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Abstract

Since the introduction of competitive analysis, a number of alternative
measures for the quality of online algorithms have been proposed, but, with a
few exceptions, these have generally been applied only to the online problem
for which they were developed. Recently, a systematic study of performance
measures for online algorithms was initiated [Boyar, Irani, Larsen: Eleventh
International Algorithms and Data Structures Symposium 2009], first focus-
ing on a simple server problem. We continue this work by studying a funda-
mentally different online problem, online search, and the Reservation Price
Policies in particular. The purpose of this line of work is to learn more about
the applicability of various performance measures in different situations and
the properties that the different measures emphasize. We investigate the
following analysis techniques: Competitive, Relative Worst Order, Bijective,
Average, Relative Interval, Random Order, and Max/Max. In addition, we
have established the first optimality proof for Relative Interval Analysis.
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1. Introduction

An optimization problem is online if input is revealed to an algorithm one
piece at a time and the algorithm has to commit to the part of the solution
involving the current piece before seeing the rest of the input [4]. The first
and most well-known analysis technique for determining the quality of online
algorithms is competitive analysis [18]. The competitive ratio expresses the
asymptotic ratio of the performance of an online algorithm compared to an
optimal offline algorithm with unlimited computational power. Though this
works well in many contexts, researchers realized from the beginning [18] that
this “unfair” comparison would sometimes make it impossible to distinguish
between online algorithms of quite different quality in practice.

In recent years, researchers have considered alternative methods for com-
parisons of online algorithms, some of which compare algorithms directly,
as opposed to computing independent ratios in a comparison to an offline
algorithm. See references below and [11] for a fairly recent survey. Most of
the new methods have been designed with one particular online problem in
mind, trying to fix problems with competitive analysis for that particular
problem. Not that much is known about the strengths and weaknesses of
these alternatives in comparison with each other. In [7], a systematic study
of performance measures was initiated by fixing a simple online server prob-
lem and applying a collection of performance measures. Partial conclusions
were obtained in demonstrating which measures focus on greediness as an
algorithmic quality. It was also observed that some measures could not dis-
tinguish between certain pairs of algorithms where the one performed at least
as well as the other on every sequence.

We continue this systematic study here by investigating a fundamentally
different problem which has not yet been studied as an online problem other
than with competitive analysis, the online search problem [13, 14]. Online
search is a very simple online (profit) maximization problem; the online al-
gorithm tries to sell a specific item for the highest possible price. Prices,
between the minimum price of m and the maximum price of M , arrive online
one at a time, and each time a price is revealed, the algorithm can decide to
accept that price and terminate or decide to wait. The length of the input
sequence is not known to the algorithm in advance, but is revealed only when
the last price is given, and the algorithm must accept that price, if it has not
accepted one earlier.

This simple model of a searching problem has enormous importance due
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to its simplicity and its application in the much more complex problems of
lowest or highest price searching in various real-world applications in the
fields of Economics and Finance [17]. The online search problem is very
similar to that of the one-way trading problem [13, 14, 9]. In fact, one-way
trading can be seen as randomized searching. Note that the assumption of a
known minimum and maximum price is often used for these types of problems
because of the difficulties of defining and analyzing algorithms without them.
Reasonable bounds can often be chosen by observing high and low values (of
stock prices, currency exchange rates, or whatever is being traded) over an
appropriate period of time.

The long-term goal of systematically comparing performance measures is
to be able to determine, based on characteristics of an online problem, how
online algorithms should be analyzed theoretically so as to accurately pre-
dict the relative quality of the algorithms in practice. Online search differs
from the server problem studied earlier in many respects, particularly in its
consisting of a “one-shot” choice, as opposed to incremental decisions, so the
greediness studied in [7] is not relevant here. In addition, online search is
a maximization problem, instead of minimization, and its last request has a
different requirement than the others (if nothing was chosen before then, the
last value must be chosen). Thus, the findings obtained here are complemen-
tary to the results obtained in [7]. The difference between online search and
many other problems also forced us to extend earlier definitions for some of
the measures so that they could be applicable here as well. In this paper,
we discuss seven measures. There are also other important measures that we
have not included here as they are less relevant to the online search prob-
lem. Resource Augmentation [15] and the Accommodating Function [8], for
example, are two well studied modifications of Competitive Analysis, both
of which depend on some resource used in the online problem being consid-
ered. However, the online search problem does not include any appropriate
resource, so these two types of analysis are irrelevant here.

Our primary study is of the class of Reservation Price Policy (RPP)
algorithms [13, 14]. This is a parameterized class, where the behavior of Rp

is to accept the first price greater than or equal to the so-called reservation
price p.

As a “sanity check” to confirm that the measures “work” at all on this
problem, we also define R2

p, which accepts the second price greater than or
equal to p, and investigate its relationship to Rp. Whereas Rp “decides what
it wants and takes it when it sees it”, R2

p “knows what it wants, but does not
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take it until the second time it sees it”. One would expect Rp to be the better
algorithm. With the exception of Max/Max Analysis [3], all the measures
“pass this test” and favor Rp, though some redefinition was necessary for
Relative Interval Analysis.

Since the measures pass this test, we also consider the more interesting
task of comparing the different quality measures on RPP algorithms with
different parameters. We have considered having an integral interval of pos-
sible prices between m and M as well as a real-valued scenario; for the most
part, the results are similar. The following discussion in this introduction
is assuming a real-valued scenario, allowing us to state the results better
typographically, without rounding.

We find that Competitive Analysis and Random Order Analysis favor
R√

mM , the reason being that they focus on limiting the worst case ratio
compared to an optimal algorithm, independent of input length. Relative
Interval Analysis favors Rm+M

2

, similarly limiting the worst case difference,

as opposed to ratio. Average Analysis favors RM . This is basically due to
focusing on the limit, i.e., when input sequences become long enough, any
event will occur eventually. In Bijective Analysis, basically all algorithms are
incomparable. Finally Relative Worst Order Analysis deems the algorithms
incomparable, but gives indication that R√

mM is the best algorithm.
In addition to these findings, this paper contains the first optimality result

for Relative Interval Analysis, where we prove that no Rp algorithm can be
better than Rm+M

2

. For Relative Worst Order Analysis, we refine the discus-

sion of which algorithm is best through the concept of “superiority”, which
seems to be interesting for classes of parameterized algorithms. A first use of
this concept, without naming it, appeared when analyzing a parameterized
variant of Lazy Double Coverage for the server problem in [7].

Finally, we have investigated the sensitivity of the different measures with
regards to the choice of integral vs. real-valued domains, and most of the
measures seem very stable in this regard. Not surprisingly, using real values,
Bijective Analysis indicates that all RPP algorithms are equivalent. Average
analysis is inapplicable for a real-valued interval, but a generalization, which
we call Expected Analysis, can be applied, giving similar results to what
Average Analysis gives for integral values. Expected Analysis may be useful
for other problems as well.

Since our problem is a profit maximization problem, for those analy-
sis methods which have previously only been defined for cost minimization
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problems, we have presented profit maximization versions. In online search
since profit is a constant (between m and M), independent of the sequence
length, for measures of an asymptotic nature, we modify the definitions ac-
cordingly. In Competitive Analysis and Relative Worst Order Analysis we
use the strict version since asymptotic results (allowing an additive constant)
would deem all algorithms optimal (a ratio of one compared with an optimal
algorithm—up to the additive constant). For the same reason, the measures
which were originally defined using limits on the profit (or cost) achieved
are modified. Both Relative Interval Analysis and the Max/Max ratio have
previously been defined with limits and need alternative definitions which
are more appropriate for this type of scenario. In each section of the paper,
we give the precise definition of the measures used.

The rest of this paper is organized as follows. Section 2 defines the nota-
tion used and each subsequent section treats one of the measures described
above.

2. Problem Preliminaries

Unless otherwise stated, we assume that the prices are integral and drawn
from some integral interval [m,M ] with 0 < m ≤ M . In any time step, any
value from this closed interval can be drawn as a price, and there will be
N = M − m + 1 possible prices. This assumption is made for the sake
of consistency; some methods of analysis are uninteresting for real-valued
intervals; see Section 4, for example. Also, this assumption is compatible with
the real-world problems of online search as the set of prices is generally finite
(the market decides on an agreed-upon number of digits after the decimal
point).

We denote the length of the price sequence by n. Denote by In the
set of all input sequences of length n. Thus, the total number of possible
input sequences of length n is Nn. For an online algorithm A and an input
sequence I, let A(I) be the profit gained by A on I, i.e., the price chosen. In
some analyses (for example in Relative Worst Order Analysis), we need to
permute the input sequences. We always use σ as a permutation and denote
the permuted sequence by σ(I).

Some of the analysis methods compare the online algorithms with a hy-
pothetical optimal offline algorithm which receives the input in its entirety
in advance and has unlimited computational power in determining a solu-
tion. We denote this optimal algorithm by OPT and the profit gained by it
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from an input sequence I as OPT(I), which is the maximum price in that
sequence.

To denote the relative performance of two online algorithms A and B
according to an analysis method, x, we use the following notation. If B is
better than A, then we write A ≺x B, and if B is no worse than A, this is
denoted by A �x B. If the measure deems the algorithms equivalent, then
this is denoted by A ≡x B. Usually, we merely define either ≺x or �x and
the other relations follow in the standard way from that.

If n = 1, any algorithm must take the only price in the sequence, so all
online search algorithms are equivalent. To streamline the presentation of
results, we always assume that n ≥ 2.

The core of this paper is concerned with the comparison of Rp and Rq

for p 6= q. To avoid stating this every time, we always assume that m ≤ p <
q ≤ M .

3. Competitive Analysis

The online search problem was first studied from an online algorithms
perspective using Competitive Analysis by El-Yaniv et al. [13]. Competitive
Analysis evaluates an online algorithm in comparison to an optimal offline
algorithm.

Definition 1. An online search algorithm A is strictly c-competitive if for
all finite input sequences I, OPT(I) ≤ c · A(I). The competitive ratio of
algorithm A is inf{c | A is c-competitive}.

Denote the competitive ratio of an online algorithm A by cA. If cA > cB, B
is better than A according to Competitive Analysis and we denote this by
A ≺c B.

In [13], El-Yaniv formulated the Reservation Price Policy algorithm and
proved that for real-valued prices, the reservation price p∗ =

√
Mm is the

optimal price according to Competitive Analysis, and using this price, the
competitive ratio is

√

M/m. A very similar result and proof holds for integer-
valued prices.

Theorem 1. According to Competitive Analysis, Rp ≺c Rq, Rp ≡c Rq, and
Rq ≺c Rp if and only if Mm > p(q−1), Mm = p(q−1), and Mm < p(q−1),
respectively.
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Proof. In any price sequence for an RPP algorithm Rp, we consider two
cases: (i) all the prices are less than p, in which case the performance ratio,
offline to online, will be at most p−1

m
, with equality when there is a price p−1

and the last price is m; and (ii) at least one price is greater than or equal
to p, in which case the offline to online performance ratio would be at most
M
p
, with equality when the first price greater than or equal to p is exactly

p and there is another price M somewhere later. So, the competitive ratio
of Rp will be cRp

= max(p−1
m

, M
p
). It is easy to verify that cRp

> cRq
if and

only if M
p

> q−1
m

, since p−1
m

< q−1
m

and M
p

> M
q
. This argument proves that

Rp ≺c Rq if and only if Mm > p(q − 1). The remaining two results in the
theorem follow similarly. �

Corollary 1. Let s =
⌈√

Mm
⌉

. According to Competitive Analysis, the best

RPP algorithm is Rs.

Proof. Assume that p < s. The comparison between Rp and Rs gives

p
(⌈√

Mm
⌉

− 1
)

< Mm. Thus, ∀p < s, Rp ≺c Rs.

Now, assume that q > s. Then the comparison between Rq and Rs gives
⌈√

Mm
⌉

(q − 1) ≥ Mm. Thus, ∀q > s, Rq ≺c Rs. �

Theorem 2. According to Competitive Analysis, R2
p ≺c Rp and R2

p ≡c Rp

if and only if p > m and p = m, respectively.

Proof. From the proof of Theorem 1, we know that the competitive ratio

of Rp is cRp
= max

(

p−1
m

, M
p

)

. For the competitive ratio of R2
p, we consider a

price sequence with only one M followed by n− 1 occurrences of m. Clearly
the competitive ratio is M/m, and it is the maximum ratio that can be
obtained by any algorithm. So, cR2

p
≥ cRp

, and equality holds if and only if
p = m. �

4. Bijective Analysis

In the Bijective Analysis model [2], we construct a bijection on the set of
possible input sequences. In this bijection, we aim to pair input sequences
for online algorithms A and B in such a way that the cost of A on every
sequence I is no more than the cost of B on the image of I, or vice versa,
to show that the algorithms are comparable. We present a version of the
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definition from [2] which is suitable for profit maximization problems such
as online search.

Definition 2. We say that an online search algorithm A is no better than
an online search algorithm B according to Bijective Analysis if there exists
an integer n0 ≥ 1 such that for each n ≥ n0, there is a bijection b : In → In

satisfying A(I) ≤ B(b(I)) for each I ∈ In. We denote this by A �b B.

Theorem 3. According to Bijective Analysis, Rp ≺b Rq if p = m and m <
q ≤ M . Otherwise, Rp and Rq are incomparable.

Proof. First assume that m < p. Considering Rp, a price k in the range
from m to p − 1 will be chosen as output if and only if it is the last price
of the sequence and all the preceding prices are smaller than p. As there
are p−m such prices smaller than p and, not counting the last price, there
are n − 1 prices in the sequence, the number of possible sequence with k as
output is (p−m)n−1.

For any prices in the range from p to M , algorithm Rp chooses this price
as output at its first occurrence in the price sequence if no price greater than
or equal to p has occurred before it. So all the preceding prices before this
first occurrence must be smaller than p (in the range from m to p − 1) and
the following prices can have any value. The number of sequences which give
output k if the reservation price is p is

Np,k =







(p−m)n−1, for m ≤ k < p
n
∑

i=1

(p−m)i−1Nn−i, for p ≤ k ≤ M
(1)

Recall the assumption throughout the paper that q > p. We consider two
cases depending on p:
Case p > m: From Eq. (1), we can derive the fact that when p > m, the
number of sequences with output m for algorithm Rq is greater than that
for algorithm Rp, since Nq,m > Np,m. Thus, we cannot have any bijective
mapping b : In → In that shows Rp(I) ≤ Rq(b(I)) for every I ∈ In. On the
other hand, it is also the case that the number of sequences with output M
for algorithm Rq is greater than that of algorithm Rp, since Nq,M > Np,M . So
there is no bijection b such that Rp(I) ≥ Rq(b(I)) for every I ∈ In. Thus for
this case, Rp and Rq are incomparable according to the Bijective Analysis.
Case p = m: For algorithm Rm, since the first price will be accepted, each
price will be the output for exactly Nn−1 sequences. We can derive the
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number of sequences with specific output for algorithm Rq using Eq. (1). In
this case, each price in the range from m to q − 1 will emerge as output in
(q−m)n−1 sequences and the number of sequences with output in the range
from q to M will be Nn−1+(q−m)Nn−2+(q−m)2Nn−3+ · · ·+(q−m)n−1.
Clearly, here we can construct a bijective mapping b : In → In where each
sequence with output k < q of algorithm Rm is mapped to sequences with
the same output for algorithm Rq. Let Em denote the number of excess
sequences with output k < q of Rm which cannot be mapped in the above
manner. We map each sequence with output k ≥ q of algorithm Rm to
sequences with the same output in algorithm Rq. Let Eq denote the number
of excess sequences with output k ≥ q of Rq which can not be mapped in
above manner. Clearly, Em = Eq. Note that, for all of these Em sequences,
we can construct a mapping such that Rm(I) < Rq(b(I)). This mapping
shows that Rm(I) ≤ Rq(b(I)) for each I ∈ In, but there is no bijection b′

such that Rm(I) ≥ Rq(b
′(I)) for all I ∈ In. Thus, if p = m, Rm and Rq are

comparable according to Bijective Analysis and Rm ≺b Rq. �

Theorem 4. According to Bijective Analysis, R2
p ≺b Rp if p > m, and

R2
p ≡b Rp when p = m.

Proof. Let N̂p,k denote the number of sequences giving output k for algo-
rithm R2

p. As in the case of Rp, R2
p will choose m as the output if it is the

last price of the sequence and all the preceding prices are smaller than p.
From the proof of Theorem 3, we know that there are exactly (p − m)n−1

such sequences. In addition to those sequences, m will also be the output if
the preceding n− 1 prices have exactly one price greater than or equal to p.
The above reasoning is valid for each price in the range from m to p− 1. So,

N̂p,k = (p−m)n−1 + (p−m)n−2(n− 1)(M − p+ 1), for m ≤ k < p (2)

For any price in the range from p to M , algorithm R2
p chooses this price

as output if in the price sequence there is exactly one price greater than or
equal to p which occurs before it, or it is the last price and no other price p
or larger occurred earlier. So, for m < p ≤ k ≤ M , the number of sequences
with any output k in the range from p to M is

N̂p,k =
n
∑

i=2

(p−m)i−2(i− 1)(M − p+ 1)Nn−i + (p−m)n−1 (3)
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We first consider the case p > m. From Eq. (1) and (2), it is evident that if
n > 1, then N̂p,k > Np,k for m ≤ k < p. As the total number of sequences

is fixed and neither Eq. (1) nor Eq. (3) depend on k, N̂p,k < Np,k for p ≤
k < M . So, we can always build a bijective mapping b : In → In that
has R2

p(I) ≤ Rp(b(I)) for every I ∈ In, but the reverse mapping cannot be

constructed. However, if p = m, then N̂p,k = Np,k = Nn−1 for any k, since
Rp always takes the first price and R2

p the second. So, according to Bijective
Analysis, R2

p ≺b Rp if p > m and R2
p ≡b Rp when p = m. �

The result of comparing the two algorithms using Bijective Analysis
changes significantly when the values of the prices are real numbers: Bi-
jective Analysis cannot differentiate between algorithms when the number of
sequences is uncountable.

Theorem 5. Rp and Rq are equivalent according to Bijective Analysis if the
prices are drawn from real space in [m,M ].

Proof. As any closed or open interval in real space has the cardinality of
the continuum, the cardinality of [m, p] and [m, q] will be same. Taking the
Cartesian product of such sets preserves their cardinality. So the cardinality
of the set of sequences with any output, k, will be same for both algorithms.
Hence, we can find a bijective mapping between the sequences where each
sequence is mapped to another with same output. This shows that in this sit-
uation, all reservation price algorithms are equivalent according to Bijective
Analysis. �

The same problem clearly arises for Rp versus R2
p and for other online

problems with real-valued inputs.

5. Average Analysis

In general, using Bijective Analysis, algorithms could be incomparable
because it is impossible to find a bijection showing that one algorithm dom-
inates the other. In some of these cases, if we take the average performance
of the algorithms, then we can still get an indication of which algorithm is
better. In [2], Average Analysis is defined with that aim and is formulated
here in terms of online search.
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Definition 3. We say that an online search algorithm A is no better than
an online search algorithm B according to Average Analysis if there exists
an integer n0 ≥ 1 such that for each n ≥ n0,

∑

I∈In A(I) ≤∑I∈In B(I). We
denote this by A �a B.

Theorem 6. For all n ≥
⌊

log(N/(q−p))
log(N/(N−1))

⌋

+ 1,
∑

I∈In Rp(I) <
∑

I∈In Rq(I).

Thus, according to Average Analysis, Rp ≺a Rq.

Proof. Let Sp,n denote the summation
∑

I∈In Rp(I). We can derive the
value of Sp,n using Eq. (1) and that N = M −m+ 1. Sp,n equals

p−1
∑

i=m

iNp,i +
M
∑

i=p

iNp,i

= (p−m)n−1

p−1
∑

i=m

i+

(

n
∑

i=1

(p−m)i−1Nn−i

)

M
∑

i=p

i

=
(p−m)n(p+m− 1)

2
+

(

n
∑

i=1

(p−m)i−1Nn−i

)

(M + p)(M − p+ 1)

2
(4)

=
(p−m)n(p+m− 1)

2
+

(

Nn − (p−m)n

N − (p−m)

)

(N +m+ p− 1)(N +m− p)

2

=
Nn+1 + pNn +mNn −Nn −N(p−m)n

2
(5)

To compare Rp and Rq, we show that the difference between the two
corresponding sums (Sq,n−Sp,n) is greater than zero for some n0 ≥ 1 and for
each n ≥ n0. Using Derivation (5), we have

Sq,n − Sp,n > 0 ⇔ Nn−1 >
(q −m)n − (p−m)n

q − p
(6)

Since q −m ≤ M − 1 and q > p, Ineq. (6) holds for any n0. Thus, it holds

for any n0 satisfying Nn0−1 > (N−1)n0

q−p
. Solving for n0 gives

(n0 − 1) logN > n0 log(N − 1)− log(q − p) ⇔ n0 >
log(N/(q − p))

log(N/(N − 1))
(7)

Therefore, for all n0 ≥
⌊

log(N/(q−p))
log(N/(N−1))

⌋

+ 1,
∑

I∈In Rp(I) <
∑

I∈In Rq(I). �
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Corollary 2. According to Average Analysis, the best RPP algorithm is RM .

Proof. According to Theorem 6, for any two RPP algorithm Rp and Rq

with q > p, Rp ≺a Rq. Thus, the maximal possible reservation price is best.
�

Theorem 7. According to Average Analysis, R2
p ≺a Rp if p > m, and R2

p ≡a

Rp when p = m.

Proof. Follows immediately from the Theorem 4. �

In Average Analysis, algorithms are compared by comparing the sums of
their outputs on all possible sequences. For integral valued problems, this is
equivalent to comparing the sum of the outputs and the expected outputs
over a uniform distribution on all input sequences. In contrast, in the case
of real-valued problems, calculating the sum of the outputs of the infinitely
many sequences is impossible. However, if we know the distribution of the
input prices in the sequences, then we can derive the expected output of
a sequence. We generalize Average Analysis to Expected Analysis. This
generalization may prove useful for other online problems as well.

Definition 4. We say that an online search algorithm A is no better than
an online search algorithm B according to Expected Analysis if there exists
an integer n0 ≥ 1 such that for each n ≥ n0, EI∈In [A(I)] ≤ EI∈In [B(I)]. We
denote this by A �e B.

We denote the probability of the first price being from the range [m, p) by
Pm,p and the probability of the first price being from the range [p,M ] by
Pp,M . Additionally we denote the expected value of prices smaller than p
by Em,p and the expected value of the prices greater than or equal to p by
Ep,M . We assume that the prices in an input sequence are independent and
uniformly distributed over the range [m,M ]. If n = 1, then the expected
value of the output is Pp,MEp,M +Pm,pEm,p. Assume now that we are dealing
with sequences of length two. Hence, with probability Pp,M , the algorithmRp

accepts the first price and with probability Pm,p it does not. So, for n = 2, the
expected value of the output will be Pp,MEp,M+Pm,pPp,MEp,M+Pm,pPm,pEm,p.
Inductively, the expected value of the output for a sequence of length n can
be calculated from that of sequences of length n− 1.
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EI∈In [Rp(I)] = Pp,MEp,M

n
∑

i=1

P i−1
m,p + Em,pP

n
m,p

For the real-valued case, Pm,p = p−m
M−m

, Pp,M = M−p
M−m

, Em,p = p+m
2

, and

Ep,M = M+p
2

. For the integral case, Pm,p = p−m
M−m+1

, Pp,M = M−p+1
M−m+1

, Em,p =
p+m−1

2
, and Ep,M = M+p

2
. For the integral case of the algorithm Rp, the

above values give

EI∈In [Rp(I)] =
(M−p+1)(M+p)

2(M−m+1)

n
∑

i=1

(

p−m
M−m+1

)i−1
+ p+m−1

2

(

p−m
M−m+1

)n

It is easily verifiable from the Eq. (4) that EI∈In [Rp(I)] = Sp,n/N
n. Thus,

Definition 3 and 4 produce the same result as stated in Theorem 6 for the
integral case.

Neither Definition 3 nor Theorem 6 can be used in the real-valued case.
Here, Rm always chooses the first price of any sequence, whereas RM does
not choose any of the first n − 1 prices as PM,M = 0 and it has to take the
last price. As all the prices are identically distributed, the expected value
of the first price and the last price are the same. That makes Rm and RM

equivalent.

Proposition 1. In case of real-valued online search

EI∈In [Rm(I)] = EI∈In [RM(I)] =
m+M

2

Thus, according to Expected Analysis, Rm ≡e RM .

For the rest of the cases, we denote the distance between m and M by
U , i.e., U = M −m.

Theorem 8. In case of real-valued online search, for all n ≥
⌊

log(U/(q−p))
log(U/(q−m))

⌋

+

1, if either p > m or q < M , EI∈In [Rp(I)] < EI∈In [Rq(I)]. Thus, in this
case, according to Expected Analysis, Rp �e Rq.

Proof. For the real-valued case, using

EI∈In [Rp(I)] = Pp,MEp,M

n
∑

i=1

P i−1
m,p + Em,pP

n
m,p,

13



the expression EI∈In [Rp(I)] becomes

EI∈In [Rp(I)] =
(M − p)(M + p)

2U

n
∑

i=1

(

p−m

U

)i−1

+
p+m

2

(

p−m

U

)n

=
(p−m)n(p+m)

2Un
+

(M + p)(M − p)

2Un

n
∑

i=1

(p−m)i−1Un−i

=
1

2Un

[

(p−m)n(p+m) + (M + p)(M − p)
Un − (p−m)n

U − (p−m)

]

=
1

2Un
[MUn + pUn − U(p−m)n] (8)

To prove that Rp ≺e Rq, it is sufficient to show that the difference between
the corresponding two expectations is greater than zero for some n0 ≥ 1 and
for each n ≥ n0. We use Eq. (8).

EI∈In [Rq(I)]− EI∈In [Rp(I)] > 0
m

qUn − pUn − (q −m)nU + (p−m)nU

2Un
> 0

m
Un−1 >

(q −m)n − (p−m)n

q − p

Since q < M , the inequality above becomes similar to Ineq. (6), with the
only difference being that here U = M −m in place of N = M −m+ 1.

To get the value of n0, we can follow the derivation of Ineq. (7), conclud-

ing that in the case of real-valued problems, for all n ≥
⌊

log(U/(q−p))
log(U/(q−m))

⌋

+ 1,

EI∈In [Rp(I)] < EI∈In [Rq(I)], if either p > m or q < M . From the pre-
vious statement and Proposition 1, this proves that according to Expected
Analysis, Rp �e Rq. �

6. Random Order Analysis

Kenyon [16] proposed another method for comparing the average behav-
iors of online algorithms by considering the expected result of a random
ordering of an input sequence and comparing that to OPT’s result on the
same sequence. Kenyon defines the random order ratio in the context of the
bin packing problem which is a cost minimization problem.

14



Definition 5. The random order ratio of an online bin packing algorithm A
is

lim sup
OPT(I)→∞

Eσ[A(σ(I))]

OPT(I)

where the expectation is taken over all permutations of I.

An online algorithm B is better than an online algorithm A according to
Random Order Analysis if the random order ratio of A is larger than the
random order ratio of B. We denote this by A ≺r B. Since the value of
OPT(I) is bounded above by the constant M , the following definition, a
maximization version of the definition of random order ratio in [10], is used
here in place of the original definition, to specify the quality of Rp:

lim sup
|I|→∞

OPT(I)

Eσ[Rp(σ(I))]
(9)

Theorem 9. The random order ratio of the RPP algorithmRp is max(M
p
, p−1

m
)

when p > 1 and p > m. Consequently, Rp ≺r Rq if and only if Mm >
p(q − 1).

Proof. Considering the random order ratio of Rp, OPT always chooses the
highest price in the sequence as its output and Rp chooses the first price that
is greater than or equal to p. There are two cases where the random order
ratio could achieve the maximal value. First, suppose the sequence has one
price with value M and all other prices are p. Then

Eσ[Rp(σ(I))] =
M + p(n− 1)

n
(10)

Now substituting the expected value of the output of the algorithm Rp in
Exp. (9), the ratio becomes

lim sup
n→∞

nM

M + p(n− 1)
=

M

p
(11)

The other case is when the sequence has one price with value p − 1 and
all other prices are equal to m. In this case, we can get a limit similar to
Exp. (11) of p−1

m
when p > 1 and p > m. As we are seeking the maximum

of these ratios, the random order ratio of Rp is the maximum of the two
values, M

p
and p−1

m
, when p > 1. This gives the same result as in the case of

Competitive Analysis in Section 3. The relative performance of Rp and Rq

follows from the arguments in the proof of Theorem 1. �
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Corollary 3. Let s =
⌈√

Mm
⌉

. According to Random Order Analysis, the

best RPP algorithm is Rs.

Proof. The values are the same as for Competitive Analysis in Corollary 1.
�

The conditions of the following theorem are exactly the same as in the
case of comparing R2

p and Rp using Competitive Analysis in Section 3 and
the proof resembles the proof of Theorem 2.

Theorem 10. According to Random Order Analysis, R2
p ≺r Rp and R2

p ≡r

Rp if and only if p > m and p = m, respectively.

Proof. From the proof of Theorem 9, we know that the random order ratio
of Rp is max(p−1

m
, M

p
). For the random order ratio of R2

p, we consider a price
sequence with only one M and n− 1 occurrences of m. Clearly, OPT always
takes M , whereas R2

p never accepts the first occurrence of M unless it is the
last price in the sequence. So,

Eσ[R2
p(σ(I))] =

M +m(n− 1)

n
(12)

Now, substituting the expected value of the output of the algorithm R2
p in

Exp. (9), we get the ratio

lim sup
n→∞

nM

M +m(n− 1)
=

M

m
(13)

This ratio is the maximum and worst ratio that can be obtained by any
algorithm. So, R2

p ≤r Rp, and equality holds if and only if p = m. �

7. Relative Interval Analysis

Dorrigiv et. al. [12] proposed another analysis method, Relative Interval
Analysis, in the context of paging. Relative Interval Analysis compares two
online algorithms directly, i.e., it does not use the optimal offline algorithm
as the baseline of the comparison. It compares two algorithms on the basis
of the rate of the outcomes over the length of the input sequence rather than
their worst case behavior. Here we define this analysis for profit maximization
problems for two algorithms A and B, following [12].
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Definition 6. Let

MinA,B(n) = min
|I|=n

{A(I)− B(I)} and MaxA,B(n) = max
|I|=n

{A(I)− B(I)} .

These functions are used to define the following two measures:

Min(A,B) = lim inf
n→∞

MinA,B(n)

n
and Max(A,B) = lim sup

n→∞

MaxA,B(n)

n
. (14)

Note that Min(A,B) = −Max(B,A) and Max(A,B) = −Min(B,A). The
relative interval of A and B is defined as l(A,B) = [Min(A,B),Max(A,B)].
If Max(A,B) > |Min(A,B)|, then A is said to have better performance than
B in this model. In particular, if l(A,B) = [0, β] for β > 0, then it is said
that A dominates B, since Min(A,B) = 0 indicates that A is never worse
than B and Max(A,B) > 0 says that A is better at least for some case(s).

Given the finite nature of the online search problem, the above limits are
always zero. So we propose a modification of Relative Interval Analysis to
make it suitable for finite profit.

Definition 7. MinA,B(n) and MaxA,B(n) are as in Definition 6. These func-
tions are used to define the following two measures:

Min(A,B) = inf
n≥2

{MinA,B(n)} and Max(A,B) = sup
n≥2

{MaxA,B(n)}. (15)

The Finite Relative Interval of A and B is defined as

fl(A,B) = [Min(A,B),Max(A,B)] .

Relative performance and dominance with regards to fl(A,B) are defined as
for l(A,B) from Definition 6.

Theorem 11. According to Finite Relative Interval Analysis, fl(Rq,Rp) =
[m− q + 1,M − p].

Proof. The minimum value of Rq(I)−Rp(I) is obtained by any sequence
of prices with all prices smaller than q, where the first price is q − 1 and the
last price is m. In this case, Min(Rq,Rp) = m− q + 1. The maximum value
of Rq(I) − Rp(I) is M − p, which is obtained when the first price is p and
the second price is M . This proves that fl(Rq,Rp) = [m− q + 1,M − p]. �
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Corollary 4. Let s =
⌈

M+m
2

⌉

. According to Finite Relative Interval Analy-
sis, the best RPP algorithm is Rs.

Proof. Let p < s. To compare Rs and Rp, we have Min(Rs,Rp) = m −
⌈

M+m
2

⌉

+1 andMax(Rs,Rp) = M−p > M−
⌈

M+m
2

⌉

. This shows that ∀p < s,
Max(Rs,Rp) > |Min(Rs,Rp)| and, consequently, Rs performs better than
Rp. Now assume q > s. Then a comparison between Rq and Rs gives
Min(Rq,Rs) = m − q + 1 < m −

⌈

M+m
2

⌉

+ 1, and Max(Rq,Rs) = M − s =
M −

⌈

M+m
2

⌉

. This inequality shows that for all q > s, Max(Rq,Rs) ≤
|Min(Rq,Rs)| and Rs performs at least as well as Rq. These two cases
prove that Rs is a best RPP algorithm according to Finite Relative Interval
Analysis. �

Theorem 12. According to Finite Relative Interval Analysis,

fl(Rp,R2
p) = [p−M,M −m].

Proof. For the minimum value of Rp(I) − R2
p(I), we use any sequence of

prices starting with two prices in the order p followed by M . In this case,
MinRp,R2

p
(N) = p − M . The maximum value of Rp(I) − R2

p(I) is M − m,
which occurs when the first price is M and the other prices are m. That
gives fl(Rp,R2

p) = [p−M,M −m]. �

The above theorem shows that, according to Finite Relative Interval Analy-
sis, Rp has better performance than R2

p if p > m.

8. Relative Worst Order Analysis

Relative Worst Order Analysis [5] compares two online algorithms di-
rectly. It compares two algorithms on their worst orderings of sequences
which have the same content, but possibly in different order. The definition
of this measure is somewhat more involved; see [6] for more intuition on the
various elements. Here we use the definitions for the strict Relative Worst
Order Analysis for profit maximization problems.

Definition 8. Let I be any input sequence, and let n be the length of I.
Let A be any online search algorithm. Then AW (I) = minσ A(σ(I)).
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Definition 9. For any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∀I : AW (I) ≥ cBW (I)} and

cu(A,B) = inf {c | ∀I : AW (I) ≤ cBW (I)} .

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and
the strict relative worst order ratio WRA,B of algorithm A to algorithm B is
defined. Otherwise, WRA,B is undefined.

If cl(A,B) ≥ 1 then WRA,B = cu(A,B), and

if cu(A,B) ≤ 1 then WRA,B = cl(A,B).

If WRA,B > 1, the algorithms A and B are said to be comparable in A’s
favor. Similarly, if WRA,B < 1, algorithms are said to be comparable in B’s
favor.

When two algorithms happen to be incomparable, Relative Worst Order
Analysis can still be used to express their relative performance.

Definition 10. If at least one of the ratios cu(A,B) and cu(B,A) is finite,
the algorithms A and B are (cu(A,B), cu(B,A))-related.

Theorem 13. According to Relative Worst Order Analysis, Rq and Rp are
(M

p
, q−1

m
)-related. They are comparable in Rq’s favor if p = m and q = m+1.

Proof. For the maximum value of the ratio of RqW (I) and RpW (I), we can
construct a sequence I with only one p and one M and all the other prices
smaller than q. Among all the permutations of I, the worst output for Rq is
M and that of Rp is p. This gives the value of the upper bound cu(Rq,Rp) as
M
p
. For the lower bound, assume I has only one q− 1 and one m and all the

other prices are smaller than p. Then, Rp takes q − 1 as its output on every
permutation of I, but the worst output of Rq gives m. On this sequence, Rq

performs worse than Rp, and the ratio of the outputs of the two algorithms
can never be lower than that. So,

cl(Rq,Rp) =
m

q − 1

{

= 1, for q = m+ 1 and p = m
< 1, otherwise

cu(Rq,Rp) =
M

p
> 1
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From the above expressions and the definitions of strict Relative Worst Order
Analysis, we can see that Rq and Rp are comparable when p = m and q =
m+1. For all the other cases, they are incomparable. For this single feasible
condition of cl(Rq,Rp) = 1, we have WRRq ,Rp

= M
p
> 1, and we can say that

algorithms Rq and Rp are comparable in Rq’s favor. Using Definition 10,
since all the ratios are finite, cu(Rp,Rq) is q−1

m
and the algorithms Rq and

Rp are (M
p
, q−1

m
)-related. �

Note that this relatedness result gives the same conditions indicating which
algorithm is better as Competitive and Random Order Analysis. Although
with the original definition of relatedness in Relative Worst Order Analysis
the values are not interpreted further, one could use the concept of better
performance (see [12] or Section 7) from Relative Interval Analysis, and state
the following:

Corollary 5. Let s =
⌈√

Mm
⌉

. If q > s and Rq and Rs are (c, c′)-related,

then c ≤ c′, and if p < s and Rs and Rp are (c, c′)-related, then c > c′.

Proof. By Theorem 13, cu(Rq,Rs) =
M

⌈√Mm⌉ and cu(Rs,Rq) = cl(Rq,Rs) =

q−1
m

. As q > s =
⌈√

Mm
⌉

, cu(Rq,Rs) ≤ cu(Rs,Rq). Similarly, cu(Rs,Rp) =

M
p

and cu(Rp,Rs) =
⌈√Mm⌉−1

m
. As p < s =

⌈√
Mm

⌉

, cu(Rp,Rs) <

cu(Rs,Rp). �

A similar result on a parameterized family of algorithms can be found in [7].
This could be defined as a weak form of optimality within a class of algo-
rithms, and we will say that Rs is superior to any other RPP algorithm.

Theorem 14. According to Relative Worst Order Analysis, Rp and R2
p are

comparable in Rp’s favor and WRRp,R2
p
= M

m
.

Proof. From the proofs of Theorems 2 and 10, we have already seen that
the worst case performance ratio of Rp and R2

p on the same sequence is M/m

which is the largest possible value. So we can conclude that cu(Rp,R2
p) =

M
m
.

For deriving the lower bound on the ratio cl(Rp,R2
p), we show that for

any sequence, on its worst permutation of that sequence, Rp’s output will be
at least as large as R2

p’s on its worst ordering of that sequence. We can prove
this fact by taking the worst output of Rp and R2

p over all the permutations
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of a sequence I. Let x and y denote these outputs, respectively. If y < p,
then there is no price in I smaller than y. So, the worst output of Rp must
be greater than or equal to y, i.e., x ≥ y. If y ≥ p, it is the smallest price in
I greater than p, so again x ≥ y. Thus, cl(Rp,R2

p) = 1. From Definition 9,
we conclude that according to Relative Worst Order Analysis, Rp and R2

p

are comparable in Rp’s favor and WRRp,R2
p
= M

m
. �

9. Max/Max Analysis

In [3], Ben-David et. al. defined the Max/Max ratio for cost minimization
problems. The Max/Max ratio compares an algorithm’s worst cost for any
sequence of length n to OPT’s worst cost for any sequence of length n. If
we want to preserve this worst output ratio behavior for profit maximization
problems, the analysis must consider the minimum profit for each sequence
length and could be named Min/Min Analysis. Here we define the Min/Min
ratio by modifying the definition of the Max/Max ratio.

Definition 11. The Min/Min ratio of an online algorithm A, wM(A), is
M(OPT)/M(A), where

M(A) = lim inf
n→∞

min
|I|=n

A(I)/n. (16)

In the online search problem, for any RPP algorithm, the minimum out-
put is m for some sequence of length n. For example, the sequence of n
consecutive prices of value m always has the output m. As m is a finite
value, the limit of Eq. (16) is zero for any algorithm. Thus, Min/Min Anal-
ysis is not applicable in comparing these online search algorithms.

However, we can modify the previous definition to make it suitable for
finite problems, as with Finite Relative Interval Analysis.

Definition 12. The Finite Min/Min ratio of an online algorithm A, wM(A),
is M(OPT)/M(A), where

M(A) = inf
n≥2

{min
|I|=n

A(I)}. (17)

For the sequences where every price is m, every algorithm, even OPT,
outputs m. This makes all Min/Min ratios equal to one, making every algo-
rithm equivalent according to Min/Min Analysis.
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10. Concluding Remarks

With regards to the concrete results, for Competitive and Random Order
Analysis, R√

mM is the best online algorithm. Relative Worst Order and
Relative Interval Analysis have more nuanced answers, but point to R√

mM

and Rm+M
2

, respectively. Bijective and Average Analysis seem to provide

the least interesting information in this context; Average Analysis indicates
RM as the best algorithm, and Bijective Analysis deems most algorithms
incomparable.

This points to three choices for the online player with regards to the
optimal reservation prices, namely

√
mM , m+M

2
, and M , depending on the

different analysis methods, i.e., the geometric mean, the arithmetic mean,
and the maximum M of all possible values. This clearly shows that the
objectives of the different performance measures vary greatly, trying to limit
poor performance in a proportional or additive sense, or focusing equally on
all scenarios, including the possibly non-occurring upper bound of M . Thus,
the different measures are tailored towards different degrees of risk aversion—
cautiousness vs. aggressiveness. The observations above complement the
findings regarding greediness and laziness from [7].

Studying performance measures and disclosing their properties and dif-
ferences from each other is work in progress. With this study, we have added
Online Search to the collection of problems that have been investigated with
a spectrum of measures. More online problem scenarios must be analyzed
this broadly before strong conclusions concerning the different performance
measures can be drawn.

Another interesting direction for future work would be to incorporate
other aspects of financial problems into the analysis in the context of other
performance measures, as has been done for competitive analysis of financial
games in the risk-reward framework of al Binali [1].
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