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ABSTRACT The problem of checking or optimally simplifying bisimula-
tion formulas is likely to be computationally very hard. We take a different
view at the problem: we set out to define a very fast algorithm, and then see
what we can obtain. Sometimes our algorithm can simplify a formula per-
fectly, sometimes it cannot. However, the algorithm is extremely fast and
can, therefore, be added to formula-based bisimulation model checkers at
practically no cost. When the formula can be simplified by our algorithm,
this can have a dramatic positive effect on the better, but also more time
consuming, theorem provers which will finish the job.

1 Introduction

The need for validity checking or optimal simplification of first order bisim-
ulation formulas has arisen from recent work on symbolic bisimulation
checking of value-passing calculi [4, 9, 15]. The NP-completeness of check-
ing satisfiability of propositional formulas [3] implies that validity checking
of that class of formulas is co-NP complete. Additionally, checking of quan-
tified formulas is P-space hard [7], so there is not much hope for a fast
algorithm for deciding exactly when a bisimulation formula is valid.

Instead, we set out to solve the problem of what you can get for free,
i.e., to what extent is it possible to decide validity simply while reading
the formula? As it turns out, there is almost nothing that can be done
in linear time. The most simple tasks of storing and retrieving information
about variables will cost O(n log n). So, we allowed ourselves this extra log-
factor and changed the question to what you can get almost for free. As
we shall demonstrate in this paper, the algorithm we have designed is very
fast. Not alone does it run in O(n log n); the constant is also very small.
On average, we read through the formulas at a rate of about 75 Kbytes
per second. Of course, this is only interesting if the algorithm outputs
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useful answers reasonably frequently, i.e., in the absence of an obvious
notion of optimal simplification (to a minimal equivalent formula), if the
algorithm can reasonably frequently guarantee that the formula is valid,
rule out that the formula could be valid, or maybe simplify a huge formula
to a much smaller equivalent one. It is not easy to measure how often the
algorithm produces a useful answer, but through examples, we show that
there are families of process expressions which give rise to formulas, where
our algorithm is successful.

2 Applications

The algorithm makes a single pass over the formula making no assumptions
about the variable names. Notice that this also implies that if formulas are
passed on to our algorithm from another program, they do not have to be
saved at any point, but can be passed on to our program via pipelining.
As already mentioned, in addition to validity checking, we can also sim-

plify formulas. This greatly increases the usefulness of this work. Even if our
algorithm fails to prove the validity of a formula, it will quite often simplify
the formula so drastically that the validity of the formula (or the opposite)
can easily be asserted by the user. Another possibility is to check the sim-
plified formula for validity using other tools. Tools that would succeed more
often, but the complexity of which would make it impossible to work on
the original formula. The main advantage of simplifying formulas is that
the algorithm can be built into the program generating the bisimulation
formulas and simplify the formula on the fly. Also, intermediate simplifica-
tions can be used to prune the generation of other subformulas. This can
be of vital importance since the formulas can become exponentially large.
Our algorithms work just as well on formulas with free variables as on

closed formulas. This means that by simplifying a formula with free vari-
ables, we actually characterize the conditions, in terms of the free variables,
under which two processes are bisimilar.
Though this work is motivated by the need for checking bisimulation for-

mulas, the method is sound for first order formulas in general, so there may
be other interesting applications. Depending on the concrete application,
extra facilities can be built in at no extra cost (with regards to asymptotic
time complexity). For example, when our algorithm has deduced that some
variables must be equivalent, in the rest of the formula, all occurrences of
these variables can be replaced by one representative.
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FIGURE 1. Verification stages.

3 Bisimulation Formulas

In this section, we rather briefly describe the context in which bisimulation
formulas arise and how they are constructed. This section can be skipped if
one believes that such formulas characterizing bisimilarity of two processes
can be generated.
In [4, 9], bisimulation formulas are used in a three stage process (cf.

figure 1) of verifying bisimilarity of value-passing programs ([15] obtain
similar formulas, albeit with a different approach).
However, because we mainly want to convey the intuition of how bisim-

ulation formulas are obtained we chose a simple presentation avoiding the
notions of symbolic bisimulation and symbolic operational semantics in [9].

Stage 1

In the first stage, symbolic transition graphs (a generalization of the stan-
dard notion of labelled transition graphs) are generated from terms of some
value-passing language, say the full CCS calculus [14], CCSv, with terms

t ::= 0 | τ.t | a!e.t | a?x.t | if c then t | t+ t | t | t | t \ b | A(ē)

where a and b range over channel names, x range over a set, V , of variables,
e range over a given set of expressions (including V ) over some value domain
D with elements d, c is a condition ranging over boolean expressions, and
A range over names with associated declaration of the form A(x̄) ⇐ t. As
usual the set of programs or processes, Proc, are the closed terms (no free
variables, where ?x acts as binder).
Following [14], 0 is the process having no actions, whereas the prefixed

process τ.p can make an internal action and then act as p. Similarly, there
are input (output) prefixes a?x. (a!x.) for receiving (sending) values on
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τ.p
τ

−→ p, a!d.p
a!d
−→ p, a?x.p

a?x
−→ p

if T then p
α

−→ p′ if p
α

−→ p′

p+ q
α

−→ p′ if p
α

−→ p′

p | q
α

−→ p′ | q if p
α

−→ p′

p | q
τ

−→ p′[d/x] | q′ if p
a?x
−→ p′, q

a!d
−→ q′

p \ b
α

−→ p′ \ b if p
α

−→ p′, b 6∈ α

A(d̄)
α

−→ p′ if t[d̄/x̄]
α

−→ p′ and A(x̄) ⇐ t

FIGURE 2. Operational interpretation of CCSv.

channel a. The expression if c then p can do the actions of p, provided
the condition c evaluates to true, T. The process p+ p′ acts as either p or
p′. In p | q, the parallel subprocesses p and q are (continuously) acting in
parallel through either an internal communication of a value or a separate
action of one of the subprocesses. p\b can do those external actions of p not
involving communication on b. Finally, A(ē) acts as the process obtained
by instantiating the associated term with the parameters of A.
Formally processes are equipped with action relations,

τ
−→,

a!d
−→ ⊆ Proc × Proc,

a?
−→ ⊆ Proc × (D → Proc), where

p
a?
−→ λd.p′[d/x] if p

a?x
−→ p′ and the remaining are defined as the least

relations satisfying the rules of figure 2 (symmetric rules left out) where α
range over actions of the form τ , a!d or a?x, and b 6∈ α means b 6= a.

Bisimilarity of processes is defined by means of bisimulations. A relation,
R, on processes is a bisimulation, if it is symmetric and (p, q) ∈ R implies

1. p
τ

−→ p′ ⇒ ∃q′ : q
τ

−→ q′ and (p′, q′) ∈ R

2. p
a!d
−→ p′ ⇒ ∃q′ : q

a!d
−→ q′ and (p′, q′) ∈ R

3. p
a?
−→ p′ ⇒ ∃q′ : q

a?
−→ q′, ∀d ∈ D : (p′d, q′d) ∈ R

Then p and q are bisimilar, p ∼ q, iff p R q for some bisimulation R.
This is in fact what is usually called late bisimulation equivalence for

value-passing processes. The early version (used in [14]) is obtained by
merely moving the universal quantification completely to left of the right
hand side of the implication in clause 3—the effect being that a (possibly
new) q′ can be found for each d.
Stage 1 and 2 of the verification process (and the associated theory) can
equally well be carried through for early bisimulation. The simplification in
stage 3, which is the main concern of the article, is essentially independent
of the bisimulation equivalence in question. Henceforth we shall tacitly stick
to late bisimulation equivalence.
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FIGURE 3. Generating symbolic transition graphs from CCSv.

We shall now generalize the notion of bisimilarity to open terms, i.e.,
parametrized programs, in such a way that it allows us to formally charac-
terize the conditions, in terms of the parameters, under which the (para-
metrized) programs are bisimilar.
An environment , is a function from V toD, typically denoted ρ. It is then

standard how to define when ρ satisfies a formula c, written ρ |= c. Given
an environment ρ and a term t, we use tρ to denote the closed term obtained
by substituting ρ(x) for each free variable x in t. ∼ is then generalized by

t ∼c u iff ∀ρ |= c : tρ ∼ uρ.

A boolean expression, c, is most general for terms t and u if it satisfies
t ∼c u and if t ∼c′ u, then c′ implies c.

Now for symbolic transition graphs. A symbolic transition graph is merely
a labelled directed graph satisfying certain well-formedness conditions. Nodes
are labelled with variables and the edges ( 7→) labelled with (symbolic) ac-
tions of the form τ , a!e or a?x, each guarded with some boolean condition.
Intuitively, a graph is well-formed if the (free) variables of the expressions
labelling any edge leading from node n to node m only mention variables
of n and a variable, x, of m not in n is due to the edge being labelled with
an input action a?x binding x.

The advantage of symbolic transition graphs is their independence of a
particular process language. Various calculi can be translated into them as
we shall see now for CCSv.
It is relatively simple to generate a symbolic transition graph from a CCSv
term. Edges are (modulo symbolic actions) inferred similarly to the action
relations in figure 2, except that conditions met are collected (taking the
conjunction) and used as guarding condition. For example, consider the
rules of figure 3 (where # is a special place holder variable not in V ) and

let t
c,a?x
7−−→ t′′ if t

c,a?#
7−−→ t′, t′′ = t′[x/#] and x is the first variable not

free in t′. A (not particularly sophisticated) translation is then obtained
by letting nodes being terms labelled with their free variables and edges
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mρ
τ

−→ nρ if ρ |= c and m
c,τ

7−−→ n

mρ

a!ρ(e)
−−→ nρ if ρ |= c and m

c,a!e
7−−→ n

mρ
a?
−→ λd.nρ[x 7→d] if ρ |= c and m

c,a?x
7−−→ n

FIGURE 4. Operational interpretation of symbolic transition graphs.

given according to the rules. To get finite graphs more often, one can apply
modifications of standard techniques used to avoid state explosion in tools
for process languages without value-passing.
Below, two processes are shown together with their associated graphs.

A1(x, y)
def

= τ.0+ τ.if x ≡ y then τ.0

✡
✡✢

❄

❏
❏❫

g1
T, τT, τ

x ≡ y, τ

A3(x, y)
def

= τ.(if x ≡ y then τ.0)
+if x ≡ y then τ.0

✡
✡✢

❏
❏❫

❄

g3
x ≡ y, τT, τ

x ≡ y, τ

To shorten the presentation, all nodes except for root nodes, have been
omitted from the graphs and in the conditions, conjunctions with T have
been removed. The initial conditions of the graph g1 associated with A1

are T, whereas the last condition is x ≡ y (or rather x ≡ y ∧T), i.e., x and
y should have equivalent values.
The symbolic transition graphs can now be given an operational inter-

pretation which closely relates the interpretation of translated CCSv terms
with the original interpretation of the terms. Given an environment ρ and
a node n the associated state is denoted nρ. The transition relations are
then given by the rules of figure 4, where ρ[x 7→ d] denotes an environment
identical to ρ except that it yields d for x. Notice that λd.nρ[x 7→d] applied
to a d′ ∈ D gives the state nρ[x 7→d′].
Two graphs are bisimilar [4, 9, 10] iff the two terms they are translated

from, are bisimilar in the traditional sense.

Stage 2

In the next stage, an algorithm is used for finding a first order boolean
expression mgb, called the most general boolean; a bisimulation formula
characterizing the conditions for which two finite symbolic transition graphs
are bisimilar.
Intuitively, two processes are bisimilar if, whenever one process can do

an action, the other has a matching action such that the resulting two pro-
cesses are again bisimilar. This is reflected in the bisimulation formula. For
example, the fact that g3 must match (see figure 5) an action corresponding
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FIGURE 5. Generating symbolic bisimulation formulas.

to the left edge of g1, is captured in the mgbg1,g3 subformula

T →
T ∧ [T ∧ (x ≡ y → F)]

∨
x ≡ y ∧ [T ∧ T]

If an instantiation of variables satisfies the guarding condition T of g1, then
it must satisfy a guarding condition, T or x ≡ y, of g3 as well as the mgb,
[T ∧ (a ≡ y → F)] or [T ∧ T], of the corresponding nodes.
More precisely, for a pair of nodes m and m′ the bisimulation formula

mgbm,m′ is constructed recursively as a large conjunction of subformulas
each capturing the possibility of matching an m-action with m′-actions
(and vice versa) and recursively being able to do so.
If there are no actions to match, the subformula is simply T. Otherwise, for

each action m
c,α
7−→ n, the subformula expresses that the guarding condition

c imply the possibility of finding a matching m′-action.
Hence, if there are no possible m′-action of the same form, communicating
on the same channel, the subformula is merely c → F. Otherwise, the
constructed subformula depends on the form of α.
If α is an output action, a!e, the subformula is

c →
∨

i

[c′i ∧ e = e′i ∧mgbn,n′

i
], where m′ c′i,a!e

′

i7−−−→ n′
i

meaning that whenever a process environment satisfies c there is at least
one m-action which in the same environment and on the same channel can
send the same value.
Similarly, for input, universal quantification is used to express that for all
values received, the processes are bisimilar, i.e., for α of the form a?x

c →
∨

i

[c′i ∧ ∀x, x′
i : x = x′

i → mgbn,n′

i
]

For internal actions, the subformula is just c →
∨

i[c
′
i ∧mgbn,n′

i
].

The construction clearly stops if there are no cycles in the graphs. But
if there are, it will go on forever. However, as we proceed down in the
subformulas, more and more constraints are accumulated through the con-
ditions. Hence, intuitively, if the accumulated constraints imply the mgb
we are about to construct, the recursion can in principle be stopped with
subformula T. It turns out that for the examples considered here, this is in
fact the case whenever previously visited pairs of nodes are met again.
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Stage 3

In the final stage, validity of the bisimulation formula is checked. If it is
valid, the original programs are bisimilar under all instantiations. Other-
wise, the formula expresses the weakest conditions on the instantiations for
which they are bisimilar. Later, in section 9, we shall see that mgbg1,g3 is
in fact valid.

4 Logic Notions

We now fix the set of bisimulation formulas and introduce a few general
notions from formal logic.
Formally, the class of formulas, which we will work with in the rest of

this paper, is defined by the syntax

E ::= P | E ∧ E | E ∨ E | P → E | ∀x : E and P ::= T | F | x ≡ y

As usual, formulas are closed if they have no free variables. Notice that
bisimulation formulas only have universal quantification. The binary pred-
icate symbol ≡ is assumed be interpreted as an equivalence relation ≡D

over a nonempty domain D. An environment satisfies a set of formulas Γ,
if it satisfies each formula of Γ. Γ semantically entails E, written Γ |= E, if
E is satisfied by any environment satisfying Γ. E is valid, |= E, if ∅ |= E.

The class of bisimulation formulas is a subset of the class of all quantified
formulas and checking validity of bisimulation formulas is not P-space hard.
An easy reduction shows that checking satisfiability with respect to an en-
vironment is NP complete, so presumably checking validity of bisimulation
formulas is co-NP complete.
We now state some general properties of entailment relevant for the de-

velopment of the algorithm. For simplicity, we write Γ as E1, . . . , En when
Γ = {E1, . . . , En}. Similarly, we write Γ,∆ for Γ ∪∆.

Theorem 1 (Entailment)

a) If Γ |= E then Γ,∆ |= E (Ext)

b) If E ∈ Γ then Γ |= E (Rep)

c) If Γ |= E and Γ, E |= E′ then Γ |= E′ (Cut)

d) If Γ |= E and E |= E′ then Γ |= E′ (Trans)

e) Γ |= E and Γ |= E′ iff Γ |= E ∧ E′ (Conj)

f) Γ, E |= E′ iff Γ |= E → E′ (Imp)

Proof Standard, see [16], for example. ✷
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In general, there is not any similar disjunction theorem allowing both in-
troduction and elimination to the right. However, from the entailment the-
orems and a few tautologies, we get proposition 2. As a consequence of ≡D

being an equivalence relation we also have proposition 3.

Proposition 2 If Γ |= E or Γ |= E′, then Γ |= E ∨ E′.

Proposition 3 a) |= x ≡ x b) x ≡ y |= y ≡ x c) x ≡ y, y ≡ z |= x ≡ z

5 The Abstract Algorithm

We now set out to design an algorithm for checking validity of formulas
with an equivalence predicate. We keep it as abstract as possible to allow
for a large degree of freedom in the choice of data structures in the actual
implementation.
Intuitively, the idea of the algorithm is to collect in a relationR (over vari-

ables) information about variables known to be equivalent when checking
subformulas. For instance, checking the validity of a formula like x ≡ y → E
is reduced to checking E under the assumption that x and y are equiva-
lent, i.e., (x, y) is added to R and E then checked. To exploit that ≡ is
an equivalence relation, the symmetric and transitive closure, is taken be-
fore proceeding to E. However, when checking E of the formula ∀x : E
the situation is quite the opposite. Since a new scope is entered, all previ-
ous collected information in R concerning x, must be removed before E is
checked.
Formally, for R denote the symmetric and transitive closure by R⊕, the

reflexive closure, R∪{(x, x) | x ∈ V }, by R0 and the removal of x, {(y, z) ∈
R | y 6= x, z 6= x}, by R \ x. Notice, R \ x ⊆ R, and if R is symmetrically
and transitively closed, then so is R \ x.
In order to connect with the logic, we associate with R the set of formulas

R≡
def

= {x ≡ y | (x, y) ∈ R}. The notions of closures and removal extend to
R≡ in the natural way: R≡ \ x is (R \ x)≡ etc.
The algorithm is conveniently described using Kleene’s three-valued logic

[11], the three truth-values being t for “true”, f for “false” and u for “un-
defined”/ “unknown”. The Kleene truth tables for conjunction, ∧K , dis-
junction, ∨K , and implication, →K , are:

∧K t f u

t t f u
f f f f
u u f u

∨K t f u

t t t t
f t f u
u t u u

→K t f u

t t f u
f t t t
u t u u

The abstract algorithm is expressed in terms of a function, ||=, which given a
bisimulation formula E and a symmetrically and transitively closed relation
R, returns t only if R |= E, and f only if R 6|= E. From now on, R is assumed
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R ||= E is case E of
T : t
F : f

x ≡ y : if x R0 y then t else u
E′ ∧ E′′ : R ||= E′

∧K R ||= E′′

E′ ∨ E′′ : R ||= E′
∨K R ||= E′′

E′ → E′′ : R ||= E′
→K R′ ||= E′′,

where R′ =

{

(R ∪ {(x, y)})⊕, if E′ is x ≡ y
R, if E′ is T or F

∀x : E′ : R \ x ||= E′

FIGURE 6. The abstract algorithm.

to be symmetrically and transitively closed. Writing ||= infix, the definition
is given in figure 6.
Notice that ||= is well-defined because we take the symmetric and tran-

sitive closure of (R ∪ {(x, y)}).
Given a formula E, the initial call to this function will be ∅ ||= E, where

∅ is the empty relation.
Proving correctness is a matter of proving soundness of ||= relative to |=.

First, we need a small result linking R≡ to universal quantification.

Lemma 4 If R≡ \ x |= E, then R≡ |= ∀x : E.

Proof Assume that R≡ \ x |= E and let an environment ρ satisfying R≡

be given. Because R≡ \ x ⊆ R≡, ρ must satisfy R≡ \ x as well. Now x does
not occur in any formula of R≡ \ x so all environments differing from ρ
only on the value of x, will then also satisfy R≡ \ x. By the assumption
each such environment also satisfies E wherefore the original environment
ρ satisfies ∀x : E. ✷

Writing ||= E for ∅ ||= E, we can now state the correctness of the algorithm.

Theorem 5 (Correctness)

a) If ||= E = t, then |= E.

b) If ||= E = f, then 6|= E.

Proof Part a) of the theorem follows from the stronger statement

if R ||= E = t then, R≡ |= E

which we prove by induction on the structure of E. Assume R ||= E = t.
We consider the forms of E:
T, F: In general, Γ |= T, so also R≡ |= T. The case of F is trivial, since

R ||= F 6= t.
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x ≡ y: By definition of 0, it follows that R ||= x ≡ y = t iff either x R y
or x = y.
Now, x R y is equivalent to x ≡ y ∈ R≡. By (Rep), we get R≡ |= x ≡
y. In the case x = y, the situation is really that E is x ≡ x. By (Ext)
and a) of proposition 3, we directly obtain R≡ |= x ≡ x.

E′ ∧ E′′: By definition, R ||= E′ ∧ E′′ = t implies R ||= E′ = t and R ||=
E′′ = t. By induction, we obtain that R≡ |= E′ and R≡ |= E′′. Using
(Conj), we obtain that R≡ |= E′ ∧ E′′.

E′ ∨ E′′: Similar, using proposition 2 instead of (Conj).

E′ → E′′: By the definition of →K , we must have R ||= E′ = f or R′ ||=
E′′ = t. The forms of E′:

T: Then R′ = R and because R ||= T = t, it follows that R ||=
E′′ = t. As above we deduce R≡ |= E′′. Using (Ext), we get
R≡,T |= E′′ and therefore R≡ |= T → E′′ follows by (Imp).

F: In general Γ,F |= E, so in particular R≡,F |= E′′. By (Impl),
R≡ |= F → E′′.

x ≡ y: We have R ||= x ≡ y = t or R ||= x ≡ y = u. In either
case, we must have R′ ||= E′′ = t, where R′ = (R ∪ {(x, y)})⊕.
By induction, we get R′

≡ |= E′′, which is the same as (R≡, x ≡
y)⊕ |= E′′. Now any z ≡ w in (R≡, x ≡ y)⊕ can be deduced from
R≡, x ≡ y so by repeated use of (Cut), each of these z ≡ w can be
removed from the hypothesis and we finally get R≡, x ≡ y |= E′′.
Thus, by (Impl), R≡ |= x ≡ y → E′′.

∀x : E′: By the induction hypothesis we get that R≡ \ x |= E′. The result
follows from lemma 4.

Part b) follows similarly from the stronger statement that if R ||= E = f,
then R≡ |= ¬E. ✷

6 The Concrete Algorithm

In this section, we discuss the implementation of the abstract algorithm
outlined in section 5. The function ||=, which is defined there, closely follows
the structure of a formula E. The concrete implementation in this section
will follow this structure in exactly the same way. So, the primary task is to
find a representation of the relation R such that operations on this relation
(union, closure, checking for equivalence, etc.) can be performed efficiently.
The primary operations are to make two variables equivalent and to test

whether two variables are already equivalent. This is an instance of the so-
called disjoint set problem, which is usually solved using rooted trees [6].
To obtain the best possible performance, path compression (McIllroy and
Morris) and union by rank [17] (or similar schemes) are normally used to
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obtain an amortized complexity of O(A−1(n)) per find operation [17, 19],
where A−1 is the inverse of the (unary) Ackermann function [1].
However, when processing formulas like (x ≡ y → E) ∧ E′, we need to

first form the union of the equivalence classes of x and y, then process the
expression E, and then deunion (undo) the last union before processing E′.
Path compressions are impossible to undo without ruining the complexity,
so we only use union by rank, and obtain a complexity of O(log n) per find
[18]. In order to undo the unions, each union operation is registered on a
stack. In this way, deunions can be done in constant time (unions are still
constant time). These three operations, find, union, and deunion, can also
be implemented such that the amortized complexity for the find operation
becomes O(log n/(log log n)). That proposal is from [12]. See [20] for the
analysis. However, the size of the overhead is so large that for formulas
that we consider (up to approximately 5 Mbytes), this method is slower.
For further details on disjoint set implementations, see [13]. We call the
structure we use a union-find-deunion (UFD) structure.
For formulas without universal quantification, this would be all we would

need. However, formulas like (∀x : E)∧E′ require that the variable x is freed
from previous unions while processing E. Afterwards, for the processing of
E′, all the old information on x must be restored. Having to keep track
of several versions of variables means that the variables cannot be used
directly in the UFD structure. Instead, we do the following: at any point
during the processing of a formula, each variable, x, has an associated
stack of pointers corresponding to the number of active versions of x. In
greater detail, when a quantifier construction ∀x : is encountered, a pointer
is pushed onto x’s stack. The pointer points to a new item in the UFD

structure not related to anything, which was previously there. In this way,
the old environment can be restored by simply popping the stack.

In order to access the stacks associated with variable names as fast as
possible, variable names (along with the pointer to the stacks) are organized
in a red-black tree [2, 8], which is one of the efficient implementations of
dictionaries with a complexity of O(log n) per operation, where n is the
number of elements in the tree.
To summarize, we use a red-black tree that has variable names as keys

and stacks of pointers as values. All these pointers point into a common
UFD structure. In addition, the UFD structure has its own stack of undo
information. We refer to the structure consisting of all these other data
structures as the combined structure. See figure 7.
In the following, we list the operations that the three data structures

are assumed to be equipped with. The description is brief as all this is
quite well known. However, it seems useful to introduce the names of the
operations on the different structures.
A stack is a collection of values, which can be removed from the structure

only in the reverse order of which they were inserted. Assume that S is a
stack and v is a value. The following operations are supported: Push(S, v),
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FIGURE 7. The combined structure.

Pop(S), Top(S), Empty(S), and InitStack().
A dictionary implements a set of pairs (k, v), where k is a key value

from a totally ordered domain and v is any value. We assume that each
key value appears at most once in the dictionary. If T is a dictionary,
then the following operations are supported: Insert(T, k, v), Delete(T, k),
Member(T, k), LookUp(T, k), and InitTree().

A UFD structure is a collection of elements some of which may be
equivalent with other elements. The following operations are supported:
Union(U, p, q), Find(U, p), Deunion(U), and InitUFD(). Obviously, the im-
plementation is basically the well-known union-find structure using a stack
to save information about the unions.
A Kleene boolean is an implementation of Kleenes three-valued logic. The

three Kleene truth-values TRUE, FALSE, and UNKNOWN correspond to
t, f, and u, respectively. The operations Kand, Kor, and Kimp implement
the operations ∧K , ∨K , and →K as described in the tables of section 5.
Furthermore,Ktu turns an ordinary boolean into the Kleene boolean TRUE

if it is true and otherwise into UNKNOWN.

The Algorithm

In this section, we present the concrete algorithm, which implements the
abstract algorithm from section 5. Basically, this is all about represent-
ing the relation R using advanced data structures. We assume that the
formula E has a representation in the form of a syntax tree. There are
well-developed standard techniques to define and manipulate syntax trees.
For clarity, we leave out these details.
Also, to present the crucial parts of the algorithm as clearly as possible,

we treat E1 ∧ E2 and E1 ∨ E2 independently. In reality, as we want to
process the formula using pipelining, we should process E1 first and not
until after that has been done can we decide whether a conjunction or a
disjunction is been processed. Another reasonable assumption would be to
require that the program generating the formula does this using a prefix
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function check(E: formula) → Kleene boolean;
var
r: Kleene boolean;
p,q: pointers; (* into the UFD structure *)

case E of
T: r := TRUE;
F: r := FALSE;
x ≡ y: r := Ktu(Find(U,Top(LookUp(T,x))) =

Find(U,Top(LookUp(T,y))));
E1 ∧ E2: r := Kand(check(E1),check(E2));
E1 ∨ E2: r := Kor(check(E1), check(E2));
T → E1: r := check(E1);
F → E1: r := TRUE;
(x ≡ y) → E1: p := Find(U,Top(LookUp(T,x)));

q := Find(U,Top(LookUp(T,y)));
if p 6= q then Union(U,p,q);
r := Kimp(Ktu(p 6= q),check(E1));
if p 6= q then Deunion(U);

∀x : E1: if ¬Member(T,x) then Insert(T,x,InitStack());
new(p); Push(LookUp(T,x),p);
r := check(E1);
Pop(LookUp(T,x)); free(p);
if Empty(LookUp(T,x)) then Delete(T,x);

end;
return r;

end;

FIGURE 8. The concrete algorithm.

notation like ∧(E1, E2) and ∨(E1, E2).
For simplicity, we assume that the formulas are closed, i.e., they do not

have any free variables. This is no serious simplification since free variables
can be treated as if they were bound at the outermost level.
The concrete implementation, figure 8, follows the structure of the for-

mula in the same way as ||=, except that the call for the left-hand operand
of implication is unfolded and incorporated directly into the case analysis.

Before use, T is declared as a red-black tree and properly initialized using
InitTree(). Similarly, U is declared as a UFD structure and initialized by a
call to InitUFD().

Correctness

Proposition 6 The combined structure immediately after a call to the
function check is exactly as it were immediately before the call to check.
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Proof By induction in the number of calls to the function check. The
base case is when this number is one, which means that check is not called
recursively. Thus, we must be in one of the cases T, F, or x ≡ y. The result
follows since the combined structure is not altered in any of these cases.

For the induction step, the result follows trivially from the induction
hypothesis in the case where E is E′ ∧ E′′, E′ ∨ E′′, T → E′, or F → E′,
since the combined structure is not changed.
Assume that E is (x ≡ y) → E′. By the induction hypothesis, the call

check(E′) leaves the structure unchanged. The claim follows as Deunion(U)
will undo the last union not yet undone. This must be Union(U,p,q), as the
combined structure after the call to check(E′) is exactly as it were before
the call.
Assume that E is ∀x : E′. By the induction hypothesis, the call check(E′)

leaves the structure unchanged. Since LookUp(T,x) is a stack, the state-
ment Pop(LookUp(T,x)) will undo the effect of Push(LookUp(T,x),p). Fur-
thermore, if the stack LookUp(T,x) is empty, then this stack must have
been inserted into T by this current invocation of check, so the empty
stack should be deleted. ✷

Proposition 7 Let F be a bisimulation formula, and let E be a subex-
pression of F with x and y bound in the context of E. Immediately before
the call check(E), the combined structure is an exact representation of R
in the corresponding call R ||= E, i.e.,

x R0 y ⇔ Find(U,Top(LookUp(T,x))) = Find(U,Top(LookUp(T,y)))

Proof By induction in the structure of E. The base case is when E = F ,
in which case both R (and thus also R0) and the combined structure are
empty. For the induction step, we consider all possible forms that E could
have.
If E is T, F, x ≡ y, E′ ∧ E′′, E′ ∨ E′′, T → E′, or F → E′, then

the combined structure remains unchanged and the same R is used in the
recursive application of ||=.
Assume that E is (x ≡ y) → E′. Then ||= is called with the relation

formed by adding (x, y) to R and taking the symmetric and transitive
closure. In the combined structure, if x and y do not already belong to
the same equivalence class, then the equivalence classes of x and y are
joined. Notice that given the representation of the combined structure and
the way it is used, it is automatically closed reflexively, symmetrically, and
transitively.
Assume that E is ∀x : E′. Then ||= is called with the relation formed

from R by deleting all pairs that include x. In the combined structure, a
new pointer into the UFD structure is created and placed on the top of x’s
variable stack, thus effectively hiding any pairs involving x; except that the
pair (x, x) will belong to the structure ensuring reflexitivity. ✷
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Lemma 8 The function, check, correctly implements ||=.

Proof From proposition 6, it follows that a function semantically equiva-
lent to the function check can be written by letting the combined structure
be a value-passing parameter to check. As the two algorithms are struc-
turally equivalent modulo unfolding, it is sufficient to consider the use of
the combined structure and R. From proposition 7, it follows that the com-
bined structure is an exact representation of R0. ✷

Theorem 9 Let E be a bisimulation formula, and let n be the size of E.
Then the time-complexity of check(E) is O(n log n).

Proof The algorithm is recursive in the structure of E, and clearly, there
are a constant number of statements per symbol in E. These statements
either perform constant-time operations, or they operate on one of the data
structures. As these are initially empty, and as they share the property that
n operations are carried out in time O(n log n), the result follows. ✷

7 Extensions of the Algorithm

In this section, we consider various extensions of the algorithm. For each
extension, we sketch the modifications of the abstract algorithm from sec-
tion 5, and we discuss the correctness issues briefly.
Many more extension than the ones presented here are possible. However,

we have decided only to present extensions according to the criteria:
a) the asymptotic complexity should not change.

b) the increase in the actual complexity should be very low (lees than a
factor of 10).
c) it should still be a one pass algorithm.
It is not hard to deal with constants and through the obvious transfor-

mation suggested by the equivalence

(E ∧ E′) → E′′ =||= E → (E′ → E′′),

the algorithm can easily cover implication subformulas with conjunctions
of predicates to the left. It is straight forward to cope with multiple equiva-
lence relations by letting the function ||= work with multiple relations over
variables.
The function ||= is only able to return t (f) if the formula is valid (unsat-

isfiable). However, the algorithm, ||=c, obtained from ||= by returning the
result of (R∪{(x, y)})⊕ ||=c E

′ in case of formulas of the form (x ≡ y) → E′,
is able to deal with contingent formulas as well.

Theorem 10 a) If ||=c E = t then |= E. b) If ||=c E = f then 6|= E.
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Proof The proof of a) is almost exactly as the corresponding proof of
theorem 5. Part b) is proved by showing that if R ||=c E = f then E it is
not satisfied by environments identifying all variables. ✷

||=c is clearly as good as ||=. It is also strictly better because ||= x ≡ y →
F = u and ||=c x ≡ y → F = f.

8 Simplifications

In this section, we discuss changes to the algorithm with the purpose of
outputting a simplified formula equivalent to the original formula. The
algorithm should contain the validity checking algorithm as a special case,
i.e., if the validity checking algorithm deems a formula valid, then this
new algorithm should simplify the formula to T. Also, we would like the
algorithm to fulfill the criteria of the previous section.
Like the ||= function, the new function, ||=r, takes as arguments a relation,

R, over variables and a first order formula, but now it returns a first order
formula instead of a truth-value of three-valued logic. We use the same
case analysis, but turn the Kleene truth tables into simplification tables,
essentially by replacing u by the argument formula. Compare with the
Kleene truth tables in section 5. However, this is not quite sufficient. In the
∀x : E′ case of ||=, ∀x is eliminated completely. This cannot be done here
when E′ does not simplify to T or F, so a simplification table for ∀ is also
needed.

∧r T F E′

T T F E′

F F F F

E E F E ∧ E′

→r T F E′

T T F E′

F T T T

E T E → F E → E′

∨r T F E′

T T T T

F T F E′

E T E E ∨ E′

∀r x :

T T

F F

E′ ∀x : E′

We are now ready to define ||=r.

R ||=r E is case E of x ≡ y : if x R0 y then T else x ≡ y
E′ ∧ E′′ : R ||=r E′

∧r R ||=r E′′

E′ ∨ E′′ : R ||=r E′
∨r R ||=r E′′

E′ → E′′ : R ||=r E′
→r Upd(R,E′) ||=r E′′

∀x : E′ : ∀r x : R \ x ||=r E′

E : E

The final case deals with T and F and for convenience, we have introduced
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an explicit update function:

Upd(R,E) =

{

(R ∪ {(x, y)})⊕, if E is x ≡ y
R, otherwise

The simplified formula is logically equivalent with the original as stated in
the following correctness theorem.

Theorem 11 E if and only if ||=r E.

Proof This follows from the statement below which is proved by induction.
We omit the details.

R≡ → E iff R≡ → (R ||=r E)
✷

The next proposition expresses that ||=r is at least as good as ||=.

Proposition 12 If ||= E = t (f), then ||=r E = T (F).

The next section contains examples of simplifications using this algorithm.
A straightforward improvement of the simplification algorithm can be

obtained from the semantic equivalence

E′ ∧ E′′ =||= E′ ∧ (E′ → E′′). (1.1)

Exploiting the simplification of E′, the conjunction case is changed to:

let E′
r = R ||=r E′ in E′

r ∧r Upd(R,E′
r) ||=r E′′.

In this way, the algorithm can simplify (F ∨ x ≡ y) ∧ (x ≡ y → F ), for
example, to F.
Along the same lines, the algorithm can be improved further by using:

E ∨ E′ =||= (¬E) → E′.

Writing x 6≡ y for the common occurring formula x ≡ y → F, we get as a
special case:

x 6≡ y ∨ E =||= x ≡ y → E. (1.2)

As the algorithm is formulated now, there is a priori nothing that prevents
the algorithm from working with more predicates such as x 6≡ y and x ≤ y.
In fact, the simplification algorithm is still sound since the new predicates
are not simplified and do not give rise to updates of R through Upd( , ).
However, we can use R to simplify the new predicates in some cases, e.g.,
for x 6≡ y, we can add the case

if x R0 y then F else x 6≡ y.
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Now, we turn our attention to another type of simplification. The idea is
that universal quantifications can be pushed inwards over conjunctions and
that quantified predicates in some cases then can be simplified.

We use this observation to maintain a set, X, of variables corresponding
to universal quantified variables met solely by simplification of conjunc-
tions, and define a function ||=re, which, compared to ||=r, takes X as an
extra argument.

R ||=X

re E is case E of x ≡ y : if x R0 y then T

elseif x ∈ X or y ∈ X then F

else x ≡ y

E′ ∧ E′′ : R ||=X

re E
′
∧r R ||=X

re E
′′

E′ ∨ E′′ : R ||=∅
re E

′
∨r R ||=∅

re E
′′

E′ → E′′ : R ||=∅
re E

′
→r Upd(R,E′) ||=∅

re E
′′

∀x : E′ : ∀r x : R \ x ||=X∪{x}
re E′

E : E

The soundness of ||=re follows from

∀x : E ∧ E′ =||= (∀x : E) ∧ (∀x : E′)

∀x : x ≡ y =||= F.

Actually, the soundness of the latter requires the quotient set of the domain
by the equivalence,D/≡D, to have a size of at least two. However, for empty
or singleton quotient sets,
do not seem very useful, so the restriction should not be significant in

practice.
Notice that with the exception of the extension concerning contingent

formulas, all extensions can all be combined.

9 Examples

In the first half of this section, we focus on qualitative aspects of the sim-
plification algorithm by means of five examples used to illustrate different
simplification ideas. In the second half, we deal with some quantitative
aspects of the simplification algorithm and the Kleene algorithm through
time measures of concrete implementations applied to increasingly larger
input.
Consider the following symbolic transition graphs:
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All actions are internal, so τ has been omitted from the graphs together
with the trivial guarding conditions T. Before proceeding, we invite the
reader to try to see which graphs are bisimilar.
Now, applying ||=r to the bisimulation formula mgbgi,gj (↔ mgbgj ,gi),

we get the table of simplified formulas

i
j 1 2 3 4

2 T

3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y

4 x ≡ y ∧ E x ≡ y ∧ E E

5 x ≡ y ∧ x 6≡ y
(x ≡ y ∨ x ≡ y)

∧ x 6≡ y
x ≡ y ∧ x 6≡ y

x ≡ y ∧ E

∧ x 6≡ y

where E = ((x ≡ y∧x 6≡ y)∨ (x ≡ y∧x ≡ y)), and for sake of readability,
x ≡ y → F is written x 6≡ y.
If, in stead, we apply ||=r with the modifications corresponding to (1.1),

many of the formulas are simplified considerably, some even completely as
shown in the following table.

i
j 1 2 3 4

2 T

3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y

4 x ≡ y x ≡ y x ≡ y

5 F
(x ≡ y ∨ x ≡ y)

∧ x 6≡ y
F F

If we are interested in knowing whether the graphs are bisimilar under all
instantiations of x and y, we can check validity of the universal closure of the
formulas, i.e., simplify the universally closed formulas to T or F if possible.
The result of applying ||=re (with the modifications mentioned above) yields
the table below. We have omitted the quantifiers in the formulas different
from T and F.

i
j 1 2 3 4

2 T

3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y

4 F F F

5 F
(x ≡ y ∨ x ≡ y)

∧ x 6≡ y
F F

Adding to ||=re an extra case for 6≡, the formula in entry (i, j) = (5, 2)
would also simplify to F, and if the modification suggested from (1.2), i.e.,
transforming x 6≡ y ∨E to x ≡ y → E, is incorporated into the algorithms
as well, then the last two entries would also simplify completely, but this
time to T.
Turning to the quantitative aspects of the concrete algorithms, we con-

sider processes defined for i ≥ 0 by

pi+2
T,a?x0
−−−→ qi+1, qi+1

T,a?x1
−−−→ ri1, ri+1

k

ck,a?xk+1

−−−−−→ rik+1 and r0k
ck,b!xk−−−→ 0,
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where ck is the equality xk−1 = xk. Initially two values are unconditionally
received on a and then, iteratively, values are received on a provided the
two most recently received values are equal. Finally, after i iterations and
under the same proviso, the last value is send on b. Similarly, we define
primed versions which only differ in that c′k is the equality x′

0 = x′
k. That

is, the last value received on a is compared with very first.
In order to give the reader examples of how concrete bisimulation for-

mulas look like, we now describe the most general boolean, mgbri
k
,r′i

k
, char-

acterizing those instantiations (environments) of rik and r′ik for which they
are bisimilar.

mgbri+1

k
,r

′i+1

k

=
ck → (c′k ∧ ∀xk+1 : ∀x′

k+1 : xk+1 = x′
k+1 → mgbri

k+1
,r′i

k+1
)

∧
c′k → (ck ∧ ∀x′

k+1 : ∀xk+1 : x′
k+1 = xk+1 → mgbri

k+1
,r′i

k+1
)

mgbr0
k
,r′0

k
=

ck → (c′k ∧ xk = x′
k ∧ T)

∧
c′k → (ck ∧ x′

k = xk ∧ T)

The most general booleans for the p’s and q’s are similar to the first formula
above, except that the conditions here are T.
For 2 ≤ i ≤ 13, we have measured the average time of five runs of a C

implementation of ||=c (||=r) processing mgbpi+2,p
′

i+2
on a SPARC station

ELC. To give a few examples, mgbp13+2,p
′

13+2
of size 5.754 Mb was simplified

to t (T) in 77284 (78912) milliseconds. Similarly, mgbp13+2,p
′

13+3
, which is

4.477 Mb large, was simplified to f in 62958 milliseconds. On average, ||=c

and ||=r process input at a rate of about 75 Kbytes per second.
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