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It is known that deciding whether or not a team in a soccer tournament in progress

can still win or, more generally, can obtain a certain position is NP-complete. We show
that deciding whether or not a team is guaranteed a certain minimum position is coNP-
complete. We also show that deciding with regards to goal difference, the standard tie-
breaker for teams having the same number of points, whether or not a team can reach a

certain position is NP-complete.
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1. Introduction

We use American terminology. Thus “football” refers to American Football as orga-

nized under NFL, and “soccer” refers to the game originating in Europe, organized

under FIFA. In references, “football” may refer to either game.

We are interested in soccer tournaments under the (3, 1, 0)-rule, i.e., a team

receives 3 points for a win, each team receives 1 point for a tie, and a losing team

does not receive any points. In a tournament, each team has to play against any

other team; in most leagues twice during the tournament. At any point in time
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during the tournament, there is a current standing and a schedule (or list) of games

still to be played. A team’s position in the standing is decided primarily by the total

number of points accumulated. In case of ties with regards to the total number of

points, it is standard to consider the goal difference, where the goal difference for a

team is the difference between the total number of goals scored by the team minus

the total number of goals scored against the team.

The earliest results for placements problems were developed for tournaments

using the (1, 0)-rule, i.e., each game has a winner. This rule applies to baseball and

American football, for instance. For this rule, it was shown by Schwartz [9] that

deciding if a team can still win is in P and, in fact, deciding for any constant K if a

team can reach position K is in P. More precisely, one can find all teams that can

still win via a single maximum flow computation, as developed by Wayne [10], or a

single linear programming formulation, as developed by Adler, Erera, Hochbaum,

and Olinick [1]. McCormick showed that only if K is part of the input does the

problem become NP-complete [7].

Under the (3, 1, 0)-rule it is harder. Bernholt, Gülich, Hofmeister, and Schmitt

showed that even deciding if a team can still win is NP-complete [3]. The exact

characterization of this question with regards to different rules was given by Kern

and Paulusma [5], where it was shown that, excluding trivial cases of getting the

same number of points for two different outcomes, deciding if a team can win is

possible in polynomial time if and only if there is a fixed number of points per game

which are shared, e.g., it is decidable in polynomial time for the older (2, 1, 0)-rule

for soccer. Games with more than three outcomes was also investigated by Kern and

Paulusma [6]. For (p, 1, 0)-rules, Pálvölgyi showed that deciding, given a standing, if

this can be the result of a standard tournament is NP-complete [8]. Finally, winner

problems were considered by Aziz, Harrenstein, Brill, Lang, Fischer, and Seedig [2]

for a variety of alternative tournament forms.

Our interest is in the (3, 1, 0)-rule. Other authors have primarily focused on

determining possible winners of a tournament. We are interested in the question of

determining a minimum guaranteed placement. Phrased as a decision problem, given

some K, we are interested in whether a given team can be guaranteed a placement

of at least K. Note that this problem is not the complement of the problem of

determining if it is possible for a given team to reach a placement of at leastK. Thus,

the complexity status the problem of determining a minimum guaranteed placement

has not been known. Furthermore, other authors have only focused on points. We

are also interested settling the placement problem with regards to the standard tie-

breaking rule in case of the same number of points. These considerations become

natural if one wants to equip the table of the current standing with an interval for

each team, listing exactly the positions where this team may end up.

To be precise, we settle the complexity status of the two problems below.

For the first problem, the outcome of a game is a pair, which is either (3, 0), (1, 1),

or (0, 3). As is standard in the literature, we make an extreme decision regarding
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the selected team in case of ties in the final standing. Here, we decide that if the

selected team has the same number of points as some other teams, it is placed worst

in that group of teams.

Guaranteed Point Placement

Instance: Current standing in a (3, 1, 0)-rule tournament, schedule

of remaining games, team t, positive integer K.

Question: Is it the case that any assignment of outcomes to the

remaining games will place team t at position at least K in the

final standing?

For the next problem, an outcome of a game is a pair representing the number

of goals scored by each team. We will refer to this as the goal outcome. This of

course also implies the number of points awarded to each team. In the following

formulation, we are discussing changing the number of goals scored without chang-

ing the number of points awarded. Thus, if we have decided that a team should

win over some other team in a solution to the problem above, we must respect that

decision, but can, for instance, increase the number of goals scored by the winning

team, with the purpose of changing the ordering in the final standing with respect

to the goal difference tie-breaker.

We assume that if the selected team ties with other teams both with regards to

the total number of points and goal difference, it places best among those teams.

This is the opposite of the decision we made for the previous problem. Since showing

NP-hardness is a negative result, in the sense that it does not form a basis for a

programming solution, the decision is not important in an application context. Thus,

we have simple made the decision in each case that enabled us present the most

readable proofs.

Possible Goal Difference Placement

Instance: Current standing in a (3, 1, 0)-rule tournament, assign-

ment A of goal outcomes to the remaining games, team t, positive

integer K.

Question: Is there an assignment A′ of goal outcomes to the re-

maining games where A and A′ agree on point assignments for

every game such that team t can reach position at least K with

respect to the rule of goal difference?

We show that the Guaranteed Point Placement problem is coNP-complete. We

find this to be an interesting piece of information also for practical solutions. Though

we cannot substantiate our point of view with a proof, since it might be that P =

NP = coNP, it seems hard to verify the for-all requirement in the Guaranteed Point

Placement problem, whereas heuristic methods used in IP solvers, for instance, are

good at quickly solving existential problems such as checking if a given team could

still win. Though inspired by the proof of Bernholt et al. [3], we have to consider
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the complement of the Guaranteed Point Placement problem and show that to be

NP-complete using a construction similar to, but different from theirs.

Starting from Bernholt et al. [3], researchers have tried to determine situations

where the basic problem is polynomial-time solvable. We give a simple proof showing

that even if we are in that situation, it turns out to be NP-complete to solve the

Possible Goal Difference Placement problem for tied teams.

To return to the title, as opposed to football (or any other game played according

to the (1, 0)-rule), where most questions can be resolved in polynomial time, it

seems that almost all the questions we ask about soccer (or any other game played

according to the (3, 1, 0)-rule) are hard.

2. It Is Hard to Give Guarantees

In this section, we prove that the Guaranteed Point Placement problem is coNP-

complete.

Containment in coNP is easy to establish by showing that a no-instance can be

verified in polynomial time. Given an assignment, the standing is updated with the

results of each of the remaining games, and one verifies that the position of team t

is worse than K. All this can be done in polynomial time.

To establish hardness, we show that the negated problem is NP-hard, i.e., given

the same instance, we must show that it is NP-hard to decide if there exists an

assignment where team t ends up in a position worse than K. Note that since the

(3, 1, 0)-rule is asymmetric, this is not the same problem as the one considered by

Bernholt et al. [3].

We fix K to be one less than the number of teams, thereby considering the

special case of deciding if team t can place last. We also assume that the goal

difference of team t is so bad (negative) that if t ends up with the same number of

points as any other team, it will be placed under that team in the standing. Even

this special case is NP-hard and that is what we will prove.

2.1. Representation

First, we make a transformation as follows: For each game a team still needs to play,

we add one point to the total number of points they have obtained so far. This can

be interpreted as assuming that the future games end in ties until we decide on the

result. All remaining games are then played under the (2, 0,−1)-rule. This is clearly

equivalent, and makes it a little easier to work with, since we only have to focus on

games where there is a winner. If a game is a tie, no points change.

Also for convenience, we represent a Guaranteed Point Placement problem using

a graph. Each team is represented by a vertex in the graph and the vertex is labeled

with the difference between the total number of points obtained by the team and the

total number of points obtained by the selected team t; still under the assumption

of the (2, 0,−1)-rule as described above. We refer to this label as the value of the

vertex. Each remaining game is represented as an edge between the two vertices
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representing the two teams. In principle, this could give rise to a multi-graph, but

we will not need that in the results to follow.

Considering this representation, for each edge where the corresponding game

ends with a victory for one of the teams, the value of the vertex representing the

winner is increased by two, the value of the vertex representing the loser is decreased

by one, and the edge is removed. If a game is a tie, the corresponding edge can simply

be removed without any further adjustments.

2.2. Reduction

We establish our result by a reduction from 3SAT, as formulated by Garey and

Johnson [4, p. 259]:

3-Satisfiability (3SAT)

Instance: Set U of variables, collection C of clauses over U such

that each clause c ∈ C has |c| = 3.

Question: Is there a satisfying truth assignment for C?

Given such an instance, we now explain which instance of the Guaranteed Point

Placement problem we create.

The following reduction will be most elegant, if the number of clauses is a power

of two. Thus, we pad the formula with a number of clauses of the form (x1∨x1∨x1)

until we have a number of clauses that is a power of two and use C to refer to this

formula. Clearly, the original formula is satisfiable if and only if the padded formula

is. The padding will at most double the number of clauses. We later show that

our reduction can be carried out in polynomial time in |C|, where |C| denotes the

number of clauses in C. This is then also polynomial time in |C|/2. We may now

assume that |C| is a power of two.

For each propositional variable xj appearing in C, we create a complete binary

tree Tj with 2|C| leaves. Note that we keep referring to these vertices as leaves even

though we connect them to other vertices, ending up with a graph which is not a

tree.

Additionally, we create |C| vertices Vi, referred to as clause vertices. If xj appears

(positively) in the ith clause, then we connect Vi to the ith leaf in the right subtree

of the root of Tj . If xj appears in the ith clause, then we connect Vi to the ith leaf

in the left subtree of the root of Tj . All the roots of the Tj trees get the value (goal

difference) one. Any leaf connected to some Vi vertex gets the value −2. Any other

node gets the value zero. Finally, we create an isolated vertex representing team t

having no games left. This vertex is labeled with the value zero.

In Figure 1, we show the tree for the propositional variable xj in a context where

the formula has eight clauses and point to the two possible ways of creating an edge.

In Figure 2, we illustrate the complete reduction for the formula (x1∨x3∨x4)∧

(x3 ∨ x2 ∨ x1), except that we do not show the isolated vertex corresponding to t.
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Fig. 1. A tree for |C| = 8. Each occurrence of a literal will give rise to exactly one edge connecting

a clause vertex with a leaf. This figure illustrates the situation where the literal is xj or xj and it
appears in the 6th clause. If the literal is xj , the connection will be to the 6th leaf counting from
the left in the left subtree of the root. If the literal is xj , the connection will be to the 6th leaf
counting from the left in the right subtree of the root. Though we indicate −2 for both of these

candidate leaves in the illustration, only the leaf connected in this way to V6 will have the value
−2 and the other candidate will have the value zero. Other leaves are listed as having the value
zero, but these values will be −2 if they are connected to a clause vertex.
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Fig. 2. An example of the entire reduction for the formula (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x2 ∨ x1).

Equivalence

Given a 3SAT formula C and the graph created from C by the reduction defined

above, we now prove that C has a satisfying assignment if and only if team t can

place last in the final standing. Recall that we assume that the goal difference of

team t is so bad (negative) that if t ends up with the same number of points as any

other team, it will be placed worse than that team in the final standing. Thus, if

all other teams have at least as many points as t, then t is placed last.

The intended correspondence between a satisfying assignment for the formula

and the outcomes of the games is as follows: If the propositional variable xj is false

in the satisfying assignment, then the root loses to its left child. Similarly, if xj is

true in the satisfying assignment, then the root loses to its right child.

For the first part of the equivalence, assume that C has a satisfying assignment.
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To show that t can place last, we must find outcomes of the games such that all the

teams end up with at least zero points, i.e., we must increase the points in vertices

currently having the value −2.

Each clause vertex Vi is connected to three leaves in trees with value −2. Since

we have a satisfying assignment, one of these values will be brought up to zero by

the correspondence outlined above. Without loss of generality, assume that xj is

a literal that makes Vi true (so xj is false), then we let the root of Tj lose to its

left child, l, which will change the value of the root to zero and the value of l to

two. Now, we let l lose to its children, which makes the value of l become zero,

and the children of l will have their points increased by two. Continuing this way

down to the leaves, all leaves in the left subtree of the root will have their values

increased by two. In particular, the vertex in Tj that Vi is connected to has its

value increased to zero. Thus, we can decide that Vi loses to the other two teams

its connected to, bringing them up to zero, while Vi itself has its value decreased

to zero; a decrease of one for each of these two games. By this, all leaves that Vi is

connected to have non-negative points, and this construction can be carried out for

all the clause vertices.

As an illustration of this proof, we continue the example from above. The ex-

ample formula has the satisfying assignment

(x1, x2, x3, x4) = (true, false, true, true),

and this is equivalent to the assignment of outcomes shown in Figure 3.
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Fig. 3. Dashed edges show the games that the clause vertices should lose, and full edges are con-
nected to leaves, the values of which are fixed by the games enabled by the satisfying assignment.

For the other direction, we must show that if outcomes can be made such that

all vertices end up with non-negative values, we can find a satisfying assignment.

We first establish some facts regarding the outcomes of the games. First note

that no leaf in any Tj can have its value brought up to more than zero, unless it

wins over its parent, since either it has value zero and is not connected to any clause

vertices, or it has value −2 and is connected to exactly one clause vertex.

By assumption, any clause vertex Vi ends up with a value of at least zero, so

there is at least one game it does not lose. The only way the leaf representing the
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other team in this game can have its value increased from −2 to zero is by winning

over its parent p, making the value of p negative. If p wins over its other child, then

that child will end up with a negative value, by the observation above, contradicting

the assumption that t ends up last. Thus, p must win over its own parent, making

the value negative there. Clearly this argument can be continued up to the root,

where the value is changed from one to zero. Recursively, from the root down in the

other subtree, this immediately implies that all games there will have to be ties to

avoid that the parent in each game considered gets a negative value.

We now define xj to be false if and only if the root of T loses to its left child.

Consider some clause ci in C. We want to argue that ci is satisfied. Based on the

discussion above, choose j such that Vi did not lose to the leaf u it is connected to

in Tj . Again by the discussion above, u must be in the subtree where all vertices

on the path from u to the root won over their parent. The edge from Vi to u ∈ Tj

means that either xj or xj appears in ci. Without loss of generality, assume it is xj .

Then, by the construction, the edge from Vi goes to the left subtree of Tj , so the

root of Tj lost to its left child, meaning that xj is assigned the value false, making

xj and therefore the clause ci true.

We have established the equivalence and shown the following:

Theorem 1. The Guaranteed Point Placement problem is coNP-complete.

3. It is Hard to Resolve a Tie

In this section, we prove that the Possible Goal Difference Placement problem is

NP-complete.

Containment in NP is easy to establish by verifying that the assignments A

and A′ agree on point assignments for every game, calculating the final standing,

including goal differences, and checking if t is at position at least K, all of which

can be done in polynomial time.

If t has at least one game left, its goal difference can be increased arbitrarily, so

the hard problem is the one where t has finished all its games and its final placement

depends on the goal outcomes of games it is not involved in.

Since we cannot change the points assigned to the different teams, but only goal

differences, we assume that all teams under consideration have the same number

of points, so we do not consider points any further. Without loss of generality, we

assume that the goal difference of team t is zero, and that team t places best among

teams with the same goal difference as t.

3.1. Reduction

To prove hardness, we reduce from Hitting Set, as formulated by Garey and John-

son [4, p. 222]:

Hitting Set

Instance: Collection C of subsets of a finite set S, positive integer
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K ≤ |S|.

Question: Is there a subset S′ ⊆ S with |S′| ≤ K such that S′

contains at least one element from each subset in C?

Given such an instance, we now explain which instance of the Possible Goal

Difference Placement problem we create.

We consider |S| + |C| teams; one team for each element in S, referred to as

element teams, and one team for each set in C, referred to as set teams. The goal

difference is zero for each element team and one for each set team. The schedule of

remaining games is the following: For each c ∈ C, and each x ∈ c, there is a game

between the corresponding set team and element team, and in deciding points, as

in the previous section, all element teams are set to win over the set teams they

have scheduled games against.

3.2. Equivalence

We prove that there exists a subset S′ ⊆ S with |S′| ≤ K such that S′ contains at

least one element from each subset in C if and only if t can place at position K +1

or better.

First assume that there exists a subset S′ ⊆ S with |S′| ≤ K such that S′

contains at least one element from each subset in C. For each x ∈ S′ and each game

x is involved in, we let x win with one additional goal. This will decrease the goal

differences of all set teams to zero, while increasing the goal differences of |S′| ≤ K

element teams by one or more. Thus, at most K teams have positive goal difference,

so team t places at position at least K + 1.

For the other direction, assume that team t places at position K + 1 or better.

Thus, at most K teams have positive goal difference. If any of these teams are set

teams, there exist other goal outcomes where team t places at position at least K:

For any set team with positive goal difference, let any of the element teams it is

playing against win sufficiently many additional goals to bring the goal difference

of the set team to zero. This cannot decrease team t’s final placement. Now only

element teams can have positive goal difference, and we choose the hitting set S′ as

all the elements where the corresponding element team has a positive goal difference.

By the argument above, |S′| ≤ K. We must argue that S′ is indeed a hitting set.

After the modification above, all set teams have non-positive goal difference.

Thus, there must be a game, where the goal difference of some element team was

increased. Element teams cannot have their goal differences decreased, so that ele-

ment team ends with a positive goal difference. This includes the element into S′

and this means that the set corresponding to the set team is hit.

We have established the equivalence and shown the following:

Theorem 2. The Possible Goal Difference Placement problem is NP-complete.
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4. Concluding Remarks

We remark that the instances used in the hardness proofs can actually occur in a

real tournament. It is easy, though a little space consuming, to extend the standing

and schedules used to standard tournaments where each team meets any other team

twice.
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