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Abstract

We consider the problem of online graph multi-coloring with advice. Multi-

coloring is often used to model frequency allocation in cellular networks. We give

several nearly tight upper and lower bounds for the most standard topologies of

cellular networks, paths and hexagonal graphs. For the path, negative results

trivially carry over to bipartite graphs, and our positive results are also valid

for bipartite graphs. For hexagonal graphs, negative results trivially carry over

to 3-colorable graphs, and most of our positive results do as well. The advice

given represents information that is likely to be available, studying for instance

the data from earlier similar periods of time.

1. Introduction

We consider the problem of graph multi-coloring, where each node may receive

multiple requests. Whenever a node is requested, a color must be assigned to

the node, and this color must be different from any color previously assigned to

that node or to any of its neighbors. The goal is to use as few colors as possible.

In the online version, the requests arrive one by one, and each request must be
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colored without any information about possible future requests. The underlying

graph is known to the online algorithm in advance.

The multi-coloring problem is motivated by frequency allocation in cellular net-

works. These networks are formed by a number of base transceiver stations,

each of which covers what is referred to as a cell. Due to possible interference,

neighboring cells cannot use the same frequencies. In this paper, we use clas-

sic terminology and refer to these cells as nodes in a graph where nodes are

connected by an edge if they correspond to neighboring cells in the network.

Frequencies can then be modeled as colors. Multiple requests for frequencies

can occur in one cell and overall bandwidth is a critical resource.

Two basic models dominate in the discussion of cellular networks, the high-

way and the city model. The former is modeled by linear cellular networks,

corresponding to paths, and the latter by hexagonal graphs. We consider the

problem of multi-coloring such graphs.

For practical applications, the assumption that absolutely nothing is known

about the future is often unrealistic and hence, many problems have been studied

in various semi-online settings. The notion of advice offers a quantitative and

problem independent way of relaxing the online constraint. In this model, the

online algorithm is provided with partial knowledge about the future by an

oracle writing bits of advice to an advice tape. The advice complexity of the

algorithm is the maximum total number of advice bits read from the tape, as a

function of the length of the input sequence.

The advice supplied to the algorithms studied in this paper is essentially (an

approximation of) the maximum number of requests given to any clique in the

graph. For the application of frequency allocation, it does not seem unrealistic

that this information could be derived from previous data.
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2. Preliminaries

2.1. The problem

In this section we define the problem of online multi-coloring formally. A graph,

G = (V,E), is given from the beginning, and the input sequence consists of

requests to nodes in G. Each time a node, v, is requested, the algorithm must

assign a color to v. The color must be different from all colors previously given

to v and its neighbors, and it must be chosen without any knowledge about

possible future requests. The colors are positive integers, and the goal is to

minimize the largest color used.

Multi-coloring has been studied in various settings. Some papers study a vari-

ation of the problem where requests may be cancelled, freeing their colors for

future requests. In this paper, we only very briefly consider cancellations. An-

other variation is to allow color changes (reassignment of frequencies). This is

called recoloring. An algorithm is d-recoloring if, in the process of treating a

request, it may recolor up to a distance d away from the node of the request.

2.2. Notation

Throughout, we let n denote the number of requests in a given input sequence.

We let log denote log2, the logarithm with base 2.

If A is a multi-coloring algorithm, we let A(I) denote the number of colors used

by A on the input sequence I. When I is clear from the context, we simply

write A instead of A(I).

For any input sequence, I, we let Opt(I) (or simply Opt) denote the number

of colors used by an optimal offline algorithm when given the requests in I.

2.3. Competitive ratio

The quality of an online algorithm is often given in terms of the competitive

ratio, defined by Sleator and Tarjan [35] and named by Karlin et al. [27]. An
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online multi-coloring algorithm is c-competitive if there exists a constant α such

that for all input sequences I, A(I) ≤ cOpt(I) + α. The (asymptotic) compet-

itive ratio of A is the infimum over all such c. Results that can be established

using α = 0 are referred to as strict (or absolute).

We use the term strictly 1-competitive to denote that an algorithm is as good

as an optimal offline algorithm, and optimal to mean that no better online

algorithm exists under the given conditions.

2.4. Advice complexity

We use the advice model by Hromkovič, Královič, and Královič [24], where the

online algorithm has access to an infinite advice tape, written by an offline or-

acle with infinite computation power. In other words, the online algorithm can

ask for the answer to any question and read the answer from the tape. Compet-

itiveness is defined and measured as usual, and the advice complexity is simply

the number of bits read from the tape. More precisely, for each given sequence

length, n, the advice complexity of an algorithm is the maximum number of

advice bits read by the algorithm, over all sequences of length at most n.

As the advice tape is infinite, we need to specify how many bits of advice

the algorithm should read and if this knowledge is not implicitly available, it

has to be given explicitly in the advice string. For instance, if we want Opt as

advice, then we cannot merely read ⌈log(Opt+1)⌉ bits, since this would require

knowing something about the value of Opt.

One can use a self-delimiting encoding as introduced by Elias [21]. We use

the variant by Boyar et al. [11], defined as follows: The value of a non-negative

integer X is encoded by a bit sequence, partitioned into three consecutive parts.

The last part is X written in binary. The middle part gives the number of bits

in the last part, written in binary. The first part gives the number of bits in the

middle part, written in unary and terminated with a zero. These three parts

require ⌈log(⌈log(X + 1)⌉+ 1)⌉ + 1, ⌈log(⌈log(X + 1)⌉+ 1)⌉, and ⌈log(X + 1)⌉
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bits, respectively, adding a low order term to the number of bits of information

required by an algorithm.

We define enc(x) to be the minimum number of bits necessary to encode a

number x, and note that the encoding above is a (good) upper bound on enc(x).

3. Related Work

3.1. Relaxing the online constraint

Considering advice, formalized under the notion of advice complexity, is a recent

trend in the analysis of online algorithms. In the first model proposed by Dobrev,

Královič, and Pardubská [19], the algorithm asks a question for each request

and gets answers of possibly varying lengths. One problem with this approach

is that the algorithm may get information from receiving answers of length 0.

Thus, the total number of bits received may not be a correct measure of the

amount of information passed from the oracle to the algorithm. This problem

was addressed by Emek et al. [22], introducing a model where the algorithm

receives a fixed number of advice bits per request. However, in this model

it is not possible to receive a sublinear number of advice bits. Thus, in the

present paper, we use the “advice-on-tape” model by Hromkovič, Královič, and

Královič [24]: Before the first request arrives, the oracle writes the advice to an

advice tape, and these advice bits can be read by the algorithm at any point

during its computations.

The possibly most famous online problem of paging, where no deterministic on-

line algorithm is better than k-competitive on a cache size of k, can be solved op-

timally with one bit of advice per request, saying whether to keep the requested

page in cache until its next request; see Dobrev, Královič, Pardubská [19] and

Böckenhauer et al. [6].

Many other problems have been studied in an advice setting, including disjoint

path allocation by Barhum et al. [2], and job shop scheduling by Böckenhauer
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et al. [6], as well as k-server by Böckenhauer et al. [5], knapsack by Böckenhauer

et al. [7], set cover by Komm, Královič, and Mömke [29], metrical task systems

by Emek et al. [22], and buffer management by Dorrigiv, He, and Zeh [20].

Also graph coloring has been considered, but in a very different online setting,

where the graph itself is not available from the beginning. Instead, the nodes are

revealed one by one. Results have been obtained for paths by Forisek, Keller,

and Steinová [23], bipartite graphs by Bianchi et al. [3], and 3-colorable graphs

by Seibert, Sprock, and Unger [34]. Bianchi et al. [4] consider a coloring problem

with restrictions going beyond the immediate neighbors.

Theoretically, results on advice complexity give some information in the direc-

tion of the hardness stemming from the problem being online, relaying informa-

tion concerning how much we need to know about the future to perform better.

For practical applications, though many problems must be addressed without

knowing in which order requests arrive, quite often something is known about

the sequence of requests as a whole.

This realization that input is not arbitrary (uniformly random, for instance) is

not new, and work focusing on locality of reference in input data has tried to

capture this. Early work includes access graph results, initiated by Borodin et

al. [8]. A recent account for related work in continuation of the initial access

graph results was given by Boyar, Gupta, and Larsen [10]. More distributional

models have also been developed by Albers, Favrholdt, and Giel [1].

Boyar and Larsen [12] introduced an entirely different concept of accommodating

sequences, further developed by Boyar, Larsen, and Nielsen [13] and Boyar

et al. [9]. The idea is that for many problems requiring resources, there is

a close connection between the resources available and the resources required

for an optimal offline algorithm, as when capacity of transportation systems are

matched with expected demand. This leans itself closely up against many of the

results that we report here, where the advice needed to do better is often some

information regarding the resources required by an optimal offline algorithm.
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There are interesting connections between advice and randomization and some-

times results on advice complexity can be used to obtain efficient randomized

algorithms; see Böckenhauer et al. [6], Komm and Královič [28], and Böcken-

hauer et al. [7].

3.2. Multi-coloring

For multi-coloring a path, the algorithm 4-Bucket is proven 4
3 -competitive by

Chrobak and Sgall [18], and this is established as optimal by Chan et al. [15].

Even with 0-recoloring allowed (that is, colors at the requested node may

be changed), 4-Bucket has been proved optimal by Christ, Favrholdt, and

Larsen [16]. Furthermore, if 1-recoloring is allowed, the algorithm GreedyOpt

is strictly 1-competitive [16], even if cancellations may occur. If recoloring is not

allowed and cancellations may occur, there is a lower bound of 11
7 by Chrobak

and Sgall [18] and a 5
3 -competitive algorithm, Borrow, by Chan et al. [15].

For multi-coloring bipartite graphs, the optimal asymptotic competitive ratio

has been determined to lie between 10
7 ≈ 1.428 and 18−

√
5

11 ≈ 1.433 by Chrobak,

Jez, and Sgall [17].

The following results are all valid for the setting where cancellations may occur.

Chan et al. [14] have shown that, for hexagonal graphs, no online algorithm

can be better than 3
2 -competitive or have a better strict competitive ratio than

2. They also gave an algorithm, Hybrid, with an asymptotic competitive ra-

tio of approximately 1.9 on hexagonal graphs. On k-colorable graphs, it is

strictly k+1
2 -competitive, and hence, it has an optimal strict competitive ra-

tio on hexagonal graphs. Recoloring was studied by Janssen et al. [26]: No

d-recoloring algorithm for hexagonal graphs has an asymptotic competitive ra-

tio better than 1 + 1
4(d+1) . For d = 0, the lower bound was improved to 9

7 .

The best known 1-recoloring algorithm for hexagonal graphs is 33
24 -competitive,

which was established by Witkowski and Zerovnik [37]. Sparl and Zerovnik [36]

gave a 4
3 -competitive 2-recoloring algorithm.
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Ratio Lower Type Thm Upper Type Thm

P
a
th
s 1 log n− 2 s 1 log n+O(log log n) s 3

1 + 1

2b
b− 2 a 2 b+ 1 +O(log log n) s 4

H
ex
a
g
o
n
a
l

1 (n+ 1) ⌈log n⌉ s 7

<
5

4
Ω(n) a 6

4

3
n+ 2|V | a 9

<
3

2

⌊

n−1

3

⌋

s 5

3

2
log n+O(log log n) a 8

Table 1: Overview of our results. We mark the ratios that are strict by “s” and the ones that

are asymptotic by “a”. For each bound, we indicate the number of the theorem proving the

result. For readability, many of the bounds stated are weaker than those proven in the paper.

For the offline problem of multi-coloring hexagonal graphs, no polynomial time

algorithm can obtain an absolute approximation ratio better than 4
3 unless

P = NP; see McDiarmid and Reed [30] and the overview by Narayanan and

Shende [32, 33]. A 3
2 -approximation algorithm called the Fixed Preference Al-

location algorithm was given by Janssen, Kilakos, and Marcotte [25]. Subse-

quently, Narayanan [31] simplified the strategy and noted that the algorithm

can be converted to a 1-recoloring online algorithm. McDiarmid and Reed [30]

introduced a slightly more involved algorithm with an approximation ratio of

4
3 .

4. Our Contribution

An overview of our results is given in Table 1.

For multi-coloring paths, we adapt a strictly 1-competitive 1-recoloring algo-

rithm by Christ, Favrholdt, and Larsen [16] to use log n + O(log log n) bits of

advice instead of recoloring. The advice given is the value of Opt, which is
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simply the maximum number of requests to any pair of neighboring nodes. We

then show how a higher competitive ratio can be traded for fewer advice bits.

Both results are complemented by lower bounds that are tight up to low order

terms, with the latter holding even for the asymptotic competitive ratio. All

results for paths are valid for bipartite graphs as well.

Turning to hexagonal graphs, we note that an optimal solution (for any kind of

graph) can be described to the online algorithm using (n+1) ⌈log n⌉ bits of ad-

vice. We adapt two known approximation algorithms to obtain a 4
3 -competitive

algorithm reading at most n+2|V | bits of advice and a 3
2 -competitive algorithm

reading at most log n+O(log log n) bits of advice. Finally, we prove the follow-

ing lower bounds. To obtain an asymptotic competitive ratio strictly smaller

than 5
4 , a linear number of bits are needed. For a strict competitive ratio strictly

smaller than 4
3 , we also give a linear lower bound, namely

⌊
n−1
3

⌋
, on the number

of advice bits needed. All results for hexagonal graph, except the 4
3 -competitive

algorithm, hold for 3-colorable graphs in general.

The advice given to most of the algorithms is essentially the maximum number

of requests given to any clique in the graph. For the underlying problem of

frequency allocation, guessing these values based on previous data may not be

unrealistic. Thus, the results in this paper could have practical applications.

The results establish which type of information is useful, how algorithms should

be designed to exploit this information, and what the limits are for what can

be obtained.

Finally, our results lead to some more informal insight regarding locality and

advice. When considering advice complexity of multi-coloring on a path, we

can achieve 1-competitiveness with a small amount of advice. A recoloring

algorithm needs to be 1-recoloring to achieve the same. The advice is basically

the maximum number of requests to any two neighboring nodes. Thus, whether

one has that global information once and for all, or can obtain and adjust

according to the local variant of this information gives the same result.
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For multi-coloring of hexagonal graphs, there is a similar connection between

recoloring distance and advice. The 1-recoloring online version of the Fixed

Preference Allocation algorithm discussed under related work has an advice

variant and again, this advice represents information about the maximum num-

ber of requests to neighboring nodes. With additional global information about

the bipartite induced subgraph, we can overcome the limitations of 1-recoloring

algorithms and be as good as any known polynomial-time approximation algo-

rithm.

5. The Path

As explained earlier, we establish all lower bounds for paths, and since a path

is bipartite, all these negative results carry over to bipartite graphs. Similarly,

all our (constructive) upper bounds are given for bipartite graphs and therefore

also apply to paths. We start with two lower bound results.

5.1. Lower bounds

Theorem 1. Any strictly 1-competitive online algorithm for multi-coloring paths

of at least 10 nodes has advice complexity at least
⌈
log(

⌊
n
4

⌋
+ 1)

⌉
.

Proof We let m =
⌊
n
4

⌋
and define a set S of m + 1 sequences, all having the

same prefix of length 2m. The set S will have the following property: for no

two sequences in S can their prefixes be colored in the same way while ending

up using the optimal number of colors on the complete sequence. Starting from

one end of the path, we denote the nodes v1, v2, . . . .

We define the set S to consist of the sequences I0, I1, . . . , Im, where Ii is defined

in the following way. First m requests are given to each of the nodes v1 and v4.

Then i requests to each of v2 and v3. To give all sequences the same length,

the sequence ends with n − 2m − 2i requests distributed as evenly as possible

among v6, v8, and v10. Since ⌈(n− 2m− 2i)/3⌉ ≤ m, the optimal number of

colors will not be influenced by this part of the sequence.
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We now explain that Opt(Ii) = m+i. At least m+i colors are needed, since the

neighboring vertices v1 and v2 receive m+i requests in total. On the other hand,

the requests of Ii can be colored using m+ i colors in total: colors 1, 2, . . . ,m at

vertex v1, colors m+1,m+2, . . . ,m+ i at vertex v2, colors 1, 2, . . . , i at vertex

v3, and colors i + 1, i + 2, . . . ,m + i at vertex v4. This is a legal coloring also

with respect to v2 and v3, since i ≤ m.

For any coloring of Ii, let xi be the number of colors used at v4 and not at v1.

Since the two vertices receive the same number of colors, this is also the number

of colors used at v1 and not at v4. In the optimal coloring described above,

xi = i. Since the total number of colors used at v1 and v4 is m+xi, any optimal

coloring must have xi ≤ i. On the other hand, at most xi of the colors used

at v1 can be used at v3. Hence, the total number of colors used at v1, v2, and

v3 is at least m+ i + (i − xi) = m+ 2i − xi, so in an optimal coloring, xi ≥ i.

This shows that to produce an optimal coloring, an algorithm must ensure that

xi = i.

The prefixes of length 2m in S are identical, so all information to distinguish

between the different sequences must be given as advice. The cardinality of S

is m + 1. To specify one out of m + 1 possible actions, ⌈log(m+ 1)⌉ bits are

necessary. ✷

For algorithms that are 9
8 -competitive or better, we give the following lower

bound.

Theorem 2. Consider multi-coloring paths of at least 10 nodes. For any b ≥ 3

and any (1 + 1
2b
)-competitive algorithm, A, there exists an N ∈ N such that A

has advice complexity at least b− 2 on sequences of length at least N .

Proof For any (1 + 1
2b
)-competitive algorithm, A, there exists an α ≥ 1 such

that A(I) ≤ (1+ 1
2b
)Opt(I)+α, for any input sequence I. We consider sequences

of length n ≥ 22b+2α+ 3.

Let m =
⌊
n
4

⌋
and consider the same set of sequences as in the proof of Theo-

rem 1. For the sequence Ii, let xi denote the number of colors that A uses on
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v4, but not on v1. As explained in the proof of Theorem 1, Opt(Ii) = m + i

and A(Ii) ≥ max {m+ xi,m+ 2i− xi}.

We will prove that there are p ≥ 2b−2 sequences Ii1 , Ii2 , . . . , Iip such that, for

any pair ij 6= ik, we have xij 6= xjk , or otherwise A would not be (1 + 1
2b
)-

competitive. This will immediately imply that A must use at least b− 2 advice

bits.

Let ε = 1
2b

+ 1
22b

. From A(Ii) ≤ (1 + 1
2b
)Opt(Ii) + α and m ≥ 22bα, we obtain

the inequalities

m+ xi ≤ (1 + ε)(m+ i)

and

m+ 2i− xi ≤ (1 + ε)(m+ i)

which reduce to

xi ≤ εm+ (1 + ε)i (1)

and

i ≤ xi + εm

1− ε
(2)

By (1), x0 ≤ εm. Hence, by (2), we can have xi = x0, only if i ≤ 2εm
1−ε . Therefore,

we let i1 = 0 and i2 = ⌊ 2εm
1−ε + 1⌋. In general, we ensure xij 6= xij+1

by letting

ij+1 = ⌊xij
+εm

1−ε + 1⌋. Thus,

ij+1 ≤ xij + εm

1− ε
+ 1

≤ εm+ (1 + ε)ij + εm

1− ε
+ 1, by (1)

=
1 + ε

1− ε
· ij +

2εm

1− ε
+ 1
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Solving this recurrence relation, we get

ij+1 ≤
(
1 + ε

1− ε

)j

· i1 +
j−1
∑

k=0

(
1 + ε

1− ε

)k (
2εm

1− ε
+ 1

)

=

(
1 + ε

1− ε

)j

· 0 +

(
1+ε
1−ε

)j

− 1

1+ε
1−ε − 1

(
2εm

1− ε
+ 1

)

=

(
1+ε
1−ε

)j

− 1

1 + ε− 1 + ε
(2εm+ 1− ε)

=

(
1+ε
1−ε

)j

− 1

2ε
(2εm+ 1− ε)

We let p equal the largest j for which ij ≤ m:

m < ip+1 ≤

(
1+ε
1−ε

)p

− 1

2ε
(2εm+ 1− ε)

⇒ 2εm <

(
1 + ε

1− ε

)p

(2εm+ 1− ε)− (2εm+ 1− ε)

⇔ 4mε+ 1− ε

2mε+ 1− ε
<

(
1 + ε

1− ε

)p

⇔ ln

(

2− 1− ε

2mε+ 1− ε

)

< p · ln
(

1 +
2ε

1− ε

)

⇒ ln

(

2− 1− ε

2mε+ 1− ε

)

< p · 2ε

1− ε
, since ln(1 + x) ≤ x, for x > −1

⇒ ln

(

2− 1

16

)

< p · 2ε

1− ε
, since mε > 2b ≥ 8

⇒ ln
(√

e
)
< p · 2ε

1− ε

⇔ 1

2
< p · 2ε

1− ε

⇔ p >
1− ε

4ε

⇔ p >
1− 1

2b
− 1

22b

4
2b

+ 4
22b

=
22b − 2b − 1

2b+2 + 4
> 2b−2 − 1

⇒ p ≥ 2b−2, since p is an integer

This completes the proof. ✷
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5.2. Upper bounds

In this section we use a result by Christ, Favrholdt, and Larsen [16] establishing

a strictly 1-competitive 1-recoloring algorithm, GreedyOpt. First, we adapt

the algorithm to use advice instead of recoloring, yielding Theorem 3. Then, in

Theorem 4, we establish a trade-off between the number of advice bits and the

competitive ratio.

GreedyOpt divides the nodes into two sets, upper and lower, such that every

second node belongs to upper and the remaining nodes belong to lower. The

following invariant is maintained: After each request, each node in lower uses

consecutive colors starting with the color 1 and each node in upper uses consec-

utive colors ending with a color no larger than the optimal number of colors for

the sequence of requests seen so far.

The algorithm for paths from [16] can be generalized to work on bipartite graphs

by letting the nodes of one partition, L, belong to lower and the nodes of the

other partition, U , belong to upper. Recoloring is only needed if the number of

colors used by an optimal offline algorithm is not known. Hence, using enc(Opt)

advice bits, an online algorithm can be strictly 1-competitive, even if recoloring

is not allowed. We call the resulting algorithm GreedyOptAdvice.

To describe the algorithm GreedyOptAdvice in detail, we need some no-

tation: Let fi(v) denote the set of colors assigned to node v after the first i

requests, starting with request 1. Also, for notational convenience, we define

f0(v) = ∅ for all v. This notation will be used throughout. GreedyOptAdvice

is listed as Algorithm 1.

Theorem 3. AlgorithmGreedyOptAdvice is correct, strictly 1-competitive,

and has advice complexity enc(Opt).

Proof We consider correctness first. Clearly, at time i, the maximum color

assigned to a node v ∈ L is |fi(v)| and the minimum color assigned to a node

v ∈ U is Opt+1− |fi(v)| (assuming v has received at least one request).
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Algorithm 1 The multi-coloring algorithm GreedyOptAdvice.

1: Assume that a bipartite graph is given by the partition into L and U .

2: Advice: m = Opt

3: for i = 1 to n do

4: Assume that the ith request, r, is to node v

5: if v ∈ U then

6: /* using the upper colors top-down */

7: give r color m− |fi−1(v)|
8: else

9: /* v ∈ L; using the lower colors bottom-up */

10: give r color |fi−1(v)|+ 1

Assume for the sake of contradiction that, at some time i, a request to a node

l ∈ L gets assigned the same color c as a request to a neighboring node u, which

must belong to U . This means that c = |fi(l)| and c ≥ Opt+1− |fi(u)|. Since
l and u are neighbors, Opt ≥ |fi(l)|+ |fi(u)| ≥ c+Opt+1− c = Opt+1. This

is a contradiction, so GreedyOptAdvice is correct.

It follows directly that the maximum color that GreedyOptAdvice assigns is

Opt, implying that GreedyOptAdvice is strictly 1-competitive. ✷

We now turn to nonoptimal variants of GreedyOptAdvice using fewer than

enc(Opt) advice bits. We show how to obtain a particular competitive ratio

of 1 + 1
2b
, using b+ 1 +O(log logOpt) bits of advice. Thus, essentially, we are

approaching optimality exponentially fast in the number of bits of advice.

Theorem 4. For any integer b ≥ 1, there exists a strictly (1+ 1
2b−1 )-competitive

online algorithm for multi-coloring bipartite graphs with advice complexity b+

enc(a), where a+ b is the total number of bits in the value Opt.

Proof As advice, the algorithm asks for the b high order bits of the value Opt,

as well as the number a = ⌈log(Opt+1)⌉−b of low order bits, but not the value

of these bits. The algorithm knows b and can therefore just read the first b bits,
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while a needs to be encoded. Thus, b+ enc(a) bits are sufficient to encode the

advice.

First, if Opt contains at most b bits, this is detected by a being zero. In this

case, some of the b bits may be leading zeros. By Theorem 3, we can then be

strictly 1-competitive.

Now assume that Opt contains more than b bits. Let Optb =
⌊
Opt

2a

⌋
denote

the value represented by the b high order bits. Then the algorithm computes

m = 2a Optb +2a−1 and runs GreedyOptAdvice with this m. Since Opt ≤
m ≤ Opt+2a−1, the algorithm is correct and uses at most Opt+2a−1 colors.

For any number x ≥ 1, consisting of c bits, with the most significant bit being

one, 2c ≤ 2x. Thus, 2b+a ≤ 2Opt, so 2a ≤ 2Opt

2b
. This means that the number

of colors used byGreedyOptAdvice is less thanOpt+ 2Opt

2b
= (1+ 1

2b−1 )Opt,

so the algorithm is strictly (1 + 1
2b−1 )-competitive. ✷

Corollary 1. For any ε > 0, there exists a strictly (1+ε)-competitive determin-

istic online algorithm for multi-coloring bipartite graphs with advice complexity

O(log logOpt).

Proof Except for the term b, the advice stated in Theorem 4 is O(log logOpt).

Thus, we just need to bound the term b. For a given ε, choose b large enough

such that 1
2b−1 ≤ ε. Using this value for b in Theorem 4, we obtain an algorithm

with a strict competitive ratio of at most 1 + 1
2b−1 ≤ 1 + ε. Since, for any given

ε, b is a constant, the total amount of advice is O(log logOpt). ✷

5.3. Cancellations

The Multi-Coloring problem is sometimes considered in the context of request

cancellations, i.e., a color already given to a node disappears again. We observe

that even using the weakest form of recoloring, namely 0-recoloring, where only

requests at the node where the cancellation takes place may be recolored, we

can extend the algorithm GreedyOptAdvice, using the same advice, to a

strictly 1-competitive algorithm. This is simply done by recoloring at most

17



one request per cancellation to ensure that the invariants regarding lower and

upper nodes are maintained, i.e., ensuring that the colors used at any node

form a consecutive sequence starting from one and increasing and starting from

Opt and decreasing for lower and upper nodes, respectively. This algorithm,

GreedyOptAdviceCancel, is listed as Algorithm 2. Note that the difference

to Algorithm 1 is the check in line 5 as to whether the current request is a color

request and the addition of lines 12–19 handling cancellations.

6. Hexagonal Graphs

A hexagonal graph is a graph that can be obtained by placing (at most) one

node in each cell of a hexagonal grid (such as the one sketched in Figure 1) and

adding an edge between any pair of nodes placed in neighboring cells. Note that

any hexagonal graph can be 3-colored by using the three colors cyclically on the

cells of each row of the underlying hexagonal grid. In fact, as mentioned earlier,

all lower bounds in this section carry over to 3-colorable graphs, and all upper

bound proofs, except for the final theorem, also hold for 3-colorable graphs.

6.1. Lower bounds

Theorem 5. Any online algorithm for multi-coloring hexagonal graphs with a

strict competitive ratio strictly smaller than 3
2 has advice complexity at least

⌊
n−1
3

⌋
.

Proof First, we explain a small part of the construction that we will use in

many copies. We consider two sequences with the same prefix of length 2.

Both sequences can be colored with two colors, but this requires coloring the

two prefixes of length two differently. Consider the left-most part of Figure 1

(surrounded by thick lines) consisting of the “double” nodes D1 and D2, the

“outer” nodes O0 and O1 and the “single” nodes S1, and S2. These nodes form

the same type of configuration as the nodes D3, D4, O1, O2, S3, and S4. If a

pair of outer nodes are given some requests, they can later be “connected” by
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O0 S1 O1 S3 O2 S2k−1 Ok

D1 D2

D3 D4

D2k−1 D2k

S2

S4

S2k

R. . .

Figure 1: Hexagonal lower bound construction.

follow-up requests to either the two double nodes or the single node between

them.

First the nodes O0 and O1 get one request each. Then, either D1 and D2 or

S1 and S2 receive one request each. The node S2 is used to get up to the same

sequence length in all cases. In order not to use more than two colors, the outer

nodes have to use different colors if we later give requests to the two D-nodes.

Similarly, the O-nodes should have the same color if we later give a request

to the S-node in between them. Since the prefix of length two is 〈O0, O1〉 for

both sequences, all information for an algorithm to distinguish between the two

sequences must be given as advice.

We can repeat this graph pattern
⌊
n−1
3

⌋
times, as illustrated in Figure 1 with

k =
⌊
n−1
3

⌋
, giving the requests to all O-nodes first.

We now define the set of sequences S of cardinality 2⌊n−1
3 ⌋ formally, i.e., we

define a sequence for each possible combination of requests to either D2j−1

and D2j or S2j−1 and S2j , for j = 1, 2, . . . ,
⌊
n−1
3

⌋
. A sequence is defined

for any chosen combination of the following i-values, i.e., by choosing a tuple

(i1, i2, . . . , i⌊n−1
3 ⌋) ∈ {0, 1}⌊

n−1
3 ⌋. For any such choice, we define the sequence

as a concatenation of the subsequences given below. In the description of the

subsequences, we use the notation Req(v,m) to denote a sequence of m requests

to a node v, and also use this notation for m = 0, denoting the empty request
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sequence, and m = 1, denoting one request.

• Req(Oj , 1), for j = 0, 1, . . . ,
⌊
n−1
3

⌋

• Req(D2j−1, ij), Req(D2j , ij), for j = 1, 2, . . . ,
⌊
n−1
3

⌋

• Req(S2j−1, 1− ij), Req(S2j , 1− ij), for j = 1, 2, . . . ,
⌊
n−1
3

⌋

• Req(R,n− (3
⌊
n−1
3

⌋
+ 1))

Note that for any ij , {ij , 1− ij} = {0, 1} and we either give requests to the

D-nodes or the S-nodes. The possible requests to R simply brings all sequences

up to a length of n.

The node O0 is given some color. After that, we have
⌊
n−1
3

⌋
independent choices

of coloring each node Oi in the prefix of any sequence identically to Oi−1 or not.

Since the prefixes are the same, all information for an algorithm to distinguish

between the different sequences must be given as advice. To specify one out of

2⌊n−1
3 ⌋ possible actions,

⌈

log 2⌊n−1
3 ⌋⌉ =

⌊
n−1
3

⌋
bits are necessary. ✷

Theorem 6. Any online algorithm for multi-coloring hexagonal graphs with

competitive ratio strictly smaller than 5
4 has advice complexity Ω(n).

Proof We use the basic construction from Theorem 5. Assume p requests are

given to one of the components like this:

First, we give p
4 requests to each of O0 and O1. Let q, 0 ≤ q ≤ p

4 , denote the

number of colors used at both nodes. Then following up by giving p
4 requests

to each S-node results in a minimum of 3p
4 − q colors used, while giving the

requests to the D-nodes instead results in a minimum of p
2 + q colors.

Note that Opt = p
2 , independent of in which of the two ways the sequence is

continued. Thus, for any ε > 0, any ( 54−ε)-competitive algorithm must choose q

such that, for some constant α, 3p
4 −q ≤

(
5
4 − ε

)
p
2+α and p

2+q ≤
(
5
4 − ε

)
p
2+α.

Adding these two inequalities, we obtain 5p
4 ≤ ( 54 − ε)p+2α which is equivalent

to εp ≤ 2α. Thus, if p is non-constant, no ( 54 − ε)-competitive algorithm can

use the same value of q for both sequences.
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Now assume for the sake of contradiction that for some advice of g(n) ∈ o(n)

bits, we can obtain a ratio of 5
4 − ε. Let f(n) = 1

2
n

g(n) . Since g(n) ∈ o(n),

f(n) ∈ ω(1). The idea is now to repeat the construction as in the proof of

Theorem 5 and give f(n) requests to each construction (f(n) has the role of p

in the above). Since a pair of neighboring constructions share f(n)/4 requests,

this results in n−f(n)/4
3f(n)/4 = 4n−f(n)

3f(n) ≥ n
f(n) constructions. We assume without

loss of generality that all our divisions result in integers.

In order to be ( 54 − ε)-competitive, an online algorithm must, for each two

neighboring O-nodes, choose between at least two different values of q. These

are independent decisions, and the ratio only ends up strictly better than 5
4

if the algorithm decides correctly in every subconstruction. Thus, it needs at

least n
f(n) bits of advice. However, n

f(n) = n
1
2

n
g(n)

= 2g(n) > g(n), which is a

contradiction. ✷

6.2. Upper bounds

We start with a fairly trivial upper bound on the advice necessary to be optimal,

independent of the graph topology. This is a weak type of result, basically asking

for advice stating exactly what Opt would do with each request.

Theorem 7. There exists a strictly 1-competitive online multi-coloring algo-

rithm with advice complexity (n+ 1) ⌈logOpt⌉.

Proof Start by asking for the number of bits necessary to represent values up

to Opt. Then for each request, read ⌈log(Opt+1)⌉ bits, telling which color to

use. This gives enc(⌈logOpt⌉) + n ⌈logOpt⌉ < (n+ 1) ⌈logOpt⌉. ✷

In the following, we will show how two known approximation algorithms can be

converted to online algorithms with advice. In the description of the algorithms,

we let the weight of a clique denote the total number of requests to the nodes of

the clique. Note that the only maximal cliques in a hexagonal graph are isolated

nodes, edges, or triangles. We let ω denote the maximum weight of any clique
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in the graph.2

A 3
2 -competitive algorithm called the Fixed Preference Allocation algorithm,

FPA, was proposed by Janssen, Kilakos, and Marcotte [25]. Narayanan [31]

simplified the strategy and it was noted that the algorithm can be converted

to a 1-recoloring online algorithm. We describe the simplified offline algorithm

below.

The algorithm uses three color classes, R, G, and B. The color classes represent

a partitioning of the nodes in the graph so that no two neighbors are in the

same partition. Each of the three color classes has its own set of
⌈
ω
2

⌉
colors,

and each node in a given color class uses the colors of its color class, starting

with the smallest. This set of colors is also referred to as the node’s private

colors. If more than
⌈
ω
2

⌉
requests are given to a node, then it borrows colors

from the private colors of one of its neighbors, taking the highest available color.

R nodes can borrow colors from G nodes, G from B, and B from R.

For completeness, we give the arguments that FPA is correct and obtains an

approximation ratio of 3
2 . Assume for the purpose of contradiction that the

coloring produced by the algorithm causes a conflict between an R node and a

G node. This means that their combined number of requests must be greater

than ω, which is a contradiction. The same argument holds for the other color

combinations. Thus, the coloring is legal. Any optimal algorithm needs at least

ω colors, so Opt ≥ ω and the algorithm is a 3
2 -approximation algorithm.

Since
⌈
ω
2

⌉
≤

⌈
Opt

2

⌉
, we can give

⌈
ω
2

⌉
as advice, resulting in Algorithm 3. Note

that the f -notation used in the pseudo-code was defined in connection with

Algorithm 1.

Theorem 8. There exists a 3
2 -competitive online algorithm for multi-coloring

2The Greek letter ω is traditionally used here, so we will also do that. Since there is no

argument, this should not give rise to confusion with the ω(f), stemming from asymptotic

notation.
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hexagonal graphs with advice complexity enc(
⌈
Opt

2

⌉
).

Proof Given
⌈
ω
2

⌉
≤

⌈
Opt

2

⌉
as advice, FPA can be used as an online algorithm

(Algorithm 3). ✷

McDiarmid and Reed [30] introduced an algorithm with an approximation ratio

of 4
3 . We now describe this algorithm. For completeness, we also give the

arguments that the algorithm is correct and is a 4
3 -approximation algorithm:

The algorithm uses color classes in the same way as FPA, except that the

private color sets contain only
⌊
ω+1
3

⌋
colors each. We use the following no-

tation. For any node v, we let nv denote the number of requests to v. Fur-

thermore, bv denotes the maximum number of colors that v can borrow, i.e.,

bv = max{0,
⌊
ω+1
3

⌋
−n′

v}, where n′
v is the maximum number of requests to any

of the neighboring nodes in the color class that v can borrow from.

The algorithm can be seen as working in up to three phases:

In the first phase, the algorithm colors min{nv,
⌊
ω+1
3

⌋
} requests to each node,

v, using the node’s private colors. Let G1 be the graph induced by the nodes

that still have uncolored requests after Phase 1.

For any node, v, in G1,
⌊
ω+1
3

⌋
requests to v are colored with v’s private colors

in Phase 1. By the definition of ω, this immediately implies that any pair of

neighboring nodes have a total of at most ω − 2
⌊
ω+1
3

⌋
uncolored requests after

Phase 1. Furthermore, G1 cannot contain triangles. Each node in such a triangle

would have received at least
⌊
ω+1
3

⌋
+ 1 requests, contradicting the definition of

ω.

In the second phase, each node v of G1 borrows min{nv −
⌊
ω+1
3

⌋
, bv} colors.

Let G2 be the graph induced by nodes that still have uncolored requests after

Phase 2.

Using the fact that G1 (and hence G2) does not contain triangles, it can be

proven that G2 is bipartite. Since any pair of neighbors in G1 have a total of at

most ω− 2
⌊
ω+1
3

⌋
uncolored requests already after Phase 1, this means that, in
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Figure 2: Illustration of the 4

3
-approximation algorithm. a) The borrow pattern. Arrows show

the direction of the flow of colors in Phase 2. b) Part of a graph induced by nodes still having

unprocessed requests after Phase 2. c) The subsequence of advice bits connected to one node.

The sequence of advice bits is a merge of such sequences.

the third phase, the remaining requests can be colored with GreedyOpt (see

Section 5.2) using ω − 2
⌊
ω+1
3

⌋
additional colors.

We now argue that G2 is acyclic and hence bipartite. Assume to the contrary

that G2 does contain a cycle, C. Assume without loss of generality that the R,

G, B coloring of the underlying hexagonal grid is as shown in Figure 2a and let u

be a leftmost node of C. We assume the borrowing pattern shown in Figure 2a,

i.e., R nodes borrow from G nodes and so on. (Alternatively, one could use

the pattern R nodes borrowing from B nodes and so on, and define u to be a

rightmost node.)

Referring to Figure 2b, two of the nodes v1, v2, and b3 must also be part of

C. However, b3 cannot be part of C, since then there would be a triangle after

Phase 1. Thus, u, v1, and v2 are part of the cycle and hence receive at least
⌊
ω+1
3

⌋
+ 1 requests each.

Since u could not borrow enough colors from the nodes in the color class it is

allowed to borrow from, one of the b-nodes, say bj , together with u must have a

total of at least 2
⌊
ω+1
3

⌋
+1 requests. So, bj and u must form a triangle together

with either v1 or v2 so that the three nodes together have received a total of at

least (2
⌊
ω+1
3

⌋
+1)+ (

⌊
ω+1
3

⌋
+1) requests. This quantity is strictly larger than

ω, contradicting the definition of ω.
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This ends the argument that the algorithm is correct.

Since the total number of colors used is at most 3
⌊
ω+1
3

⌋
+ (ω − 2

⌊
ω+1
3

⌋
) =

⌊
4ω+1

3

⌋
, the algorithm is a 4

3 -approximation algorithm.

We now show how an online algorithm, given the right advice, can behave as

the offline 4
3 -approximation algorithm. Note that the three phases of the offline

4
3 -approximation algorithm are characterized by the coloring strategy (using the

node’s own private colors, borrowing private colors from neighbors, or coloring

a bipartite graph). However, when requests arrive online, the nodes may not go

from one phase to the next simultaneously.

Theorem 9. There exists a 4
3 -competitive online algorithm for multi-coloring

hexagonal graphs with advice complexity at most n+ 2|V |.

Proof We describe the algorithm and advice resulting in a coloring with at

most 4
3 Opt+ 1

3 colors (see Algorithm 4, where we use the f -notation defined in

connection with Algorithm 1).

Initially, each node is in Phase 1. On a request, the algorithm reads an advice

bit and if it is zero, the next color from its private colors is used. If, instead, a

one is read, this is treated as a stop bit for Phase 1, and this particular node

enters Phase 2.

The algorithm starts with empty private color sets, and adds one color to each

set whenever necessary, i.e., whenever a Phase 1 node that has already used all

its private colors receives an additional request (this includes the first request

to the node). As soon as a node leaves Phase 1, the algorithm knows that this

node received
⌊
ω+1
3

⌋
requests, which is then the final size of each private color

set. Knowing the size of the private color sets, the algorithm can calculate the

maximum color for the complete coloring of the graph as m = 4
⌊
ω+1
3

⌋
.

In Phase 2, every zero indicates that the algorithm should borrow a color. When

another stop bit is received (which could be after no zeros at all if the borrowing

phase is empty), it moves to Phase 3. In Phase 3, it reads one bit to decide
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which partition, upper or lower, of the bipartite graph it is in, and does not need

more information after that, since it simply uses the colors 3
⌊
ω+1
3

⌋
+ 1, . . . ,m,

either top-down or bottom-up.

If we allow the algorithm one bit per request, it needs at most two more bits

per node, since the stop bits are the only bits that do not immediately tell the

algorithm which action to take. Thus, n+ 2|V | bits of advice suffice. ✷

This algorithm can be used in many different ways, as long as the algorithm

gets the information it needs. One other simple encoding would be to give the

algorithm the value
⌊
ω+1
3

⌋
from the beginning and only give bit-wise advice after

a node has used all its private colors. Since at least one color is private, this

will save a total of at least |V | bits, and result in at most enc(
⌊
ω+1
3

⌋
) + n+ |V |

bits of advice. This variant, and others, that are incomparable to each other,

depending on the values of n, ω, and |V |, could all be used at the same time by

first asking for a few bits to decide how to proceed. Thus, one could formulate a

less readable but more accurate theorem basically taking the minimum of all the

expressions. We have chosen clarity over precision, since the other expressions

are mostly better in less interesting cases, where n is small compared to |V |, for
instance.
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Algorithm 2 The multi-coloring algorithm GreedyOptAdviceCancel.

1: Assume that a bipartite graph is given by the partition into L and U .

2: Advice: m = Opt

3: for i = 1 to n do

4: Assume that the ith request, r, is to node v

5: if r is a color request then

6: if v ∈ U then

7: /* using the upper colors top-down */

8: give r color m− |fi−1(v)|
9: else

10: /* v ∈ L; using the lower colors bottom-up */

11: give r color |fi−1(v)|+ 1

12: else

13: /* r is a cancellation */

14: if v ∈ U then

15: if the color of r is different from min fi−1(v) then

16: recolor the request that has color min fi−1(v), giving it

the color of r

17: else

18: if the color of r is different from max fi−1(v) then

19: recolor the request that has color max fi−1(v), giving it

the color of r
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Algorithm 3 The 3
2 -competitive algorithm, FPA, with advice.

1: Advice:
⌈
ω
2

⌉

2: Red =
{
1, 2, . . . ,

⌈
ω
2

⌉}
,

3: Green =
{⌈

ω
2

⌉
+ 1,

⌈
ω
2

⌉
+ 2, . . . , 2

⌈
ω
2

⌉}
,

4: Blue =
{
2
⌈
ω
2

⌉
+ 1, 2

⌈
ω
2

⌉
+ 2, . . . , 3

⌈
ω
2

⌉}

5: Function Class(v)

6: return v’s color class: R, G, or B

7: Function Borrow(c)

8: return the next class in the wrap-around sequence R, G, or B

9: Function Colors(c)

10: return the set of private colors of class c

11: for i = 1 to n do

12: Assume that the ith request, r, is to node v

13: if |fi−1(v)| <
⌈
ω
2

⌉
then

14: give r color min(Colors(Class(v)) \ fi−1(v))

15: else

16: give r color max(Colors(Borrow(Class(v))) \ fi−1(v))
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Algorithm 4 Combining FPA and GreedyOptAdvice.

1: Advice: A sequence B of bits classifying each request as to whether it

should be colored using the node’s own private colors, by borrowing, or in

which partition it falls.

2: Function Class(v)

3: return v’s color class: R, G, or B

4: Function Borrow(c)

5: return the next class in the wrap-around sequence R, G, or B

6: Function Colors(c)

7: return the set of private colors of class c

8: Function NextBit(B)

9: return the next advice bit

10: for each node v do

11: Phase(v) = 1

12: for i = 1 to n do

13: Assume that the ith request, r, is to node v

14: if Phase(v) = 1 then

15: if NextBit(B) = 0 then

16: if Colors(Class(v)) \ fi−1(v) = ∅ then

17: add one color to each of the three sets of private colors

18: give r color min(Colors(Class(v)) \ fi−1(v))

19: else

20: Phase(v) = 2

21: Phase3Min = 3 |fi−1(v)|+ 1

22: Phase3Max = 4 |fi−1(v)|+ 1

23: if Phase(v) = 2 then

24: if NextBit(B) = 0 then

25: give r color max(Colors(Borrow(Class(v))) \ fi−1(v))

26: else

27: Phase(v) = 3

28: upperv = NextBit(B) /* Store the partition of v */

29: if Phase(v) = 3 then

30: /* Use GreedyOptAdvice: */

31: if upperv = 1 then

32: give r color max({Phase3Min, . . . ,Phase3Max} \ fi−1(v))

33: else

34: give r color min({Phase3Min, . . . ,Phase3Max} \ fi−1(v))
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