss.

Given an input sequence I and an item a ∈ U , the frequency of the item

is defined as fI(a) = nI(a)
n

, where nI(a) = |{i | ai = a}| is the number of
occurrences of a in I. The objective is to maximize the aggregate frequency [15],
defined by FA(I) =

∑n

t=1 fI(s
A
t), i.e., the sum of the frequencies of the items

stored in the buffer over the time.

We compare the quality of the achieved aggregate frequencies of three dif-
ferent deterministic online algorithms from [15]: the naive algorithm (Nai), the
eager algorithm (Eag), and the majority algorithm (Maj). All three are prac-
tical streaming algorithms, being simple and using very little extra space.

Definition 1. [Nai] Nai buffers every item as it arrives, i.e., sNai
t = at for all

t = 1, 2, . . . , n.

The algorithm Eag switches mode upon detecting a repeated item, an item
which occurs in two consecutive time steps.

Definition 2. [Eag] Initially, Eag buffers every item as it arrives. If it finds a

repeated item, then it keeps that item until the end, i.e., let t∗ = min1≤t≤n−1{t |
at = at+1}, if such a t exists, and otherwise t∗ = n. Then Eag is the algorithm

with sEagt = at for all t ≤ t∗ and sEagt = at∗ for all t > t∗.

The algorithm Maj keeps a counter along with the buffer. Initially, the
counter is set to zero.

Definition 3. [Maj] If the counter is zero, then Maj buffers the arriving item

and sets the counter to one. Otherwise, if the arriving item is the same as the one

currently buffered, Maj increments the counter by one, and otherwise decrements

it by one.

Finally, as usual in online algorithms, we let Opt denote an optimal offline
algorithm. Opt is, among other things, used in competitive analysis as a refer-
ence point, since no online algorithm can do better. If A is an algorithm, we let
A(I) denote the result of the algorithm, i.e., A(I) = FA(I).

In comparing these three algorithms, we repeatedly use the same two families
of sequences; one where Eag performs particularly poorly and one where Maj

performs particularly poorly.

Definition 4. We define the sequences

En = a, a, b, b, . . . , b,

where there are n− 2 copies of b, and

Wn =

{

a1, a0, a2, a0, . . . , an

2
, a0 for even n

a1, a0, a2, a0, . . . , a⌊n

2
⌋, a0, a⌈n

2
⌉ for odd n.

The four algorithms, including Opt, obtain the aggregate frequencies below
on these two families of sequences. The arguments are simple, but fundamental,
and also serve as an introduction to the algorithmic behavior of these algorithms.

Proposition 1. The algorithms’ results on En and Wn are as in Fig. 1.

Proof. In En, the frequency of a is 2
n

and the frequency of b is n−2
n

. Thus
Nai(En) = 2 2

n
+ (n− 2)n−2

n
= n− 4 + 8

n
. In Wn, the frequency of a0 is ⌊n

2 ⌋/n,
and the frequencies of all the other ai, 1 ≤ i ≤ ⌈n

2 ⌉, are 1
n
. Thus, Nai(Wn) =

⌈n
2 ⌉ 1

n
+ ⌊n

2 ⌋
⌊n

2
⌋

n
. Considering both even and odd n gives the required result.

When processing En, Eag keeps a in its buffer. Hence, Eag(En) = n 2
n
= 2.

Since Wn has no repeated item, Eag(Wn) = Nai(Wn).
For En, Maj will have a in its buffer for the first four time steps, so Maj(En)

is 4 2
n
+ (n − 4)n−2

n
= n − 6 + 16

n
. For Wn, Maj brings each ai, 1 ≤ i ≤ n, into

its buffer and never brings a0 into its buffer. Thus, Maj(Wn) = n 1
n
= 1.

With En, Opt is forced to perform the same as Nai. In Wn, Opt must buffer
a1 in the first time step, but it buffers a0 for the remainder of the sequence. Thus,

Opt(Wn) =
1
n
+(n−1)

⌊n

2
⌋

n
. Considering both even and odd n gives the required

result. ⊓⊔

En Wn

Nai n− 4 + 8

n

{

n

4
+ 1

2
for even n

n

4
+ 3

4n
for odd n

Eag 2 as Nai

Maj n− 6 + 16

n
1

Opt as Nai

{

n

2
− 1

2
+ 1

n
for even n

n

2
− 1 + 3

2n
for odd n

Fig. 1. The algorithms’ aggregate frequencies on En and Wn.

Definition 5. Let A be any online algorithm. We denote the worst aggregate

frequency of A over all the permutations σ of I by AW (I) = minσ A(σ(I)).

It is convenient to be able to consider items in order of their frequencies. Let
D(I) = a′1, a

′
2, . . . , a

′
n be a sorted list of the item in I in nondecreasing order of

frequencies. For example, if I = a, b, c, a, b, a, then D(I) = c, b, b, a, a, a. We will
use the notation D(I) throughout the paper.

Lemma 1. For odd n, MajW (I) = 2
∑⌊n

2
⌋

i=1 fI(a
′
i) + fI(a

′
⌈n

2
⌉), and for even n,

MajW (I) = 2
∑

n

2

i=1 fI(a
′
i), where the a′i are the items of D(I).

Proof. Every time step where the counter is decremented can be paired with an
earlier one where it is incremented and the same item is in the buffer. So, at
least ⌈n

2 ⌉ requests contribute to the aggregate frequency of the algorithm. One
can order the items so that exactly the ⌈n

2 ⌉ requests to that many least frequent
items are buffered as follows: Assuming n is even, then the worst permutation
is a′1, a

′
n, a

′
2, a

′
n−1, . . . a

′
n

2

, a′n
2
+1. All (but the last request when n is odd) of the

requests which lead to an item entering the buffer contribute twice, since they
are also in the buffer for the next step. ⊓⊔

3 Competitive Analysis

An online streaming problem was first studied from an online algorithms perspec-
tive using competitive analysis by Becchetti and Koutsoupias [2]. Competitive
analysis[17, 16] evaluates an online algorithm in comparison to an optimal offline
algorithm. For a maximization problem, an algorithm, A is called c-competitive,
for some constant c, if there exists a constant α such that for all finite input se-
quences I, Opt(I) ≤ c ·A(I)+α. The competitive ratio of A is the infimum over
all c such that A is c-competitive. Since, for the online frequent items problem,
the relative performance of algorithms depends on the length of I, we define a
modified and more general version of competitive analysis, providing a formal
basis for our own claims as well as claims made in earlier related work. Func-
tions have also been considered in [13]. Here, we focus on the constant in front of

the most significant term. Our definition can be adapted easily to minimization
problems in the same way that the adaptations are handled for standard com-
petitive analysis. In all these definitions, when n is not otherwise defined, we use
it to denote |I|, the length of the sequence I. As usual, when using asymptotic
notation in inequalities, notation such as f(n) ≤ g(n)+o(g(n)) means that there
exists a function h(n) ∈ o(g(n)) such that f(n) ≤ g(n)+h(n). Thus, we focus on
the multiplicative factors that relate the online algorithm’s result to the input
length.

Definition 6. An algorithm A is f(n)-competitive if

∀I : Opt(I) ≤ (f(n) + o(f(n))) · A(I).

A has competitive function f(n) if A is f(n)-competitive and for any g(n) such

that A is g(n)-competitive, limn→∞
f(n)
g(n) ≤ 1.

If algorithm A has competitive function f(n) and algorithm B has competi-
tive function f ′(n), then A is better than B according to competitive analysis if

limn→∞
f(n)
f ′(n) < 1.

Thus, the concept of competitive function is an exact characterization up to
the level of detail we focus on. It can be viewed as an equivalence relation, and

if limn→∞
f(n)
g(n) = 1 for two functions f(n) and g(n), then they belong to (and

are representatives of) the same equivalence class. For example,
√
n

2 and
√
n

2− 1√
n

are considered equivalent, whereas
√
n

2 and
√
n

4 are not.
All three algorithms discussed here are non-competitive according to the

original definition. However, information regarding the relative quality of these
algorithms can be obtained by considering the most significant constants from
the corresponding functions. Giannakopoulos et al. has proved that no random-
ized algorithm for the online frequent items problem, where the buffer has room
for one item, can have a competitive function better than 1

3

√
n [15]. That result

can be strengthened for the deterministic case, based on sequences of the form
In = a1, a2, . . . an−√

n, x, x, . . . , x, where x is a1 or a2.

Theorem 1. No deterministic algorithm for the online frequent items problem

can have a competitive function better than
√
n

2 .

In [15], Giannakopoulos et al. proved that for all sequences I of length n,
Opt(I) ≤ √

n ·Nai(I). Here we give a tighter result for Nai.

Theorem 2. Nai has competitive function
√
n

2 . It is an optimal deterministic

online algorithm for the frequent items problem.

For Maj Giannakopoulos et al. [15] proved a competitive ratio of Θ(n). We
give the asymptotically tight bounds, including the multiplicative factor.

Theorem 3. Maj has competitive function n
2 .

Proof. For the lower bound, consider the family of sequences, Wn, from Defini-
tion 4. By Proposition 1, Maj(Wn) = 1, and

Opt(Wn) =

{

n
2 − 1

2 + 1
n

for even n
n
2 − 1 + 3

2n for odd n

Consequently, Opt(Wn) ≥ n
2Maj(Wn)− 1. Thus, the competitive function can-

not be better than n
2 .

For the upper bound, let f be the largest frequency of any item in some input
sequence I of length n. Opt cannot have an aggregate frequency larger than nf .

If f ≤ 1
2 , then, since no algorithm can have an aggregate frequency less than

one in total, Opt(I)
Maj(I) ≤ nf ≤ n

2 .

It remains to consider the range 1
2 < f ≤ 1. Let a0 denote the most frequent

item in I. Note that a0 must be in the buffer at some point since f > 1
2 .

Since there are n − fn items different from a0, the total length of all sub-
sequences where a0 is not in the buffer is at most 2(n − fn). This means that
a0 is in the buffer at least n − 2(n − fn) = 2fn − n times, collecting at least
(2fn−n)f = 2nf2−nf . The remaining items collect at least 2(n−fn) 1

n
. In total,

this amounts to 2nf2−nf+2−2f . If we can prove that this quantity is at least 2f

for large n, then asymptotically, Opt(I)
Maj(I) ≤ nf

2nf2−nf+2−2f ≤ nf
2f = n

2 and we will

be done. Now, 2nf2 − nf + 2− 2f ≥ 2f if and only if 2nf2 − (n+ 4)f + 2 ≥ 0.
Taking the derivative of the left side shows that the left side is an increasing
function of f for n ≥ 4 and f ≥ 1

2 . Thus, Opt(I) ≤ n
2Maj(I) holds for all f

and all n ≥ 4. This implies that Maj is n
2 -competitive and, in total, that the

competitive function of Maj is n
2 . ⊓⊔

Theorem 4. The competitive function of the algorithm Eag is n
2 .

4 Relative Interval Analysis

Dorrigiv et al. [14] proposed another analysis method, relative interval analysis,
in the context of paging. Relative interval analysis compares two online algo-
rithms directly, i.e., it does not use the optimal offline algorithm as the baseline
of the comparison. It compares two algorithms on the basis of the rate of the
outcomes over the length of the input sequence rather than their worst case
behavior. Here we define this analysis for maximization problems for two algo-
rithms A and B, following [14].

Definition 7. Define

MinA,B(n) = min
|I|=n

{A(I)− B(I)} and MaxA,B(n) = max
|I|=n

{A(I)− B(I)} ,

Min(A,B) = lim inf
n→∞

MinA,B(n)

n
and Max(A,B) = lim sup

n→∞

MaxA,B(n)

n
. (1)

The relative interval of A and B is defined as l(A,B) = [Min(A,B),Max(A,B)].
If Max(A,B) > |Min(A,B)|, then A is said to have better performance than B
in this model.

Note that Min(A,B) = −Max(B,A) and Max(A,B) = −Min(B,A).
For any pair of algorithms, A and B, for the frequent items problem, there

is a trivial upper bound on Max(A,B) and lower bound on Min(A,B).

Proposition 2. For any pair of algorithms A and B, Max(A,B) ≤ 1 and

Min(A,B) ≥ −1.

Proof. The maximum aggregate frequency any algorithm could have is for a
sequence where all items are identical, giving the value n. The minimum is for a
sequence where all items are different, giving the value 1. The required bounds
follow since lim supn→∞

n−1
n

= 1. ⊓⊔

4.1 Naive vs. Eager

According to relative interval analysis, Nai has better performance than Eag.

Theorem 5. According to relative interval analysis l(Nai,Eag) = [− 1
4 , 1].

4.2 Naive vs. Majority

Nai and Maj are equally good according to relative interval analysis.

Theorem 6. According to relative interval analysis l(Nai,Maj) = [− 1
4 ,

1
4].

Proof. For the maximum value of Nai(I) − Maj(I), it is sufficient to consider
the worst permutation of I for Maj since Nai has the same output for all
permutations of I. For the worst permutation, MajW (I) will buffer only the
first ⌈n

2 ⌉ items of the distribution D(I). The first ⌊n
2 ⌋ items will be buffered

twice and in case of odd n, the ⌈n
2 ⌉th item will be stored once at the last time

step. Let D(I) = a′1, a
′
2, a

′
3, . . . , a

′
n. Then

Nai(I)−MajW (I) =
n
∑

i=1

fI(a
′
i)− 2

⌊n

2
⌋

∑

i=1

fI(a
′
i)−

(⌈n

2

⌉

−
⌊n

2

⌋)

fI(a
′
⌈n

2
⌉)

=

n
∑

i=⌈n+2

2
⌉

fI(a
′
i)−

⌊n

2
⌋

∑

i=1

fI(a
′
i). (2)

Let p be the number of occurrences of the most frequent item in I. ThenNai(I)−
MajW (I) equals

n
∑

i=⌈n+2

2
⌉

fI(a
′
i)−

⌊n

2
⌋

∑

i=1

fI(a
′
i) ≤

⌊n

2

⌋ p

n
−
(

p−
⌈n

2

⌉) p

n
= p− p2

n
.

If n is even, an upper bound on the maximum difference will be achieved when
p = n

2 , and for odd n when p = n+1
2 . This gives an upper bound on the maximum

of Nai(I)−Maj(I) of n
4 for even n and n

4 − 1
4n for odd n. For a lower bound on

the maximum value ofNai(I)−Maj(I), we consider the family of sequences,Wn,
from Definition 4. By Proposition 1, for even n, Nai(Wn)−Maj(Wn) =

n
4 − 1

2 ,
and for odd n, Nai(Wn) − Maj(Wn) = n

4 − 1 + 1
4n . Thus, Max(Nai,Maj) ≥

lim supn→∞
Nai(Wn)−Maj(Wn)

n
= 1

4 , matching the upper bound.
To derive the minimum value of Nai(I) − Maj(I), we calculate the maxi-

mum value of Maj(I) − Nai(I). For an upper bound on this, we consider the
best permutation, IB , for Maj of an arbitrary sequence, I. For IB , Maj would
buffer the half of the requests in the sequence with the highest frequencies. The
difference, Maj(IB)−Nai(IB), is

2

n
∑

i=⌈n+2

2
⌉

fI(a
′
i) +

(⌈n

2

⌉

−
⌊n

2

⌋)

fI(a
′
⌈n

2
⌉)−

n
∑

i=1

fI(a
′
i)

=

n
∑

i=⌈n+2

2
⌉

fI(a
′
i)−

⌊n

2
⌋

∑

i=1

fI(a
′
i).

This expression is exactly the same as the expression for Nai(I) − MajW (I)
from Eq. 2, so we get the same upper bound of 1

4 . Now, for a lower bound on
Max(Maj,Nai), we use the family of sequences, In defined as

In = a0, a0, . . . , a0, a1, a2, . . . , a⌊n

2
⌋,

where there are ⌈n
2 ⌉ copies of a0. Then

Nai(In) =
⌊n

2

⌋ 1

n
+
⌈n

2

⌉ ⌈n
2 ⌉
n

=

{

n
4 + 1

2 for even n
n
4 + 1 + 1

4n for odd n

and Maj(In) = n
⌈n

2
⌉

n
=

⌈

n
2

⌉

. In gives a lower bound of 1
4 on Max(Maj,Nai),

since Maj(In)−Nai(In) ≥
⌈

n
2

⌉

− n
4 − 1− 1

4n . It follows that, Min(Nai,Maj) =
−Max(Maj,Nai) = − 1

4 , and l(Nai,Maj) = [− 1
4 ,

1
4]. ⊓⊔

4.3 Majority vs. Eager

According to relative interval analysis, Maj has better performance than Eag.

Theorem 7. According to relative interval analysis l(Maj,Eag) = [− 1
2 , 1].

5 Relative Worst Order Analysis

Relative worst order analysis [4] compares two online algorithms directly. It
compares two algorithms on their worst orderings of sequences which have the
same content, but possibly different order. The definition of this measure is
somewhat more involved; see [5] for more intuition on the various elements. As
in the case of competitive analysis, here too the relative performance of the
algorithms depend on the length of the input sequence I. As in Section 3, we

define a modified and more general version of relative worst order analysis. The
definition is given for a maximization problem, but trivially adaptable to be used
for minimization problems as well; only the decision as to when which algorithm
is better would change.

The following definition is parameterized by a total ordering, ⊑, since we will
later use it for both ≤ and ≥.

Definition 8. f is a (A,B,⊑)-function if

∀I : AW (I) ⊑ (f(n) + o(f(n))) · BW (I),

where A and B are algorithms and ⊑ is a total ordering. Recall from Definition 5

that the notation AlgW (I), where Alg is some algorithm, denotes the result of

Alg on its worst permutation of I.

f is a bounding function with respect to (A,B,⊑) if f is a (A,B,⊑)-function

and for any (A,B,⊑)-function g, limn→∞
f(n)
g(n) ⊑ 1.

If f is a bounding function with respect to (A,B,≤) and g is a bounding

function with respect to (A,B,≥), then A and B are said to be comparable if

limn→∞ f(n) ≤ 1 or limn→∞ g(n) ≥ 1.

If limn→∞ f(n) ≤ 1, then B is better than A and g(n) is a relative worst
order function of A and B, and if limn→∞ g(n) ≥ 1, then A is better than B and

f(n) is a relative worst order function of A and B.

We use WRA,B = f(n) to indicate that f(n) belongs to the equivalence class of
relative worst order functions of A and B.

The competitive function could also have been defined using this framework,
but was defined separately as a gentle introduction to the idea.

5.1 Naive vs. Optimal

Relative worst order analysis can show the strength of the simple, but adaptive,
Nai algorithm by comparing it with the powerful Opt. Nai is an optimal algo-
rithm according to relative worst order analysis, in the sense that it is equivalent
to Opt.

Theorem 8. According to relative worst order analysis WROpt,Nai = 1, so Nai

and Opt are equivalent.

Proof. In the aggregate frequency problem, even though Opt knows the whole
sequence in advance, it cannot store an item before it first appears in the se-
quence. Thus, for any input sequence I, the worst permutation for Opt is the
sorting of I according to the increasing order of the frequencies of the items,
i.e., D(I). On this ordering, Opt is forced to behave like Nai. Therefore, the
constant function 1 is a bounding function with respect to both (Opt,Nai,≤)
and (Opt,Nai,≥), so WROpt,Nai = 1. ⊓⊔

5.2 Naive vs. Eager

According to relative worst order analysis, Nai is better than Eag.

Theorem 9. According to relative worst order analysis WRNai,Eag = n
2 .

Proof. From Theorem 8, we know that for Opt’s worst permutation, IW , of
any sequence I, Opt(IW) = Nai(IW). Any arbitrary online algorithm A cannot
be better than Opt on any sequence, so Nai and A are comparable. For any
arbitrary online algorithm A and a worst order, IW , for A of any sequence I,
Nai(IW)
A(IW) = Opt(IW)

A(IW) , so a competitive function for A is an upper bound on the

relative worst order function of A and B. By Theorem 4, WR(Nai,Eag) ≤ n
2 .

Consider the family of sequences, En, from Definition 4. These sequences are in
the worst ordering for both Eag andOpt. By Proposition 1,Nai(En) = n−4+ 8

n

and Eag(En) = 2. Thus, Nai(En) =
n
2Eag(En) − 4 + 8

n
. Consequently, n

2 is a
relative worst order function of Nai and Eag, and WRNai,Eag = n

2 . ⊓⊔

5.3 Naive vs. Majority

According to relative worst order analysis, Nai is better than Maj, though not
quite as much better as compared to Eag.

Theorem 10. According to relative worst order analysis, WRNai,Maj =
n
4 .

5.4 Majority vs. Eager

Theorem 11. According to relative worst order analysis, Maj and Eag are

incomparable.

Proof. First, we show that Maj can be much better than Eag. Consider the
family of sequences, En, from Definition 4. These sequences are in their worst
orderings for both Maj and Eag. By Proposition 1, Eag(En) = 2, so

MajW (En) = n− 6 +
16

n
≥

(

n

2
− 3 +

8

n

)

EagW (En).

Now, we show that Eag can be much better than Maj. Consider the family
of sequences, Wn, from Definition 4. These sequences are in their worst orderings
for Maj, so by Proposition 1, MajW (Wn) = 1. A worst ordering for Eag is

W ′
n = a1, a2, . . . , a⌈n

2
⌉, a0, a0, . . . , a0,

where there are ⌊n
2 ⌋ copies of a0. Eag(W ′

n) = Nai(Wn), which by Proposition 1
is n

4 + 1
2 when n is even and n

4 + 3
4n when n is odd. Thus,

EagW (Wn) ≥
n

4
MajW (Wn).

These two families of sequences show that Maj and Eag are incomparable
under relative worst order analysis. ⊓⊔

6 Conclusion and Future Work

The frequent items problem for streaming was considered as an online problem.
Three deterministic algorithms, Nai, Maj, and Eag were compared using three
different quality measures: competitive analysis, relative worst order analysis,
and relative worst order ratio. According to competitive analysis, Nai is the
better algorithm and Maj and Eag are equivalent. According to relative in-
terval analysis, Nai and Maj are equally good and both are better than Eag.
According to relative worst order analysis, Nai and Opt are equally good and
better than Maj and Eag, which are incomparable.

All three analysis techniques studied here are worst case measures. According
to both competitive analysis and relative worst order analysis, Nai is the best
possible online algorithm, and according the relative worst order analysis, it is
as good as Maj and better than Eag. This is a consequence of Nai being very
adaptive and, as a result, good at avoiding the extreme poor performance cases.
Both Maj and Eag attempt to keep the most frequent items in the buffer for
longer than their frequency would warrant. The heuristic approaches hurt these
algorithms in the worst case.

Relative interval analysis compares the algorithms on the same sequence in a
manner which, in addition to the worst case scenarios, also takes the algorithms’
best performance into account to some extent. This makes Maj’s sometimes
superior performance visible, whereas Eag, not being adaptive at all, does not
benefit in the same way from its best performance. In some sense,Maj’s behavior
can be seen as swinging around the behavior ofNai, with worse behavior on some
sequences counter-acted by correspondingly better behavior on other sequences.

Our conclusion is that purely worst behavior measures do not give indica-
tive results for this problem. Relative interval analysis does better, and should
possibly be supplemented by some expected case analysis variant. To that end,
natural performance measures to consider would be bijective and average anal-
ysis [1]. However, as the problem is stated in [15] and studied here, the frequent
items problem has an infinite universe from which the items are drawn. Thus,
these analysis techniques cannot be applied directly to the problem in any mean-
ingful way. Depending on applications, it could be realistic to assume a finite
universe. This might give different results than those obtained here, and might
allow the problem to be studied using other measures, giving results dependent
on the size of the universe. Another natural extension of this work is to consider
multiple buffers, which also allows for a richer collection of algorithms [3], or
more complicated, not necessarily discrete, objective functions [11].

References

1. S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equiva-
lence of paging strategies. In Proceedings 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 229–237, 2007.

2. L. Becchetti and E. Koutsoupias. Competitive analysis of aggregate max in win-
dowed streaming. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S.E. Niko-
letseas, and W. Thomas, editors, ICALP(1) 2009, volume 5555 of LNCS, pages
156–170. Springer, Heidelberg, 2009.

3. R. Berinde, G. Cormode, P. Indyk, and M.J. Strauss. Space-optimal heavy hitters
with strong error bounds. In Proceedings 28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages 157–166, 2009.

4. J. Boyar and L.M. Favrholdt. The relative worst order ratio for online algorithms.
ACM Trans. Algorithms, 3, 2007.

5. J. Boyar, L.M. Favrholdt, and K.S. Larsen. The relative worst order ratio applied
to paging. J. Comput. System Sci., 73(5):818–843, 2007.

6. J. Boyar, S. Gupta, and K.S. Larsen. Access graphs results for LRU versus FIFO
under relative worst order analysis. In F.V. Fomin and P. Kaski, editors, SWAT
2012, volume 7357 of LNCS, pages 328–339. Springer, Heidelberg, 2012.

7. J. Boyar, S. Gupta, and K.S. Larsen. Relative interval analysis of paging algorithms
on access graphs. In WADS 2013, LNCS, 2013. Accepted for publication.

8. J. Boyar, S. Irani, and K.S. Larsen. A comparison of performance measures for
online algorithms. In F.K.H.A. Dehne, M.L. Gavrilova, J.-R. Sack, and C.D. Tóth,
editors, WADS 2009, volume 5664 of LNCS, pages 119–130. Springer, Heidelberg,
2009.

9. J. Boyar, K.S. Larsen, and A. Maiti. A comparison of performance measures via
online search. In J. Snoeyink, P. Lu, K. Su, and L. Wang, editors, FAW-AAIM
2012, volume 7285 of LNCS, pages 303–314. Springer, Heidelberg, 2012.

10. J. Boyar, K.S. Larsen, and A. Maiti. The frequent items problem in online stream-
ing under various performance measures. arXiv:1306.0771 [cs.DS], 2013.

11. E. Cohen and M.J. Strauss. Maintaining time-decaying stream aggregates. J.
Algorithms, 59(1):19–36, 2006.

12. G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams.
Proceedings of the VLDB Endowment, 1(2):1530–1541, 2008.

13. R. Dorrigiv and A. López-Ortiz. A survey of performance measures for on-line
algorithms. SIGACT News, 36(3):67–81, 2005.

14. R. Dorrigiv, A. López-Ortiz, and J.I. Munro. On the relative dominance of paging
algorithms. Theoret. Comput. Sci., 410(38–40):3694–3701, 2009.

15. Y. Giannakopoulos and E. Koutsoupias. Competitive analysis of maintaining fre-
quent items of a stream. In F.V. Fomin and P. Kaski, editors, SWAT 2012, LNCS,
pages 340–351. Springer, Heidelberg, 2012.

16. A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica, 3:79–119, 1988.

17. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

