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Abstract. We consider the problem of online graph multi-coloring with
advice. Multi-coloring is often used to model frequency allocation in cel-
lular networks. We give several nearly tight upper and lower bounds for
the most standard topologies of cellular networks, paths and hexagonal
graphs. For the path, negative results trivially carry over to bipartite
graphs, and our positive results are also valid for bipartite graphs. The
advice given represents information that is likely to be available, studying
for instance the data from earlier similar periods of time.

1 Introduction

We consider the problem of graph multi-coloring, where each node may receive
multiple requests. Whenever a node is requested, a color must be assigned to
the node, and this color must be different from any color previously assigned to
that node or to any of its neighbors. The goal is to use as few colors as possible.
In the online version, the requests arrive one by one, and each request must be
colored without any information about possible future requests. The underlying
graph is known to the online algorithm in advance.

The problem is motivated by frequency allocation in cellular networks. These
networks are formed by a number of base transceiver stations, each of which
covers what is referred to as a cell. Due to possible interference, neighboring
cells cannot use the same frequencies. In this paper, we use classic terminology
and refer to these cells as nodes in a graph where nodes are connected by an
edge if they correspond to neighboring cells in the network. Frequencies can then
be modeled as colors. Multiple requests for frequencies can occur in one cell and
overall bandwidth is a critical resource.

Two basic models dominate in the discussion of cellular networks, the high-
way and the city model. The former is modeled by linear cellular networks,
corresponding to paths, and the latter by hexagonal graphs. We consider the
problem of multi-coloring such graphs.

If A is a multi-coloring algorithm, we let A(I) denote the number of colors
used by A on the input sequence I. When I is clear from the context, we simply
write A instead of A(I). The quality of an online algorithm is often given in
terms of the competitive ratio [37, 28]. An online multi-coloring algorithm is
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c-competitive if there exists a constant α such that for all input sequences I,
A(I) ≤ cOpt(I) + α. The (asymptotic) competitive ratio of A is the infimum
over all such c. Results that can be established using α = 0 are referred to as
strict (or absolute). Often, it is a little unclear when one refers to an optimal

online algorithm, whether this means that the solution produced is as good as the
one produced offline or that no better online algorithm can exist. For that reason,
we may use the term strictly 1-competitive to emphasize that an algorithm is as
good as an optimal offline algorithm, and optimal to mean that no better online
algorithm exists under the given conditions. Throughout, we let n denote the
number of requests in a given input sequence.

For practical applications, the assumption that absolutely nothing is known
about the future is often unrealistic. A way of relaxing this very strict and
somewhat unnatural assumption is to give the algorithm some advice. A recent
trend in the analysis of online algorithms has been to consider advice, formalized
under the notion of advice complexity, starting in [20].

This realization that input is not arbitrary (uniformly random, for instance)
is not new, and work focused on locality of reference in input data has tried
to capture this. Early work includes access graph results, starting in [8], and
with references to additional related work in [10], but also more distributional
models, such as [1], have been developed. In [12] an entirely different concept of
accommodating sequences was introduced and further developed in [13, 9]. The
idea is that for many problems requiring resources, there is a close connection
between the resources available and the resources required for an optimal of-
fline algorithm, as when capacity of transportation systems are matched with
expected demand. This leans itself closely up against many of the results that
we report here, where the advice needed to do better is often some information
regarding the resources required by an optimal offline algorithm.

Thus, the results in this paper could have practical applications. The results
establish which type of information is useful, how algorithms should be designed
to exploit this information, and what the limits are for what can be obtained.

Returning to the advice complexity modeling, some problems need very little
advice. On the other hand, complete information about the input or the desired
output is a trivial upper bound on the amount of advice needed to be optimal.
The first approach to formalizing the concept of advice measured the number
of bits per request [20]. This model is well suited for some problems where
information is tightly coupled with requests and the number of bits needed per
request is constant. However, for most problems, we prefer the model where
we simply measure the total advice needed throughout the execution of the
algorithm. As also discussed in [5, 25], this model avoids some modeling issues
present in the “per request” modeling, and at the same time makes it possible to
derive sublinear advice requirements. Thus, we use the advice model from [25],
where the online algorithm has access to an infinite advice tape, written by
an offline oracle with infinite computation power. In other words, the online
algorithm can ask for the answer to any question and read the answer from
the tape. Competitiveness is defined and measured as usual, and the advice
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complexity is simply the number of bits read from the tape, i.e., the maximum
index of the bits read from the advice tape.

As the advice tape is infinite, we need to specify how many bits of advice
the algorithm should read and if this knowledge is not implicitly available, it
has to be given explicitly in the advice string. For instance, if we want Opt

as advice (the number of colors an optimal offline algorithm uses on a given
sequence, for instance), then we cannot merely read ⌈log(Opt+1)⌉ (all logs in
this paper are base 2) bits, since this would require knowing something about
the value of Opt. One can use a self-delimiting encoding as introduced in [22].
We use the variant from [11], defined as follows: The value of a non-negative
integer X is encoded by a bit sequence, partitioned into three consecutive parts.
The last part is X written in binary. The middle part gives the number of bits
in the last part, written in binary. The first part gives the number of bits in
the middle part, written in unary and terminated with a zero. These three parts
require ⌈log(⌈log(X + 1)⌉+ 1)⌉ + 1, ⌈log(⌈log(X + 1)⌉+ 1)⌉, and ⌈log(X + 1)⌉
bits, respectively, adding a lower-order term to the number of bits of information
required by an algorithm. We define enc(x) to be the minimum number of bits
necessary to encode a number x, and note that the encoding above is a (good)
upper bound on enc(x).

We now discuss previous work on multi-coloring and then state our results.
When working with online algorithms, decisions are generally irrevocable, i.e.,
once a color is assigned to a node, this decision is final. However, in some ap-
plications, local changes of colors may be allowed (reassignment of frequencies).
This is called recoloring. An algorithm is d-recoloring if, in the process of treating
a request, it may recolor up to a distance d away from the node of the request.

For multi-coloring a path, the algorithm 4-Bucket is 4
3 -competitive [19],

and this is optimal [15]. Even with 0-recoloring allowed (that is, colors at the
requested node may be changed), 4-Bucket is optimal [16]. Furthermore, if
1-recoloring is allowed, the algorithm GreedyOpt is strictly 1-competitive [16].

For multi-coloring bipartite graphs, the optimal asymptotic competitive ratio

lies between 10
7 ≈ 1.428 and 18−

√
5

11 ≈ 1.433 [18].

In [14], it was shown that, for hexagonal graphs, no online algorithm can
be better than 3

2 -competitive or have a better strict competitive ratio than 2.
They also gave an algorithm, Hybrid, with an asymptotic competitive ratio of
approximately 1.9 on hexagonal graphs. On k-colorable graphs, it is strictly k+1

2 -
competitive, and hence, it has an optimal strict competitive ratio on hexagonal
graphs. Recoloring was studied in [27]: No d-recoloring algorithm for hexagonal
graphs has an asymptotic competitive ratio better than 1+ 1

4(d+1) . For d = 0, the

lower bound was improved to 9
7 . In [38], a 4

3 -competitive 2-recoloring algorithm
is given. The best known 1-recoloring algorithm for hexagonal graphs is 33

24 -
competitive [39]. For the offline problem of multi-coloring hexagonal graphs, no
polynomial time algorithm can obtain an absolute approximation ratio better
than 4

3 [32, 34, 35], unless P = NP.
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Table 1. Overview of our results. Recall that n denotes the number of requests in
the input sequence. We mark the ratios that are strict by “s” and the ones that are
asymptotic by “a”. Note that a strict lower bound can be larger than an asymptotic
upper bound. For each bound, we indicate the number of the theorem proving the
result. For readability, many of the bounds stated are weaker than those proven in
the paper. Moreover, the upper bounds for the path hold for any bipartite graph. The
result of Theorem 3 in the third row of the table is valid only for neighborhood-based
algorithms, as defined just before Theorem 3 in Section 2.

Ratio Lower bound Type Result Upper bound Type Result

Path 1 log n− 2 s Thm 1 log n+O(log log n) s Thm 4

1 + 1

2b
b− 2 a Thm 2 b+ 1 +O(log log n) s Thm 5

< 4

3
ω(1) a Thm 3

Hex. 1 (n+ 1) ⌈log n⌉ s Thm 8

< 5

4
Ω(n) a Thm 7

4

3
n+ 2|V | a Thm 10

3

2

⌊

n−1

3

⌋

s Thm 6 log n+O(log log n) a Thm 9

Many other problems have been considered in the advice model, see e.g., [2,
4–7, 20, 21, 23, 29, 30]; also variants of graph coloring different from ours [3, 24,
31, 36].

An overview of our results is given in Table 1. For the path, these results are
nearly tight, even with upper bounds that also apply to bipartite graphs. For
hexagonal graphs, note that with a linear number of advice bits, it is possible
to be 4

3 -competitive, and the lower bound for being better than 5
4 -competitive

is close to linear. The advice given to the algorithms is essentially (an approxi-
mation of) Opt or the maximum number of requests given to any clique in the
graph. For the underlying problem of frequency allocation, guessing these values
based on previous data may not be unrealistic.

Due to space restrictions, some proofs have been removed or shortened. These
can be found in the full version [17].

2 The Path

As explained earlier, we establish all lower bounds for paths, and since a path
is bipartite, all these negative results carry over to bipartite graphs. Similarly,
all our (constructive) upper bounds are given for bipartite graphs and therefore
also apply to paths. We start with three lower bound results.

Theorem 1. Any strictly 1-competitive online algorithm for multi-coloring

paths of at least 10 nodes has advice complexity at least
⌈

log(
⌊

n
4

⌋

+ 1)
⌉

.

Proof. We let m =
⌊

n
4

⌋

and define a set S of m + 1 sequences, all having the
same prefix of length 2m. The set S will have the following property: for no two
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sequences in S can their prefixes be colored in the same way while ending up
using the optimal number of colors on the complete sequence. Starting from one
end of the path, we denote the nodes v1, v2, . . . .

We define the set S to consist of the sequences I0, I1, . . . , Im, where Ii is
defined in the following way. First m requests are given to each of the nodes v1
and v4. Then i requests to each of v2 and v3. To give all sequences the same
length, the sequence ends with ⌈n− 2m− 2i⌉ requests distributed as evenly
as possible among v6, v8, and v10. Since ⌈⌈n− 2m− 2i⌉ /3⌉ ≤ m, the optimal
number of colors will not be influenced by this part of the sequence.

Note that Opt(Ii) = m + i. In order not to use more than Opt(Ii) colors
for Ii, exactly i of the colors assigned to v4 have to be different from the colors
assigned to v1. The prefixes of length 2m in S are identical, so all information
to distinguish between the different sequences must be given as advice. The
cardinality of S ism+1. To specify one out ofm+1 possible actions, ⌈log(m+ 1)⌉
bits are necessary. ⊓⊔

For algorithms that are 9
8 -competitive or better, we give the following lower

bound.

Theorem 2. Consider multi-coloring paths of at least 10 nodes. For any b ≥ 3
and any (1 + 1

2b
)-competitive algorithm, A, there exists an N ∈ N such that A

has advice complexity at least b− 2 on sequences of length at least N .

Proof. For any (1+ 1
2b
)-competitive algorithm, A, there exists an α ≥ 1 such that

A(I) ≤ (1+ 1
2b
)Opt(I)+α, for any input sequence I. We consider sequences of

length n ≥ 22b+2α+ 3.
Let m =

⌊

n
4

⌋

and consider the same set of sequences as in the proof of
Theorem 1. Recall that Opt(Ii) = m+ i. For the sequence Ii, let xi denote the
number of colors that A uses on v4 but not on v1. Then, A uses m + xi colors
in total for v1 and v4. On v3, it can use at most xi of the colors used at v1, so
the total number of colors used at v1, v2, and v3 is at least m + 2i − xi. Thus,
A(Ii) ≥ max {m+ xi,m+ 2i− xi}.

We will prove that there are p ≥ 2b−2 sequences Ii1 , Ii2 , . . . , Iip such that,
for any pair ij 6= ik, we have xij 6= xjk , or otherwise A would not be (1 + 1

2b
)-

competitive. This will immediately imply that A must use at least b− 2 advice
bits.

Let ε = 1
2b
+ 1

22b
. From A(Ii) ≤ (1+ 1

2b
)Opt(Ii)+α and m ≥ 22bα, we obtain

the inequalities

m+ xi ≤ (1 + ε)(m+ i) and m+ 2i− xi ≤ (1 + ε)(m+ i)

which reduce to

xi ≤ εm+ (1 + ε)i (1) and i ≤
xi + εm

1− ε
(2)

Hence, by (1), x0 ≤ εm. Thus, by (2), we can have xi = x0 only if i ≤ 2εm
1−ε .

Therefore, we let i1 = 0 and i2 = ⌊ 2εm
1−ε + 1⌋. In general, we ensure xij 6= xij+1
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by letting ij+1 = ⌊
xij

+εm

1−ε + 1⌋. Thus,

ij+1 ≤
xij + εm

1− ε
+ 1 ≤

1 + ε

1− ε
· ij +

2εm

1− ε
+ 1,

where the second inequality follows from (1). Solving this recurrence relation,
we get

ij+1 ≤

(

1 + ε

1− ε

)j

i1 +

j−1
∑

k=0

(

1 + ε

1− ε

)k (
2εm

1− ε
+ 1

)

=

(

1+ε
1−ε

)j

− 1

2ε
(2εm+ 1− ε)

We let p equal the largest j for which ij ≤ m. Through arithmetic manipulations
using the various bounds established above, one can show that p ≥ 2b−2. ⊓⊔

For the following theorem, we define the class of neighborhood-based algo-
rithms: A multi-coloring algorithm, A, is called neighborhood-based, if there
exists a constant d such that, when assigning a color to a request to a node
v, A bases its decision only on requests to nodes a distance of at most d away
from v. Note that, in particular, a neighborhood-based algorithm cannot base
its decision on the current value of Opt.

Using the family of request sequences from the proofs of Theorems 1 and 2,
it is fairly easy to establish a lower bound of ω(1) on the advice complexity for
neighborhood-based algorithms that are better than 4

3 -competitive:

Theorem 3. No neighborhood-based online algorithm for multi-coloring paths

with advice complexity O(1) can be better than 4
3 -competitive.

We now turn to upper bounds. For multi-coloring a path, there is a strictly
1-competitive 1-recoloring algorithm, GreedyOpt [16]. GreedyOpt divides
the nodes into two sets, upper and lower, such that every second node belongs to
upper and the remaining nodes belong to lower. The following invariant is main-
tained: After each request, each node in lower uses consecutive colors starting
with color 1 and each node in upper uses consecutive colors ending with a color
no larger than the optimal number of colors for the request sequence seen so far.

The algorithm for paths from [16] is easily generalized to work on bipartite
graphs, letting the nodes of one partition, L, belong to lower and the nodes of the
other partition, U , belong to upper. Recoloring is only needed if the number of
colors used by an optimal offline algorithm is not known. Hence, using enc(Opt)
advice bits, an online algorithm can be strictly 1-competitive, even if recoloring
is not allowed. For the resulting algorithm, GreedyOptAdvice, we prove the
following.

Theorem 4. Algorithm GreedyOptAdvice is correct, strictly 1-competitive,

and has advice complexity enc(Opt).

We now turn to nonoptimal variants of GreedyOptAdvice using fewer
than enc(Opt) advice bits. We show how to obtain a particular competitive
ratio of 1 + 1

2b
, using b+ 1+O(log logOpt) bits of advice. Thus, essentially, we

are approaching optimality exponentially fast in the number of bits of advice.
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Theorem 5. For any integer b ≥ 1, there exists a strictly (1+ 1
2b−1 )-competitive

online algorithm for multi-coloring bipartite graphs with advice complexity b +
enc(a), where a+ b is the total number of bits in the value Opt.

Proof. As advice, the algorithm asks for the b high order bits of the value Opt,
as well as the number a = ⌈log(Opt+1)⌉− b of low order bits, but not the value
of these bits. The algorithm knows b and can just read the first b bits, while a
needs to be encoded. Thus, b+ enc(a) bits are sufficient to encode the advice.

If Opt contains fewer than b bits, this is detected by a being zero. In this
case, some of the b bits may be leading zeros. By Theorem 4, we can then be
strictly 1-competitive. Now, assume this is not the case, and let Optb =

⌊

Opt

2a

⌋

denote the value represented by the b high order bits. The algorithm computes
m = 2a Optb +2a − 1 and runs GreedyOptAdvice with this m. Since Opt ≤
m ≤ Opt+2a−1, the algorithm is correct and uses at most Opt+2a−1 colors.

For any number x ≥ 1, consisting of c bits, with the most significant bit being
one, 2c ≤ 2x. Thus, 2b+a ≤ 2Opt, so 2a ≤ 2Opt

2b
. This means that the number of

colors used by GreedyOptAdvice is less than Opt+ 2Opt

2b
= (1 + 1

2b−1 )Opt,

so the algorithm is strictly (1 + 1
2b−1 )-competitive. ⊓⊔

Corollary 1. For any ε > 0, there exists a strictly (1+ε)-competitive determin-

istic online algorithm for multi-coloring bipartite graphs with advice complexity

O(log logOpt).

Proof. Except for the term b, the advice stated in Theorem 5 is O(log logOpt)
and Opt ≤ n. Thus, we just need to bound b. For a given ε, choose b large
enough such that 1

2b−1 ≤ ε. Using this value for b in Theorem 5, we obtain an

algorithm with a strict competitive ratio of at most 1 + 1
2b−1 ≤ 1 + ε. Since, for

any given ε, b is a constant, the total amount of advice is O(log logOpt). ⊓⊔

The Multi-Coloring problem is also considered in the context of request can-
cellations, i.e., a color already given to a node disappears again. We remark that
just by allowing 0-recoloring, where requests at the node where the cancellation
takes place may be recolored, we can extend the algorithmGreedyOptAdvice,
using the same advice, to a strictly 1-competitive algorithm.

3 Hexagonal Graphs

A hexagonal graph is a graph that can be obtained by placing (at most) one node
in each cell of a hexagonal grid (such as the one sketched in Fig. 1) and adding
an edge between any pair of nodes placed in neighboring cells. Note that any
hexagonal graph can be 3-colored. This is easily seen, since it is possible to use
the three colors cyclically on the cells of each row of the underlying hexagonal
grid, such that no two neighboring cells receive the same color.

As in the previous section, we first focus on lower bound results.

Theorem 6. Any online algorithm for multi-coloring hexagonal graphs with a

strict competitive ratio strictly smaller than 3
2 has advice complexity at least

⌊

n−1
3

⌋

.
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O0 S1 O1 S3 O2 S2k−1 Ok

D1 D2

D3 D4

D2k−1 D2k

S2

S4

S2k

R. . .

Fig. 1. Hexagonal lower bound construction.

Proof. First, we explain a small part of the construction that we will use in
many copies. We consider two sequences with the same prefix of length 2. Both
sequences can be colored with two colors, but this requires coloring the two pre-
fixes of length two differently. Consider the left-most part of Fig. 1 (surrounded
by thick lines) consisting of the “double” nodes D1 and D2, the “outer” nodes
O0 and O1 and the “single” nodes S1, and S2. These nodes form the same type
of configuration as the nodes D3, D4, O1, O2, S3, and S4.

First the nodes O0 and O1 get one request each. Then, either D1 and D2

or S1 and S2 receive one request each. The node S2 is used to get up to the
same sequence length in all cases. In order not to use more than two colors,
the outer nodes have to use different colors if we later give requests to the two
D-nodes. Similarly, the O-nodes should have the same color if we later give a
request to the S-node in between them. Since the prefix of length two is 〈O0, O1〉
for both sequences, all information for an algorithm to distinguish between the
two sequences must be given as advice.

We can repeat this graph pattern
⌊

n−1
3

⌋

times, as illustrated in Fig. 1 with

k =
⌊

n−1
3

⌋

, giving the requests to all O-nodes first. This results in a sequence

set of size 2⌊
n−1
3 ⌋, implying the result. ⊓⊔

Theorem 7. Any online algorithm for multi-coloring hexagonal graphs with

competitive ratio strictly smaller than 5
4 has advice complexity Ω(n).

Proof. We use the basic construction from Theorem 6. Assume p requests are
given to one of the components like this:

First, we give p
4 requests to each of O0 and O1. Let q, 0 ≤ q ≤ p

4 , denote the
number of colors used at both nodes. Then following up by giving p

4 requests to

each S-node results in a minimum of 3p
4 −q colors used, while giving the requests

to the D-nodes instead results in a minimum of p
2 + q colors.

Note that Opt = p
2 , independent of in which of the two ways the sequence is

continued. Thus, for any ε > 0, any ( 54 −ε)-competitive algorithm must choose q
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such that, for some constant α, 3p
4 −q ≤

(

5
4 − ε

)

p
2 +α and p

2 +q ≤
(

5
4 − ε

)

p
2 +α.

Adding these two inequalities, we obtain 5p
4 ≤ ( 54 − ε)p+2α which is equivalent

to εp ≤ 2α. Thus, if p is non-constant, no ( 54 − ε)-competitive algorithm can use
the same value of q for both sequences.

Now assume for the sake of contradiction that for some advice of g(n) ∈ o(n)
bits, we can obtain a ratio of 5

4 − ε. Let f(n) = 1
2

n
g(n) . Since g(n) ∈ o(n),

f(n) ∈ ω(1). The idea is now to repeat the construction as in the proof of
Theorem 6 and give f(n) requests to each construction (f(n) has the role of p
in the above). Since a pair of neighboring constructions share f(n)/4 requests,

this results in n−f(n)/4
3f(n)/4 = 4n−f(n)

3f(n) ≥ n
f(n) constructions. We assume without loss

of generality that all our divisions result in integers.
In order to be ( 54 − ε)-competitive, an online algorithm must, for each two

neighboring O-nodes, choose between at least two different values of q. These
are independent decisions, and the ratio only ends up strictly better than 5

4 if
the algorithm decides correctly in every subconstruction. Thus, it needs at least
n

f(n) bits of advice. However, n
f(n) =

n
1
2

n
g(n)

= 2g(n) > g(n), a contradiction. ⊓⊔

For upper bounds, we first have the following trivial upper bound on the
advice necessary to be optimal, independent of the graph topology:

Theorem 8. There is a strictly 1-competitive online multi-coloring algorithm

with advice complexity (n+ 1) ⌈logOpt⌉.

In the following, we will show how two known approximation algorithms
can be converted to online algorithms with advice. In the description of the
algorithms, we let the weight of a clique denote the total number of requests to
the nodes of the clique. Note that the only maximal cliques in a hexagonal graph
are isolated nodes, edges, or triangles. We let ω denote the maximum weight of
any clique in the graph.1

A 3
2 -competitive algorithm called the Fixed Preference Allocation algorithm,

FPA, was proposed in [26]. In [33], the strategy was simplified and it was noted
that the algorithm can be converted to a 1-recoloring online algorithm. We de-
scribe the simplified offline algorithm below.

The algorithm uses three color classes, R, G, and B. The color classes repre-
sent a partitioning of the nodes in the graph so that no two neighbors are in the
same partition. Each of the three color classes has its own set of

⌈

ω
2

⌉

colors, and
each node in a given color class uses the colors of its color class, starting with
the smallest. This set of colors is also referred to as the node’s private colors.
If more than

⌈

ω
2

⌉

requests are given to a node, then it borrows colors from the
private colors of one of its neighbors, taking the highest available color. R nodes
can borrow colors from G nodes, G from B, and B from R. Since

⌈

ω
2

⌉

≤
⌈

Opt

2

⌉

,

we can give
⌈

ω
2

⌉

as advice and obtain the following:

1 The Greek letter ω is traditionally used here, so we will also do that. Since there is
no argument, this should not give rise to confusion with the ω(f), stemming from
asymptotic notation.
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Theorem 9. There is a 3
2 -competitive online algorithm for multi-coloring hex-

agonal graphs with advice complexity enc(
⌈

Opt

2

⌉

).

In [32], an algorithm with an approximation ratio of 4
3 was introduced. This

algorithm uses color classes in the same way as FPA, except that the private
color sets contain only

⌊

ω+1
3

⌋

colors each. In describing the algorithm, we use
the following notation. For any node v, we let nv denote the number of requests
to v. Furthermore, bv denotes the maximum number of colors that v can borrow,
i.e., bv = max{0,

⌊

ω+1
3

⌋

− n′
v}, where n′

v is the maximum number of requests to
any of the neighboring nodes in the color class that v can borrow from.

The algorithm can be seen as working in up to three phases: In the first
phase, the algorithm colors min{nv,

⌊

ω+1
3

⌋

} requests to each node, v, using the

node’s private colors. In the second phase, each node v with more than
⌊

ω+1
3

⌋

requests borrows min{nv −
⌊

ω+1
3

⌋

, bv} colors. Let G2 be the graph induced by
nodes that still have uncolored requests after Phase 2. In [32] it is proven that
G2 is bipartite and that any pair of neighbors in G2 has a total of at most
ω − 2

⌊

ω+1
3

⌋

≤
⌊

ω+1
3

⌋

+ 1 uncolored requests after Phase 2. Thus, in the third
phase, the remaining requests can be colored with GreedyOpt (see the path
section) using

⌊

ω+1
3

⌋

+ 1 additional colors.
We now show how an online algorithm, given the right advice, can behave like

the offline 4
3 -approximation algorithm. Note that the three phases of the offline

4
3 -approximation algorithm are characterized by the coloring strategy (using the
node’s own private colors, borrowing private colors from neighbors, or coloring
a bipartite graph). However, when requests arrive online, the nodes may not go
from one phase to the next simultaneously.

Theorem 10. There is a 4
3 -competitive online algorithm for multi-coloring hex-

agonal graphs with advice complexity at most n+ 2|V |.

Proof. Initially, each node is in Phase 1. On a request, the algorithm reads an
advice bit and if it is zero, the next color from its private colors is used. If, instead,
a one is read, this is treated as a stop bit for Phase 1, and this particular node
enters Phase 2.

The algorithm starts with empty private color sets, and adds one color to
each set whenever necessary, i.e., whenever a Phase 1 node that has already used
all its private colors receives an additional request (this includes the first request
to the node). As soon as a node leaves Phase 1, the algorithm knows that this
node received

⌊

ω+1
3

⌋

requests, which is then the final size of each private color
set. Knowing the size of the private color sets, the algorithm can calculate the
maximum color for the complete coloring of the graph as m = 4

⌊

ω+1
3

⌋

+ 1.
In Phase 2, every zero indicates that the algorithm should borrow a color.

When another stop bit is received (which could be after no zeros at all if the
borrowing phase is empty), it moves to Phase 3. In Phase 3, it reads one bit to
decide which partition, upper or lower, of the bipartite graph it is in, and does
not need more information after that, since it simply uses the colors 3

⌊

ω+1
3

⌋

+
1, . . . ,m, either top-down or bottom-up.
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If we allow the algorithm one bit per request, it needs at most two more bits
per node, since the stop bits are the only bits that do not immediately tell the
algorithm which action to take. Thus, n+ 2|V | bits of advice suffice. ⊓⊔
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