
How to Get More Out of Your Oracles

Lúıs Cruz-Filipe, Kim S. Larsen, and Peter Schneider-Kamp

Dept. Mathematics and Computer Science, Univ. Southern Denmark
Campusvej 55, 5230 Odense M, Denmark
{lcf,kslarsen,petersk}@imada.sdu.dk

Abstract. Formal verification of large computer-generated proofs often
relies on certified checkers based on oracles. We propose a methodology
for such proofs, advocating a separation of concerns between formalizing
the underlying theory and optimizing the algorithm implemented in the
checker, based on the observation that such optimizations can benefit
significantly from adequately adapting the oracle.

1 Introduction

During the last decade, we have seen the advent of larger and larger computer-
generated proofs, often based on exhaustive case analysis. To allow for inde-
pendent verification, the programs performing such proofs also generate a trace,
detailing their reasoning steps. These proof witnesses have been growing signif-
icantly in size, from a few MB [15] to a few GB [5, 13], culminating with the
impressive 200 TB proof of the Boolean Pythagorean Triples conjecture [12].

Formal verification of such proofs amounts to checking whether the proof
witnesses can be used to reconstruct a proof. Directly importing the witnesses
into a theorem prover [4] does not scale to the size of recent proofs due to memory
and computational requirements. Instead, the witnesses can be obtained from an
external untrusted source, the oracle, and checked for correctness before use [14].
The formal proof is thus split between two components: the untrusted oracle and
the proven correct proof checker. The latter needs to be correct regardless of its
input data, typically by ignoring or rejecting incorrect data.

The benefit of using the oracle is efficiency: since its results are not trusted,
it can be optimized for performing difficult computations efficiently. (The point
is, of course, that these results should be correct, but there is no burden of
proof of this fact.) The certified checker, on the other hand, typically constitutes
the computational bottleneck of the overall system. Thus, in order to minimize
execution time, it is natural to try to shift as much computation as possible from
the checker to the oracle.

Traditionally, this path has not been explored to its full potential. Often
oracles are queried when needed [9, 11, 14], computing witnesses at runtime. In
other cases [2, 15, 16], the oracle is pre-computed and responsible for controlling
the flow of the algorithm; in this case, the checker’s queries amount to asking
“What should I do next?”. Our simple observation is: the overall system of
untrusted oracle and trusted checker can be optimized by utilizing the oracle



maximally. We have identified a successful strategy for approaching this, which
we feel deserves to be communicated.

Based on this observation, we propose a systematic methodology for using
oracles in large-scale proofs (Section 2), modulizing the cooperation between
the untrusted oracle and the certified checker. We identify the characteristics of
problems whose proofs could and should profit from this methodology, and illus-
trate it (Section 3) using two cases: an optimality proof on sorting networks [6],
which inspired this methodology, and a formalized checker for unsatisfiability
proofs [7], obtained by directly applying this methodology. The latter ultimately
was able to verify the 200 TB proof from [12], as described in [8].

2 Methodology

We first identify the characteristics a problem should have in order to benefit
from our methodology. We motivate and illustrate these requirements by small
toy examples. Then we present the methodology as a simple step-by-step proce-
dure, with a focus on its separation of concerns.

Problem requirements. A common element to most oracles is that they relate to
problems where finding proof witnesses is computationally much more expensive
than checking their correctness. Because of this commonality, there is a signifi-
cant pay-off in being able to write highly optimized untrusted code for finding
witnesses.

Example 1. As an example, consider a proof that involves properties of the image
of a function. Assume that in the process, one needs to find a pre-image of this
object. If the function is easier to compute than its inverse, then an ad hoc way
of finding pre-images can greatly improve performance.

A concrete extreme example is the inversion of a hash function, for which
there is no realistic way of computing pre-images of given concrete hashes. An
oracle might use large distributed Internet databases to try to find them, though.
Such an oracle would by its nature be both incomplete (it fails when a pre-image
exists, but is not in the database) and untrustworthy (the database could be
erroneous), and therefore impossible to implement and prove correct inside a
theorem prover such as Coq. However, its result is very simple to check. ut

Requirement 1 (Existential subproblems). The problem contains multiple
occurrences of existential statements as subproblems, for which witness checking
is computationally easier than witness generation.

By “computationally easier”, we simply mean that more efficient algorith-
mic solutions are known for one of the problems; we are not claiming that the
problems provably belong to different complexity classes. If the condition in
the requirement is met, this is an indication that the use of an oracle may be
beneficial.



In general, a pre-computed oracle cannot be omniscient, since it can only
provide finitely many different answers. Even if the problem domain is finite, it
is still typically prohibitive to precompute all possible answers. Therefore, our
methodology requires the set of problems that the oracle may be called upon to
be sufficiently restricted (for the answers to fit into memory, for example).

Requirement 2 (Known subproblems). There is a manageable set of sub-
problems that contains all subproblems encountered during the proof.

Our last requirement is that changes to the answers provided by the oracle
should have an impact on the control flow and (consequently) on the efficiency
of the remainder of the proof. We illustrate this point by an example.

Example 2. Imagine a proof that requires factorizing certain composite numbers
into sorted lists of their prime factors as a recurring step. Suppose also that we
have an efficient oracle that, given a composite number, delivers one of its prime
factors. The oracle will have to be called multiple times in order to obtain the
list of all factors, and this list has to be sorted (either at construction time or
after obtaining all factors).

If we compute all prime factors, sort them, and have the oracle provide
them in sorted order, we can replace the sorting step in the proof by a simple
verification that the list provided is sorted, making the proof both simpler and
more efficient. Note that this potentially changes the set of subproblems the
oracle will be called upon, since it may change the control flow of the checker; a
fact that needs to be taken into consideration in the implementation. ut

Requirement 3 (Data-dependent proof). The structure of the proof is de-
pendent on the answers provided by the oracle.

In Example 2, this requirement would not be satisfied if the subproblems
consisted of just showing that certain numbers were composite. The case studies
in Section 3 illustrate all three requirements in realistic settings.

Step-by-step guide to verifying large proofs. We now describe our methodology
for verifying large proofs that fit the requirements discussed above. This consists
of four phases.

– Formalize the theory underlying the results
– Implement a naive checker (using an oracle) and prove it correct
– Optimize the checker in lock-step with adapting the oracle
– Reprove the correctness of the checker

In the Formalize phase, the focus is on the mathematical theory needed to prove
the soundness of the algorithm used in the checker. The key aspect here is to
separate concerns by not worrying about how these results will be used in the
actual implementation. In other words, we advocate formalizing the theory as
close as possible to the mathematical definitions and other formal elements of
the algorithm.



In the Implement phase, the goal is to implement a checker as simple as
possible. The algorithm of the checker should do as little work as possible, using
the information in the proof witnesses as much as possible. This straightforward
implementation must then be proven correct.

The Optimize phase is the most complex and most interesting one. In this
phase, we analyze the complexity of the checker to determine possible local
improvements. These can be of two kinds. The first kind is to use standard
computer science techniques to optimize performance – for example, by using
binary search trees instead of lists, or by enriching the proof witnesses to lower
the complexity of checking their correctness. The second is to use the fact that all
answers needed from the oracle are available beforehand to implement a more
efficient algorithm, as illustrated by Example 2. In both cases, this may also
require changes to the implementation of the oracle.

The Reprove phase consists of reproving the correctness of the optimized
checker. This phase may be interleaved with the previous one, as optimizations
tend to be localized and, thus, only require localized changes to the soundness
proof. This is the case for optimizations of the implementation, in particular,
where soundness is a property of the algorithm, and thus not significantly effected
by the low-level choice of data structures. By applying one optimization at a time
and immediately proving its soundness, it is easier to connect the necessary
changes in the formalization to the original change in the algorithm.

The key observation in this methodology is the realization that the formal-
izations involved in different stages are of very different natures, and benefit
from being treated separately. In the Formalize phase, the emphasis is on the
underlying theory, and it will present the challenges present in any formalization
– choosing the correct definitions, adapting proofs that are not directly formal-
izable, etc. In the Implement phase, the results that need to be formalized deal
directly with the correctness of the algorithm being implemented, and will use
the results proved in the earlier stage. Typically, the complexity of these proofs
will arise from having to consider different cases or finding the right invariants
throughout program execution, but not from mathematical issues pertaining to
the underlying theory.

This is particularly relevant for the Reprove phase, where the modularity of
the approach will have an impact in two ways. First, the formalization of the
underlying theory for its own sake (rather than as a library tailored towards
proving the correctness of the original algorithm) will make it more likely that
all the needed results are readily available, and that they have been stated in
forms making them more generically applicable. Second, changes to the algo-
rithm will typically require different inductive proofs, but their correctness will
likely use the same underlying arguments, which will already be available from
previous phases. For example: if an algorithm iterating over lists is replaced by
one iterating over trees, the structure of the soundness proof changes, but the
key inductive argument (regarding how an additional element is processed) is
unchanged. Therefore, the iterative steps in alternating Optimize and Reprove
phases will likely be much simpler and faster than the original Implement phase.



As a consequence, the final library will also be more likely to be reusable in
future proofs.

The requirements identified earlier are essential for this methodology to be
meaningful. In general, existential subproblems indicate that using an untrusted
oracle can be a good strategy, since verifying the proof witnesses it provides is
easier than implementing a certified algorithm for computing them in the theo-
rem prover. The known subproblems requirement guarantees that the oracle can
pre-compute all proof witnesses that will be needed in the proof, so that they can
be suitably processed before the checker is executed. Finally, data dependency
ensures that changing the implementation of the oracle is meaningful, as it can
improve the overall performance of the checker.

3 Case studies

We illustrate our methodology by referring to two previously published formal-
izations. While we used Coq [1] as the theorem prover in both, our methodology
should be portable to other formal generic proof environments.

Optimal sorting networks. In [5], we describe a computer-generated proof of the
optimality of 25 comparisons for data-independently sorting 9 inputs. This proof
is based on an exhaustive case analysis, made feasible by a powerful, but com-
putationally expensive (NP-complete) subsumption relation [6]. A proof witness
consists of two comparator networks and a permutation under which the relation
holds. While known algorithms for solving the existential subproblem (by finding
a permutation) have worst-case exponential runtime, checking the relation given
a permutation is much easier.

The subsumption relation is used to eliminate comparator networks that are
subsumed by others. The structure of the proof is thus highly data-dependent,
with the order in which proof witnesses are provided by the oracle influencing
the set of subproblems encountered during the remainder of the proof. This is
a challenge for the known subproblems requirement, which is solved by oracle
pre-processing based on transitivity of subsumption.

In the Formalize and Implement phases, we made a direct implementation of
the algorithm in the original proof from [5], obtaining a checker with an expected
runtime of 20 years to process the 27 GB of proof witnesses. In the Optimize and
Reprove phases, we optimized this algorithm by changing the order in which the
oracle provides proof witnesses, which allowed us to use asymptotically better
algorithms and data structures. These optimizations reduced the execution time
to just under 1 week [6]. Separating the formalization of the theory and the
correctness proof of the checker meant that the cost of Reprove was marginal –
at most 1 day per major change – compared to Formalize, which took approx.
3 months.

Unsatisfiability proofs. More and more applications are relying on SAT solvers
for exhaustive case analysis, including computer-generated proofs [12, 13]. While



formally verifying satisfiability results is trivial given a witness, verifying unsat-
isfiability results returned by untrusted solvers requires showing that the original
formula entails the empty clause. To this end, many SAT solvers provide the en-
tailed clauses they learn during execution as proof witnesses. Finding meaningful
such clauses is clearly a non-trivial existential subproblem.

To check an unsatisfiability proof, the clauses provided by the oracle are
added to the original set of clauses after their entailment has been checked
by reverse unit propagation. This addition of clauses determines which further
clauses can be added, i.e., the structure of the proof is data-dependent. Since the
proof checker simply follows the information provided by the oracle, the known
subproblems requirement is trivially satisfied.

By applying our methodology directly, we were able to improve the state-of-
the-art of formally verifying unsatisfiability [10, 16] by several orders of magni-
tude. Here, the Formalize phase consisted simply of building a deep encoding of
propositional logic in the theorem prover Coq and defining notions of entailment
and satisfiability, and the Implement phase yielded a simple checker based on
reverse unit propagation. In the Optimize phase, we achieved a performance im-
provement of several orders of magnitude by observing that the core algorithm
for checking reverse unit propagation can be simplified significantly by enriching
the proof witnesses with information about the clauses used [7]. This improve-
ment in the performance of the checker was obtained at the cost of a noticeable
(yet manageable) increase in computation time on the oracle side, due to the
need to enrich the proof witnesses, but this shift ultimately allowed us to verify
the 200 TB proof from [12], as described in [7, 8].

4 Concluding Remarks

We have introduced a methodology based on distilling the key idea behind our
two case studies: the overall system of proof checker and oracle can profit from
shifting the computational burden from the trusted, inefficient proof checker
to the untrusted, efficient oracle implementation. In other words, we let the
proof checker be implemented as efficiently as possible, doing as little work as
possible, while pre-processing the oracle information such that the right amount
information was provided in the right order. Since all the data provided by the
oracle is verified by the proof checker, this does not affect the reliability of the
results. By revisiting the case studies in this unifying presentation, we hope to
inspire others to obtain similar performance gains when formally verifying other
large-scale proofs.

Acknowledgments. We would like to thank Pierre Letouzey for his suggestions
and help with making our extracted code more efficient.

The authors were supported by the Danish Council for Independent Research,
Natural Sciences, grant DFF-1323-00247, and by the Open Data Experimenta-
rium at the University of Southern Denmark. Computational resources were
generously provided by the Danish Center for Scientific Computing.



References

1. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Texts in Theoretical Computer Science. Springer, 2004.

2. F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Math. Struct. Comp. Sci., 21:827–859, Aug. 2011.

3. S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors. Interactive Theorem Prov-
ing, ITP 2013, Proceedings, volume 7998 of LNCS. Springer, 2013.

4. G. Claret, L. González-Huesca, Y. Régis-Gianas, and B. Ziliani. Lightweight proof
by reflection using a posteriori simulation of effectful computation. In Blazy et al.
[3], pages 67–83.

5. M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp. Sorting nine inputs
requires twenty-five comparisons. J. Comput. Syst. Sci., 82(3):551–563, 2016.

6. L. Cruz-Filipe, K. S. Larsen, and P. Schneider-Kamp. Formally proving size opti-
mality of sorting networks. J. Autom. Reasoning, accepted for publication.

7. L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient certified res-
olution proof checking. In A. Legay and T. Margaria, editors, TACAS, volume
10205 of LNCS, pages 118–135. Springer, 2017.

8. L. Cruz-Filipe and P. Schneider-Kamp. Formally proving the boolean triples con-
jecture. In T. Eiter and D. Sands, editors, LPAR-21, volume 46 of EPiC Series in
Computing, pages 509–522. EasyChair Publications, 2017.

9. L. Cruz-Filipe and F. Wiedijk. Hierarchical reflection. In K. Slind, A. Bunker,
and G. Gopalakrishnan, editors, TPHOLs, volume 3223 of LNCS, pages 66–81.
Springer, 2004.

10. A. Darbari, B. Fischer, and J. Marques-Silva. Industrial-strength certified SAT
solving through verified SAT proof checking. In A. Cavalcanti, D. Déharbe,
M. Gaudel, and J. Woodcock, editors, ICTAC, volume 6255 of LNCS, pages 260–
274. Springer, 2010.

11. A. Fouilhé, D. Monniaux, and M. Périn. Efficient generation of correctness cer-
tificates for the abstract domain of polyhedra. In F. Logozzo and M. Fähndrich,
editors, SAS, volume 7935 of LNCS, pages 345–365. Springer, 2013.

12. M. Heule, O. Kullmann, and V. Marek. Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. In N. Creignou and
D. Le Berre, editors, SAT, volume 9710 of LNCS, pages 228–245. Springer, 2016.

13. B. Konev and A. Lisitsa. A SAT attack on the Erdős discrepancy conjecture. In
C. Sinz and U. Egly, editors, SAT, volume 8561 of LNCS, pages 219–226. Springer,
2014.

14. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–
115, 2009.

15. C. Sternagel and R. Thiemann. The certification problem format. In C. Benzmüller
and B. Paleo, editors, UITP, volume 167 of EPTCS, pages 61–72, 2014.

16. N. D. Wetzler, M. J. H. Heule, and W. A. Hunt Jr. Mechanical verification of SAT
refutations with extended resolution. In Blazy et al. [3], pages 229–244.


