
Dynamic TCP Acknowledgment in the LogP

Model ⋆

Jens S. Frederiksen, a,1 Kim S. Larsen, a,1 John Noga, b and
Patchrawat Uthaisombut c

a Department of Mathematics and Computer Science

University of Southern Denmark, Odense

{svalle,kslarsen}@imada.sdu.dk

b Department of Computer Science,

California State University, Northridge

jnoga@csun.edu

c Department of Computer Science,

University of Pittsburgh, Pittsburgh

utp@cs.pitt.edu

Abstract

When messages, which are to be sent point-to-point in a network, become available
at irregular intervals, a decision must be made each time a new message becomes
available as to whether it should be sent immediately or if it is better to wait for more
messages and send them all together. Because of physical properties of the networks,
a certain minimum amount of time must elapse in between the transmission of two
packets. Thus, whereas waiting delays the transmission of the current data, sending
immediately may delay the transmission of the next data to become available even
more. We propose a new quality measure and derive optimal deterministic and
randomized algorithms for this on-line problem.

Key words: dynamic TCP acknowledgment, packet bundling, on-line algorithms,
competitive ratio, flow-time, deterministic, randomized

⋆ A preliminary version of this paper appeared as Jens S. Frederiksen and Kim S.
Larsen, “Packet Bundling”, Eighth Scandinavian Workshop on Algorithm Theory,
Lecture Notes in Computer Science, vol. 2368, pages 328–337, Springer-Verlag, 2002.
1 Supported in part by the Danish Natural Science Research Council (SNF) and in
part by the Future and Emerging Technologies programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

Preprint submitted to Elsevier Science 10 October 2013

1 Introduction

We consider point-to-point transmission of data in a network. Transmission of
data is in the form of packets, which contain some header information, such
as the identification of the receiver and sender, followed by the actual data.
For obvious reasons, data is also referred to as messages.

When messages to be sent become available a little at a time at irregular inter-
vals, the question arises on the sending side whether to send a given message
immediately or whether to wait for the next message to become available, such
that they can be sent together. Sending the messages together is referred to
as Packet Bundling.

The reason why this is at all an issue is because of physical properties of the
networks which imply that after one packet has been sent, a certain minimum
amount of time must elapse before the next packet may be sent. Thus, whereas
waiting for more messages will certainly delay the transmission of the current
message, sending immediately may delay the transmission of the next message
to become available even more. In addition to reducing the overall transmission
delay when bundling messages, we also reduce the bandwidth requirement of
the sender, since overhead due to packet headers and network gap is reduced.
The problem of making these decisions is referred to as the Packet Bundling
Problem.

A very similar problem, the Dynamic TCP Acknowledgment Problem, was
introduced in [5, 6]. Since it usually does not make sense to delay the trans-
mission of large messages, the focus for packet bundling is small messages, and
acknowledgments to the receipt of packets are examples of such. The problem
was studied as an on-line problem [3] with the cost function being the number
of packets sent plus the sum of the latencies for each message. The latency
of a message is the time from when the message is available until it is sent.
In general for on-line problems, a flow-time cost measure [3] for a problem
is a cost function defined as the sum of the lengths of time intervals over all
requests from when each request was made until the treatment of it is com-
pleted. However, a cost function which contains the above as an important
ingredient is also sometimes referred to as a flow-time cost measure.

Flow-time is used as a measure in many different contexts. With regards to
competitive analysis, it has been established as a standard measure, most
notably in scheduling (single as well as multiple machines) where it is used in,
for example, [2, 9, 12, 14, 15]. As noted in [5, 10], it also seems like an obvious
first choice with regards to the present problem.

For the Dynamic TCP Acknowledgment Problem, an exact characterization
of the optimal algorithms for the deterministic case can be found in [5]. For

2

the randomized case, an exact characterization is given by the lower bound
in [18] and the upper bound in [10]. The off-line version of the problem has
also been considered, initiated by [5, 6], and a linear-time algorithm has been
obtained [17].

In this paper, we consider a different approach to investigating the Dynamic
TCP Acknowledgment Problem: we prioritize choosing a model for distributed
computing which incorporates the gap between messages necessitated by the
physical properties of today’s networks and, related to this decision, we also
choose a different cost function.

One of the models of computation for distributed computing which seems to
be accepted as a reasonable model by practitioners as well as theoreticians is
the LogP model [4], which is tractable from a theoretical point of view, but
also realistic enough that good theoretical algorithms are likely to be good in
practice as well; on many different platforms. The ingredients in the model are
the latency L, the processor overhead in sending messages o, the gap imposed
by the network between messages g, and the number of processors P . We refer
to the original paper for a complete treatment, but give a short description of
the model here.

The times when messages become available are beyond our control. Some
application program simply hands over its message to the TCP protocol. When
a message is sent by the TCP software, there is a CPU overhead in preparing
the message. The message is then sent through the network, which takes time
L, after which there is a CPU overhead at the receiving end to extract the
message. In addition, there is a requirement that all messages in the network
must be separated by a fixed time gap. Note that overhead and gap can
overlap in the following sense: Right after a message is sent, while the CPU
spends overhead time preparing the next message, the first message is traveling
through the network, so after the next message has been prepared, there is
already a gap of size equal to the overhead. Thus, if the overhead is larger than
the gap, then the gap can be ignored, and if the overhead is much smaller than
the gap, then the overhead can be ignored.

In our presentation, we will ignore the overhead. Thus, our results apply when
the gap is significantly larger than the overhead. This decision has been made
primarily to keep formulations of theorems cleaner and proofs simpler. How-
ever, there is support for that decision. In [4], the designers of the LogP model
express hope that the overhead can be eliminated from the model at a later
time, though they considered it premature (for all architectures; not selected
architectures) at the time of their publication. They go on to say: “In future
machines, we expect architectural innovations in the processor-network inter-
face to significantly reduce the value of o with respect to g.” In [13], the system
analyzed to verify their results shows a gap value more than 50 times as large

3

as the overhead. Whereas this system may not be typical, we believe it may
be an important example since it resembles the scenario in Grid Computing.

The LogP model has been extended to improve the treatment of large mes-
sages [1] and the model is supported by experimental work, supplying methods
for determining the concrete values of the parameters on a given system [13].

Comparing the theoretical work of [5, 6, 10] with the model assumptions of [4],
the most noticeable difference is the lack of the gap parameter in [5, 6, 10].
In their work, packets are allowed to be sent arbitrarily small distances apart.
This gives different results, because with decreasing intervals between mes-
sages, due to the latency contribution of each packet to the cost function, a
good algorithm would send frequently. With small enough distances between
messages which must be sent, the algorithm would wish to send more fre-
quently than allowed by the gap we are enforcing.

We base our theoretical work on the LogP model, which means we respect
the physical gap. At times when messages become available separated by very
small time intervals, a flow-time based cost function, as in [5, 10], would impose
a very large penalty, if the decision is to delay transmission. This led us to
consider another cost function: the sum of time intervals when at least one
unsent message is available. In our opinion, this measure is just as natural
and it has the significant advantage that good and bad algorithms can be
distinguished.

Our results and the ones in [5, 10] are largely incomparable. They supplement
each other by providing separate results for applications where some physical
gap is significant and applications where it is insignificant, or possibly not
present at all.

In [6], a cost function similar to ours is used. Though the model used in [6]
does not include a requirement concerning packet distances, their alternative
cost function (fmax) will probably more accurately predict the behavior of
algorithms in a scenario where a physical gap must be respected than any of
the flow-time based cost functions will.

Packet bundling has been considered experimentally in [16] for a concrete spe-
cialized application, namely real-time simulations. However, the conditions are
quite different in that messages have different priorities. The goal is also dif-
ferent since there is an absolute tolerance for the delay of messages of different
types.

We analyze natural families of deterministic and randomized algorithms for
the problem and find the optimal algorithms for these families. Additionally,
we show that these results could not have been obtained using the standard
flow-time cost function. In our opinion, it is an interesting consequence that

4

our step towards a possibly more realistic computational model as a basis for
the analysis forces us away from this standard measure.

2 Packet Bundling

Referring to the description of the LogP model from the introduction, since
we are considering the situation from the perspective of a single processor,
only the overhead and gap parameters are relevant, and as discussed in the
introduction, we investigate the case where o ≪ g, so that the overhead pa-
rameter o may be ignored. In the remainder of the paper, we normalize with
respect to the gap g, and assume that it is one (the important fact is that it
is different from zero).

With this in mind, we now state the problem in a form which is formal, but
also convenient to work with.

Consider the problem of a person A wishing to send small messages to another
person B. All messages have to be sent using the same, single messenger, who
uses one time unit for each delivery, i.e., when the messenger has left with one
or more messages (a packet), no messages can be sent for the next one time
unit.

When A decides to send a message, A can either send it immediately (assuming
that the messenger is in), or wait some time (probably less than one) to see
whether other messages have to be sent, so that these messages can be sent
together.

A possibly helpful analogy is to think of a hotel/airport shuttle scenario, as-
suming that the shuttle bus is large enough to carry any number of passengers.
When the hotel manager decides to send the bus off, there is obviously a gap
until it can be sent again, since it has to return to the hotel first.

The formal definition of the problem is as follows:

Definition 1 A Packet is a collection of messages. When a packet is sent,
it contains all messages which have arrived since the time the last packet was
sent (if it is the first packet, it contains all messages which have arrived up to
the point in time where the packet is sent).

In the Packet Bundling Problem one is given a sequence σ = 〈a1, . . . , an〉 of
message arrival times and is asked to give a sequence of packet times p1, . . . , pm
at which packets of messages are sent. All messages are considered to be small,
so that an unlimited number of messages can fit in a packet.

5

The set of messages sent in packet pi is denoted p̃i. For convenience, we iden-
tify a message with its arrival time, justifying the notation aj ∈ p̃i. If more
than one message can arrive at the same time, p̃i can be thought of as a multi-
set.

The packets should respect the following restrictions:

• All messages should be sent no earlier than their arrival time, i.e.,

∀i ≤ n ∃j ≤ m : ai ∈ p̃j ∧ ai ≤ pj.

• All packet times should be at least one unit apart, i.e.,

∀i < m : pi+1 − pi ≥ 1.

• If a packet is sent at time pi, then the set of messages contained in the
packet are considered delivered at time pi + 1.

The last two bullets capture the essence of the gap parameter in the LogP
model.

The cost function measures the total time elapsed while there are messages
which have arrived, but have not been delivered:

m
∑

i=1

(

(pi + 1)−max{(pi−1 + 1), min
aj∈p̃i

aj}
)

where we define p0 = −∞.

Considering the cost function above, it is clear that if the formal definition
should reflect our informal definition, then no more than (pi+1)−minaj∈p̃i aj
should be paid for messages sent in pi, i.e., we pay from when the first message
in pi arrived until the time pi + 1 where we consider the messages delivered.
However, this is sometimes too much, which can be seen as follows:

Assume that aq is the last message sent in pi. If aq+1 arrives between the times
aq and pi + 1, then it is sent in pi+1, and so both (pi + 1) − minaj∈p̃i aj and
(pi+1+1)−minaj∈p̃i+1

aj include the interval from aq+1 to pi+1. To avoid this,
the contribution from the last term should instead be (pi+1 + 1) − (pi + 1).
Including the maximization in the cost function ensures that no interval is
ever counted twice.

Equivalently, the cost function could be defined as the integral over a function
which has the value one if there are one or more undelivered messages and
zero otherwise.

6

For further discussions of alternative definitions of cost functions, see the con-
cluding section. There, we will also mention some relations to earlier work
which are difficult to discuss before the treatment of flow-time cost in Sec-
tion 6.

The are two additional issues regarding the modeling of the problem which
we discuss now. The first regards the assumption that an unbounded number
of small messages can be bundled up into one packet. For the TCP protocol
in particular, the acknowledgment of one packet automatically acknowledges
all previous packets (packets are numbered consecutively). Thus, a packet
with many acknowledgments is actually no larger than a packet with just
one. However, we would like our solutions to be applicable to small messages
in general; not just TCP acknowledgments. Fortunately, in most cases, the
maximum size of packets is fairly large (several kilobytes), which means that
a very large number of message identifiers can actually be bundled, so we
believe the assumption is reasonable; not in the least because the worst-case
scenarios for our algorithms turn out to be sequences with few and scattered
messages.

The other issue regards assumptions about how close together in time mes-
sages can become available. In the TCP acknowledgment scenario, and also in
general, there is essentially no physical limit as to how close together messages
can become available and become ready for delivery, since an application at
any time can hand virtually any number of messages to the part of the op-
erating system implementing the message protocol. Thus, we do not enforce
any restrictions on arrival times.

We consider on-line algorithms [3]. The messages arrive over time, and the
algorithm has to decide over time when to send a packet without any knowl-
edge of the existence of future messages. For any algorithm, ALG , and input
sequence, σ, we let ALG(σ) denote the value of the cost function when ALG
is run on σ.

The performance of deterministic algorithms is measured in comparison with
the optimal off-line algorithm, OPT , using the standard competitive ratio [8,
19, 11, 3]. OPT knows the entire input sequence, when it decides when to
send each packet, and can hence achieve the minimum cost.

An algorithm ALG is (strictly) c-competitive for a constant c, if for all input
sequences, σ, the following holds: ALG(σ) ≤ c · OPT (σ). The infimum of all
such values c is called the competitive ratio of ALG .

The performance of randomized algorithms is measured likewise, though using
the expected cost, E[ALG(σ)], instead.

7

3 The Ak & RA∆ Algorithm Families

In this section, we first consider a family of deterministic on-line algorithms
for the problem. Subsequently we consider a natural randomization of this
family and in both cases we show tight results on the competitive ratio.

3.1 Ak- Deterministic Algorithms

The family of algorithms we consider is defined as follows:

Ak: When a message arrives, it is sent together with all mes-
sages (if any) arriving after this one at the earliest pos-
sible time after k time units.

Without loss of generality, we assume that if Ak decides to let the messenger
leave at a certain point in time, and one or more messages arrive exactly when
the messenger is about to leave, then the messenger leaves without these new
messages. If this is a problem in a proof, then all messages arriving when the
messenger leaves can be considered to arrive ǫ ∈ o(1) time units later. Because
of the infimum which is taken in the definition of the competitive ratio, this
will generally not alter the result.

The algorithm family Ak is similar to the algorithms greedynew from [6] for
varying η’s (see Section 6), in that the first message to arrive determines when
the next packet is sent.

The following theorem states the competitive ratio of this family of algorithms:

Theorem 2 The competitive ratio of Ak is:

R (Ak) =

1 + 1
1+k

, if 0 ≤ k < ϕ̂

1 + k , if ϕ̂ ≤ k

where ϕ = 1+
√
5

2
≈ 1.618 and ϕ̂ = ϕ− 1. The best ratio ϕ is achieved by Aϕ̂.

For a fixed algorithm, Ak, any input sequence for our problem can be divided
into phases as follows: Each phase starts with the arrival of the first message
after the previous phase has ended, and ends at the earliest possible time when
there are no messages to deliver and the messenger is in. In the special case
when the messenger returns at the exact same time a new message arrives
(and no other messages are due for delivery), the phase ends, and the new
message starts the next phase.

8

In the proof, we need the following two lemmas:

Lemma 3 For a worst-case sequence for Ak, we can assume that the messen-
ger carries only one message at a time.

PROOF. Consider a worst-case sequence, and assume that Ak has a p̃i of
size larger than one. We can construct another sequence where |p̃i| = 1 and
the competitive ratio is no better.

Adjusting the sequence by removing messages which do not give rise to the
minimum arrival time among the messages in its packet will not change Ak’s
behavior and will leave the competitive ratio unchanged, since OPT can send
fewer messages without increasing its cost. ✷

Lemma 4 There exists a worst-case sequence for Ak where, if any messages
arrive when the messenger is out, they arrive exactly at the point in time where
the messenger leaves or returns.

PROOF. We consider a worst-case sequence where a message arrives in the
time interval, (pi, pi + 1), when Ak’s messenger is out, and neither is leaving
nor returning, and we transform this sequence into an equally bad sequence,
where one message fewer arrives in this interval.

The message which is being delivered in the time interval [pi, pi+1] must have
arrived no later than time pi − k in order to be sent at time pi. Now assume
that a message arrives at time aj, where pi < aj < pi + 1. By Lemma 3, we
may assume that this is the only message arriving in this time interval, since
otherwise at least two messages would be carried the next time.

If aj ∈ (pi, pi + 1− k) (which may be an empty interval, if k ≥ 1), then Ak’s
messenger has to leave with the new message immediately after returning at
time pi + 1, and Ak’s cost is not influenced by exactly when in the interval
[pi, pi + 1 − k] the message arrives. If OPT sends the message together with
previous messages, then OPT ’s cost will be minimized for aj = pi. Otherwise
aj can be assumed to be pi + 1 − k as OPT ’s cost cannot increase if this
message arrives later. The time pi + 1− k is still while Ak’s messenger is out,
but that will be dealt with in the next case.

If aj ∈ [pi + 1 − k, pi + 1), this message will be sent by Ak at time aj + k.
As the previous message arrived at some time before aj − 1, OPT can be
assumed not to send the new message together with the previous. Thus, if the
new message is shifted together with all later messages by pi + 1 − aj time
units, then OPT ’s cost will be the same, whereas Ak’s cost does not decrease.
Consequently, we may assume that aj = pi + 1. ✷

9

PROOF. [Proof of Theorem 2] Let us first consider the case when k ≤ 1:

By Lemmas 3 and 4, a worst-case sequence can be assumed to consist of phases
of the following form

σ1 = 〈0〉 or σn = 〈0, k, k + 1, k + 2, . . . , k + (n− 2)〉

where n is the number of messages. We separate each phase from the next by
more than two time units. By definition of Ak, this means that messages from
different phases cannot interfere, so relative costs can be calculated separately
for each phase.

Ak’s cost is Ak(σn) = k + n, whereas OPT ’s cost is

OPT (σn) =

k + n− 1 , if n 6= 1

1 , if n = 1

For n = 1, this gives a competitive ratio of Ak(σ1)
OPT (σ1)

= k + 1, and for n > 1, it

gives a competitive ratio of Ak(σn)
OPT (σn)

= k+n
k+n−1

, which is maximized for n = 2,

where Ak(σ2)
OPT (σ2)

= k+2
k+1

= 1 + 1
1+k

.

Comparing the two cases, we find that σ2 is the worst possible for k ≤ ϕ̂,
whereas σ1 is worst for ϕ̂ ≤ k ≤ 1.

Let us then consider the case when 1 < k. Again by Lemmas 3 and 4, a worst-
case sequence can be assumed to consist of phases of the following form:

σn = 〈0, k, 2k, . . . , k(n− 1)〉

where n is the number of messages. Each phase is separated from the next by
more than 1 + k time units, so relative costs can be calculated separately for
each phase.

Ak’s cost is Ak(σn) = 1+kn, whereas OPT ’s cost is OPT (σn) = n. This gives

a competitive ratio of Ak(σn)
OPT (σn)

= 1+kn
n

= 1
n
+ k, which is maximized at n = 1,

where Ak(σ1)
OPT (σ1)

= 1 + k. ✷

3.2 RA∆- Randomized Algorithms

We now consider a natural randomization of the Ak family of on-line algo-
rithms. Our deterministic algorithm family Ak chose a specific k and sent

10

a message at the earliest possible time after k time units. RA∆ chooses the
interval it waits at random.

RA∆: Choose a k uniformly at random between 0 and ∆, and
then run the corresponding Ak algorithm on the input
sequence.

We only consider algorithms with ∆ ≤ 1, since any algorithm, RA∆, with
∆ > 1 easily can be seen to have a competitive ratio larger than RA1.

One could also consider other families of randomized algorithms. Instead of
using a uniform distribution, we could have used an exponential distribution
with parameter ∆ varying from zero to infinity, or a cut-off exponential distri-
bution described by the density function (as in [10]): f(δ) = e−

δ
∆/ (∆(1− e−1))

for δ ∈ [0,∆], and zero otherwise. By careful examination, both of these are
for any ∆ easily shown to have a worse competitive ratio than the best mem-
ber of the RA∆-family. Further, one could consider a randomized algorithm,
where the time interval to wait is chosen uniformly by random at the ar-
rival of the first message of each packet. In [7], this is shown to yield at best

a 1
2

3

√

1
2
+ 1 ≈ 1.397 competitive algorithm when the waiting time is chosen

uniformly by random in [0, 3

√

1
2
].

Without loss of generality, we will as with Ak assume that messages arriving
exactly when the messenger leaves will not be delivered immediately. For ∆ >
0, this does not make any difference to the expected competitive ratio as k
is chosen uniformly at random in the range [0,∆]. For ∆ = 0, RA0 and A0

behave identically, and we can as for A0 consider all messages arriving when
the messenger leaves, as arriving o(1) time later without any difference.

The competitive ratio for RA∆ is given by the following theorem.

Theorem 5 The expected competitive ratio of RA∆ is

R (RA∆) =

1
2
+ 3

2(∆+1)
, if 0 ≤ ∆ ≤

√
3− 1

∆
2
+ 1 , if

√
3− 1 ≤ ∆ ≤ 1

The best ratio
√
3
2
+ 1

2
≈ 1.366 is achieved by RA√

3−1.

As for Ak, the theorem is shown by constructing a worst-case input sequence.
For a fixed RA∆, any input sequence is divided into phases almost as before:
Each phase starts with the arrival of the first message after the previous phase
has ended, and ends exactly when, regardless of the random choice of k, there
are definitely neither any messages waiting to be sent nor is the messenger
out. In the event that a new message arrives at the exact same time as the

11

messenger returns, and where no random choice of k would have made the
messenger arrive later, the phase ends, and the new message starts the next
phase. Due to linearity of expectation, it is enough to consider a worst-case
phase.

Before showing the main theorem, we need the following lemmas:

Lemma 6 Messages in a worst-case phase for RA∆ are not further than one
apart, i.e., ∀i : ai+1 − ai ≤ 1.

PROOF. Let ai be the first message such that ai+1 > ai+1. As all messages
before ai are at most one apart, OPT can send the messages a1, . . . , ai at time
ai, so that it does not incur any cost between time ai+1 and ai+1. This means
that the arrival of message ai+1 (together with all other messages after message
ai+1) can be shifted to any point in time further ahead without increasing the
cost of OPT .

Since we only consider ∆ ≤ 1, RA∆ will make message ai leave with the
messenger at time ai + 1 at the latest. So, message ai+1 arrives either when
the messenger is out or when the messenger has returned (and then no other
messages will be waiting at that time). The cost of RA∆ is maximal if the
randomly chosen waiting time after ai+1 is not shared by time where the
messenger is out, i.e., the cost is maximal if message ai+1 arrives after the
messenger returns, and thereby the message is not in the same phase, but in
the next. ✷

Lemma 7 For a worst-case phase with messages σ = 〈(a1 = 0), . . . , am〉, the
expected competitive ratio of RA∆ is at most

R (RA∆) =
E[RA∆(σ)]

OPT (σ)
≤ am + 2

am + 1
= 1 +

1

am + 1

PROOF. Follows directly from Lemma 6. ✷

The following lemma shows that a worst-case phase with σ = 〈(a1 = 0), . . . , am〉
and am ≤ 1 can be assumed to contain at most two messages:

Lemma 8 For any phase with messages σ = 〈(a1 = 0), . . . , am〉 and am ≤ 1,
the phase obtained by looking only at the first and the last message of σ,
σ′ = 〈a1, am〉, has the same expected competitive ratio, i.e.,

E[RA∆(σ)]

OPT (σ)
=

E[RA∆(σ
′)]

OPT (σ′)

12

PROOF. Since am ≤ 1, we have OPT (σ) = OPT (σ′) = am+1. For RA∆, we
consider two cases. Let k be the (now fixed) value randomly chosen by RA∆.
If am < k, then the cost of σ is the same as for σ′. If am ≥ k, then message
am is not sent until the messenger leaves the next time. This point of time is
determined by the first message, ai, with ai ≥ k. Since ai+k ≤ am+k ≤ k+1,
this will be exactly at the messenger’s next return. Leaving out the messages
before message am (but after) a1 does not change this, and the cost of σ′ and
σ is the same. ✷

Furthermore, as the next lemma shows, if am ≤ 1, then in addition to assuming
that m ≤ 2, we can assume that am ∈ {0,∆}. Note that for ∆ > 0, due to the
definition of our cost function, a2 = 0, i.e., σ = 〈0, 0〉 gives the same expected
competitive ratio as σ = 〈0〉. For ∆ = 0, the sequence σ = 〈0, 0〉 is the same
as σ = 〈0,∆〉.

Lemma 9 A worst-case input sequence for RA∆ with two messages, σ =
〈(a1 = 0), a2〉, where a2 ≤ 1, can be assumed to have a2 ∈ {0,∆}. This gives
the following lower bounds, of which at least one is an upper bound for all
input sequences σ = 〈(a1 = 0), . . . , am〉, where am ≤ 1:

When input is restricted to be of the form σ = 〈0〉, RA∆ has an expected
competitive ratio of

1 +
∆

2

When input is restricted to be of the form σ = 〈0,∆〉, RA∆ has an expected
competitive ratio of

1

2
+

3

2(∆ + 1)

PROOF. For σ = 〈0〉, the expected competitive ratio of RA∆ is E[RA∆(σ)]
OPT (σ)

= 1 + ∆
2
.

For σ = 〈0, a2〉, we prove the result by case analysis depending on the values
of a2 and ∆. Let k be the (now fixed) value randomly chosen by RA∆. The
cost of RA∆ can then be described as follows:

c(a2, k) =

k + 1 , if a2 ≤ k

k + 2 , if k < a2 ≤ 1

13

Note that the above holds with equality even in the second case since a2 ≤ 1
implies a2 + k ≤ k + 1. Thus, a2 will be sent at time k + 1.

The expected cost of RA∆ is E[RA∆ (σ)] = 1
∆

∫∆
0 c(a2, k)dk, whereasOPT (σ) =

a2+1, giving us an expected competitive ratio of c (a2) =
1

∆(a2+1)

∫∆
0 c(a2, k)dk.

Let us first consider the case when a2 ≤ ∆. The expected competitive ratio is

c (a2) =

∫ a2
0 (k + 2)dk +

∫∆
a2
(k + 1)dk

∆(1 + a2)
=

∆2

2
+∆+ a2

∆(1 + a2)

By differentiation, we find that for ∆ ≤
√
3 − 1, this is maximal in a2 = ∆,

whereas for ∆ ≥
√
3− 1, this is maximal in a2 = 0. For ∆ =

√
3− 1 and any

a2 ∈ [0,∆], c(a2) =
1
2
(
√
3 + 1).

The second case is when ∆ < a2 ≤ 1. The expected competitive ratio is

c (a2) =

∫∆
0 (k + 2)dk

∆(1 + a2)
=

∆
2
+ 2

1 + a2

This is maximal for a2 as small as possible, i.e., it is at most c (∆) = 1
2
+ 3

2(1+∆)
.
✷

Lemma 10 Let σ = 〈(a1 = 0), . . . , am〉 be any worst-case phase for RA∆ with
1 < am ≤ 1 + ∆, then

E[RA∆(σ)]

OPT (σ)
≤ −2am

2 + 6am − 4 + 2am∆+∆2 + 2∆

2∆(am + 1)

PROOF. As before, let k be the (now fixed) value randomly chosen by RA∆.
The worst-case cost of RA∆ can in this case be described as follows:

c(am, k) ≤

am + k + 1 , if am < k + 1

k + 3 , if k + 1 ≤ am

This gives an expected worst-case cost for RA∆ of at most

E[RA∆(σ)]≤
1

∆

∆
∫

0

c(am, k)dk

14

=
1

∆

am−1
∫

0

(k + 3)dk +

∆
∫

am−1

(am + k + 1)dk

=
−2am

2 + 6am − 4 + 2am∆+∆2 + 2∆

2∆

whereas OPT (σ) = am + 1, since σ is a worst-case phase. ✷

PROOF. [Proof of Theorem 5] Lemma 9 gives the ratio of the cost functions
of RA∆ and OPT on some selected sequences. Thus, the expected competitive
ratio of RA∆ is at least as high as those ratios. However, the ratios are also
best possible for phases σ = 〈(a1 = 0), . . . , am〉 with am ≤ 1. By Lemma 7,
if am > 1, the ratio of the cost functions of RA∆ and OPT on a worst-case
input sequence is less than 3

2
.

For ∆ ≤ 1
2
, Lemma 9 is enough, since the input sequence 〈0,∆〉 gives rise to

an expected ratio of 1
2
+ 3

2(∆+1)
≥ 3

2
.

For ∆ > 1
2
, by Lemma 7, any input sequence with am > 1 + ∆ gives rise to

an expected ratio of at most (1+∆)+2
(1+∆)+1

. Lemma 10 gives a similar bound on the

expected ratio for am ∈ (1, 1 + ∆]. It can easily be shown that

max

{

∆+ 3

∆+ 2
,
−2am

2 + 6am − 4 + 2am∆+∆2 + 2∆

2∆(am + 1)

}

≤ max

{

1 +
∆

2
,
6∆2 + 4∆ + 1

4∆(∆ + 1)

}

Thus, either 〈0〉 or 〈0,∆〉 is a worst-case input sequence in this case.

Now, Lemma 9 gives the result. ✷

4 The Bk & RBm Algorithm Families

We will now study the problem from another angle. In the previous section we
studied both a deterministic and a randomized family of on-line algorithms.
For the deterministic family, no randomness is needed, whereas for the ran-
domized family, essentially infinitely many random bits are necessary to choose
a number uniformly between 0 and ∆. In this section we consider the cases in
between. The algorithm is allowed to choose a random value only once and to
do so uniformly at random from a set of m values.

Let 〈a1, a2, ..., an〉 be the sequence of arrival times of messages. The sequence
can be broken into phases where a phase contains a maximal subsequence of
message arrivals for which consecutive messages are at most one time unit

15

apart. In other words, the first phase starts with the first packet. A phase
continues until there are consecutive revealed messages ai and ai+1 which are
more than one time unit apart. Message ai is then the last message in that
phase and ai+1 is the first packet in the next phase. Note that the definition of
phases used in this section is different from the definition used in the previous
section.

Let up and vp be the arrival time of the first and the last messages in phase p
respectively. For a given schedule, let sp be the time the messenger leaves to
service the first message in phase p, and let wp be the time the messenger comes
back from servicing the last message in phase p. To simplify the discussion,
we define a dummy variable w0 = a1.

Let F be the total cost of an algorithm and let Fp be the cost charged to phase
p. For any p ≥ 1, any waiting time in the interval [wp−1, wp] will be charged
to phase p. Since the entire schedule is covered, then F =

∑

p Fp.

Lemma 11 For any p ≥ 1, Fp = wp −max{wp−1, up}.

PROOF. Suppose p ≥ 1 is fixed. Since consecutive messages in phase p are
at most one time unit apart, at any time in the interval [up, wp], either there
is a pending message, or the messenger is out. Now consider the time interval
[wp−1, wp]. If up < wp−1, then the entire interval [wp−1, wp] is charged to phase
p. If wp−1 ≤ up, then during the time interval [wp−1, up] the messenger is in
and there are no pending messages. Thus, there is no charge to phase p during
the time interval [wp−1, up]. Only the interval [up, wp] is charged to phase p. In
any case, the charge is wp −max{wp−1, up}. ✷

We define the deterministic on-line algorithm Bk for the packet bundling prob-
lem as follows:

Bk: When the first message of a phase arrives, the algorithm
will wait for k time units. After this waiting period, the
algorithm sends out any messages in the phase as soon
as possible.

The algorithm Bk and the algorithm Ak defined in the previous section are
different. To illustrate this, consider the input sequence σ = 〈0, k − ǫ, 1 + k −
ǫ, 1 + k + ǫ〉.

Upon the arrival of the first message, Ak will wait for k time units. It sends out
the first and the second messages with the messenger at time k. The messenger
will return at time 1 + k just after the third message arrives. Ak will wait for
k time units after the arrival of the third message. It sends out the third and

16

the fourth messages with the messenger at time 1 + 2k − ǫ. The cost of Ak is
2 + 2k − ǫ,

Now consider the schedule produced by Bk. Since the messages of σ arrive
no more than one time unit apart, they all belong to the same phase. Upon
the arrival of the first message, Bk will wait for k time units. It sends out the
the first and the second messages with the messenger at time k. The third
message arrives at time 1 + k− ǫ just before the messenger returns. Since the
third message belongs to the same phase, when the messenger returns at time
1 + k, it will be sent out again immediately. This is different from Ak. The
fourth message arrives at time 1 + k + ǫ. The fourth message has to wait for
the messenger to return at time 2 + k before it can be serviced. The cost of
Bk is 3 + k, which is worse than Ak.

In contrast, consider the same example without the last message. The cost of
Ak is still 2 + 2k − ǫ, but the cost of Bk is now 2 + k.

Let F k
p be the cost of algorithm Bk in phase p.

Lemma 12 For 0 < k ≤ 1 and for any phase p,

F k
p ≤

k + 1 + j , if x < k

k + 2 + j , if x ≥ k

where j = ⌊vp − up⌋ and x = (vp − up)− j.

PROOF. Suppose k is fixed and suppose we consider any phase p. The mes-
senger can leave to service the first message in phase p when k time units
after the first arrival in the current phase have elapsed and the messenger
has returned from servicing the last message in the previous phase. Thus,
sp = max{up + k, wp−1}.

From the definition of Bk, beginning at time sp the messenger will leave every
1 time unit to service the messages in the phase. It leaves to service the last
message at time sp+ ⌊vp−sp⌋+1, and will come back 1 time unit later. Thus,
wp = sp + ⌊vp − sp⌋+ 2.

Let j = ⌊vp−up⌋ and x = (vp−up)−j. Note that 0 ≤ x < 1 and j+x = vp−up.
Now we compute F k

p .

F k
p =wp −max{up, wp−1}
=max{up + k, wp−1}+ ⌊vp − sp⌋+ 2−max{up, wp−1}

17

≤ k + ⌊vp − up − k⌋+ 2

= k + ⌊j + x− k⌋+ 2

=

k + j + 2 , if x ≥ k

k + j + 1 , if x < k

✷

We define the randomized on-line algorithm RBm for the packet bundling
problem as follows:

RBm: RBm is a random distribution over the class of algorithm
Bk. First, RBm picks a value for an internal parameter t.
Then, RBm behaves like Bt. In particular, the value for
t is randomly chosen to be ti(m) with probability 1/m
for i = 1, ...,m where

t1(m)=

√

3 + 2
m
− 1

m+ 1
ti(m)= i · t1(m), for i = 2, ...,m.

Since RBm behaves like Bt, it does the following. When
the first message of a phase arrives, RBm will wait for
t time units before this message and later messages (if
any) are sent. After that if there are more messages in
the phase, the messages are sent out as soon as possible.

Note that the m in RBm denotes the number of random choices available
to the algorithm, and not as for RA∆, where ∆ denotes which interval the
algorithm should choose its random values among.

Theorem 13 For any m ≥ 1, the competitive ratio of RBm is at most

R (RBm) ≤
1

2

√

3 +
2

m
+ 1

PROOF. Suppose m is fixed and suppose we consider a worst case phase σp.
For brevity, we use ti to represent ti(m). Also, we let t0 = 0 and tm+1 = 1.

Let j = ⌊vp−up⌋ and x = (vp−up)−j. Note that 0 ≤ x < 1 and j+x = vp−up.
Let q be the integer such that tq ≤ x < tq+1.

From the definition of ti and x, it is the case that 0 ≤ q ≤ m. By Lemma 12,
the cost of RBm can be bounded from above by

18

RBm(σp) =Ei[F
ti
p]

=
1

m

m
∑

i=1

F ti
p

≤ 1

m

q
∑

i=1

(ti + 2 + j) +
m
∑

i=q+1

(ti + 1 + j)

=
1

m

q
∑

i=1

(i · t1 + 2 + j) +
m
∑

i=q+1

(i · t1 + 1 + j)

=
1

m

(

m
∑

i=1

(i · t1 + 1 + j) +
q
∑

i=1

1

)

=
1

m

(

m(1 + j) + t1 ·
m(m+ 1)

2
+ q

)

=1 + j + t1 ·
m+ 1

2
+

q

m

The optimal schedule is to wait for the last message in the phase and send
all messages in one packet at time vp. Thus, the optimal cost is OPT (σp) =
1 + (vp − up) = 1 + j + x ≥ 1 + j + tq = 1 + j + q · t1.

Next, we find an upper bound for the ratio RBm(σp)/OPT (σp).

RBm(σp)

OPT (σp)
≤
(

1 + j + t1 ·
m+ 1

2
+

q

m

)

(

1

1 + j + q · t1

)

≤
(

1 + t1 ·
m+ 1

2
+

q

m

)

(

1

1 + q · t1

)

=

m+ 1

2

√

3 + 2
m
− 1

m+ 1
+ 1 +

q

m

1

1 + q

√
3+ 2

m
−1

m+1

=

1

2

√

3 +
2

m
+ 1

+
q

m

1

1 + q

m+1

(√

3 + 2
m
− 1

)

=

1

2

√

3 +
2

m
+ 1

+
q

m+ 1

√

3 +
2

m
− 1

1

2

√

3 +
2

m
+ 1

1

1 + q

m+1

(√

3 + 2
m
− 1

)

=
1

2

√

3 +
2

m
+ 1

19

✷

If RBm has access to b random bits, it can choose among 2b random choices.

Corollary 14 For b ≥ 0, if RBm has access to b random bits, then

R (RBm) ≤
1

2

(
√

3 + 21−b + 1
)

PROOF. Immediate from Theorem 13 and by setting m = 2b. ✷

If RBm has does not have access to any random bits at all, it reduces to a
deterministic algorithm.

Corollary 15 If RBm does not have access any random bits, it reduces to a
deterministic algorithm, and

R (RB0) ≤
√
5 + 1

2
≈ 1.618.

PROOF. Immediate from Corollary 14 by setting b = 0. ✷

Corollary 16 If RBm has access to 1 random bit, then t1 = 1/3, t2 = 2/3,
and

R (RB1) ≤ 3/2.

PROOF. Immediate from Corollary 14 by setting b = 1. ✷

If b tends to infinity, RBm will become a randomized algorithm that chooses a
waiting time from a uniform distribution in the range [0,

√
3− 1] ≈ [0, 0.732].

Corollary 17 If RBm has access to an unlimited number of random bits, it
becomes a randomized algorithm that chooses a waiting time from a uniform
distribution in the range [0,

√
3− 1] ≈ [0, 0.732]. Furthermore,

R (RB∞) ≤
√
3 + 1

2
≈ 1.366.

PROOF. Immediate from Corollary 14 by letting b tend to infinity. ✷

20

5 Lower bounds

Finally, we show that among the algorithms we have considered, we find both
optimal deterministic and optimal randomized algorithms.

First, Aϕ̂ and consequently by Lemma 15, RB0 are shown to be optimal de-
terministic algorithms.

Theorem 18 Let ALG be any deterministic algorithm for the Packet Bund-
ling Problem. Then R (ALG) ≥ R (Aϕ̂) = ϕ.

PROOF. We show how to construct an input sequence for ALG , where it
has a competitive ratio larger than or equal to ϕ.

The input will be given in a number of phases, each consisting of either one
or two messages. Between each phase, there is a time interval large enough
so that neither ALG nor Aϕ̂ at the end of the interval has any messages to
deliver, nor are they at the moment delivering any messages.

Let us first consider phase σi, and let the first message in this phase arrive at
time ai1 . Let ki be the length of the time interval ALG waits before it sends
the message. Referring to Theorem 2, we know for Aki whether a worst-case
phase for Aki has one or two messages. If it has two, another message is set
to arrive at time ai2 = ai1 + ki; if not, the phase ends.

Referring again to Theorem 2, the following holds for phase σi:

ALG (σi) ≥ Aki (σi) ≥ Aϕ̂ (σi) ≥ ϕ OPT (σi) .

The first inequality holds for the following reason. Recall that we only consider
sequences of up to two messages. If a sequence contains only one message, since
ALG is deterministic, it waits some fixed time ki before it sends the message.
So, clearly, if σi has length one, ALG(σi) = Aki(σi). For ki ≤ ϕ̂, a worst-case
phase consists of two messages. Again, by definition of Aki , ALG and Aki will
send the first message at the same time ki. However, whereas Aki will send
the second message immediately after having sent the first (at time ki + 1),
we cannot be sure that ALG does too. For a sequence of length two, delaying
sending the second message can of course only increase the cost. Thus, the
first inequality holds for sequences of length at most two.

Thus, for the entire input sequence, we have ALG (σ) ≥ ϕ OPT (σ). ✷

Next, we show a lower bound for any randomized on-line algorithm. As a con-

21

sequence of this, both RA√
3−1 and RB∞ are optimal randomized algorithms.

Although the details of the following proof are somewhat technical, the idea
is simple. A message becomes available at time 0. Whenever the behavior of
the on-line algorithm in the expected case deviates from that of RB∞ in a
way that reduces its cost on the current sequence by any significant amount,
another message becomes available.

Theorem 19 No randomized on-line algorithm can be better than (
√
3+1)/2

competitive.

PROOF. Fix a randomized on-line algorithm ALG . We construct a sequence
of message arrivals for which the ratio of costs is arbitrarily close to (1+

√
3)/2.

Fix N ≫ 1 and let ǫ = (
√
3− 1)/N . Let a message arrive at time 0. For each

0 < i ≤ N we decide whether a message will arrive at time iǫ depending on
the behavior of ALG prior to time iǫ. Note that this behavior cannot depend
upon whether messages arrive at time iǫ or later.

In order to describe the criteria for making the decision at time iǫ, we need to
introduce a technical concept. For 0 ≤ t ≤ iǫ, let p(t) be the (partial) prob-
ability density function describing the probability density that ALG sends a
packet at time t. In other words, P (t) =

∫ t
0 p(x)dx is the probability that ALG

has sent a packet by time t. Without loss of generality, we can assume that
p(t) is continuous (if it is not, there is another algorithm with cost arbitrarily
close for which p(t) is continuous).

Call a time t sufficiently heavy if for all s < t, the inequality P (t) − P (s) >
(t − s)(

√
3 + 1)/2 holds. A message arrives at time iǫ if there is a time t ∈

((i− 1)ǫ, iǫ] which is sufficiently heavy.

Let T be the time that the last message arrives and let T ′ be the supremum
of all times which are sufficiently heavy. Note that 0 ≤ T ≤

√
3 − 1 and

T − T ′ ≤ ǫ. We now claim that

P (T ′)− P (t) ≥ (T ′ − t)(
√
3 + 1)/2 for all t < T ′ and

P (t)− P (T ′) ≤ (t− T ′)(
√
3 + 1)/2 for all t > T ′.

The first inequality follows immediately from the definition of T ′ and proper-
ties of limits. To see that the second inequality is true, let s > T ′ be a time
that maximizes P (t)−P (T ′)−(t−T ′)(

√
3+1)/2. If this maximum was greater

than 0 then s would be sufficiently heavy.

The optimal cost on the sequence is 1 + T .

22

Now consider the on-line cost. Suppose the on-line algorithm chooses to send
the messenger out at time x, where x is drawn from the probability density
function p(t). If x ≤ T , the on-line cost is 2 + x because the messenger will
come back at time 1+x, go out again with the message that arrives at time T ,
and come back again at time 2+ x. If x > T , the on-line cost is 1+ x because
no messages arrive after time x, and the messenger will be back at time 1+x.
Since no messages will arrive after time

√
3− 1, we can assume that p(t) = 0

for t ≥ (
√
3− 1) + ǫ ≈ 0.732 + ǫ. Thus, the expected on-line cost is

T
∫

0

(2 + t)p(t)dt+

√
3−1+ǫ
∫

T

(1 + t)p(t)dt (1)

To more easily estimate the on-line cost, we allow the on-line algorithm to
modify its probability density function p(t) subject to the restriction that T ′

remains the supremum of all times which are sufficiently heavy. From the cost
function (1), 2 + t2 ≥ 2 > 1 + t1 for t2 ∈ [0, T] and t1 ∈ (T,

√
3 − 1 + ǫ],

to minimize the expected on-line cost, the on-line algorithm will place as
much probability mass in p(t) after time T as possible. Furthermore, the mass
remaining prior to time T will be moved as early as possible while keeping T ′

sufficiently heavy. Similarly, the mass occurring after time T will be moved
as early as possible while keeping no t > T sufficiently heavy and while still
keeping it after time T .

The on-line algorithm will modify its probability density function p(t) so that
it is arbitrarily close to the following probability density function qT (t), which
is arbitrarily close to the uniform density distribution in the interval [0,

√
3−1].

qT (t) =

(

(
√
3 + 1)/2

)+
, if t ∈ [0, T]

(

(
√
3 + 1)/2

)−
, if t ∈ (T,

√
3− 1]

It can be verified that, with respect to qT (t), time T is sufficiently heavy and,
any time t ∈ (T,

√
3 − 1] is not sufficiently heavy. A simple calculation of

∫ T
0 (2 + t)(1 +

√
3)/2dt+

∫

√
3−1

T (1 + t)(1 +
√
3)/2dt shows that the on-line cost

is arbitrarily close to (1 + T)(1 +
√
3)/2, and the result follows. ✷

6 Flow-Time Cost

The most standard cost function for problems of this nature is flow-time cost,
which is also used in [5, 6, 10]. The flow-time cost for some algorithm is the

23

sum of the waiting times or latencies of all messages. For one message, the
latency is the length of the time interval from when it arrives until either the
packet time of its packet is reached or it has been delivered (dependent on the
definition used).

As stated in [5, 6, 10], a possible definition of this is the following:

η m+ (1− η)
m
∑

i=1

∑

aj∈p̃i

(pi − aj)

As before, η ∈ [0, 1] denotes the relative weight of the cost of an acknowl-
edgment and the message latency. We will not consider the case when η = 1,
i.e., the case when cost is only paid, if a packet is sent; the choice of any
competitive algorithm will then be never to send any packets.

Though we are considering the same cost function in this section as has been
considered in earlier work, the problem itself is different since packet times
are required to be at least one time unit apart. When trying to use this cost
function for our problem, we are unable to distinguish between on-line algo-
rithms, as no on-line algorithm is competitive, i.e., for any on-line algorithm,
it is possible to find input sequences giving arbitrarily large competitive ratios.

Theorem 20 For the Packet Bundling Problem using the flow-time cost func-
tion with η ∈ [0, 1), no deterministic on-line algorithm is competitive.

PROOF. Let ALG be any deterministic on-line algorithm. First give the on-
line algorithm a message arriving at time 0. The algorithm sends this message
in a packet at some time, k. Just after the messenger has left, give s messages
all arriving at time k. The cost of ALG is then at least 2η + (1 − η)(k + s),
whereas OPT can send all messages at time k such that its cost is at most
η + (1− η)k.

Since 1− η > 0, we can by the choice of s get an arbitrarily large competitive
ratio, and consequently the algorithm is not competitive. ✷

The result also holds true for randomized on-line algorithms, although the
proof is more complicated:

Theorem 21 For the Packet Bundling Problem using the flow-time cost func-
tion with η ∈ [0, 1), no randomized on-line algorithm is competitive.

PROOF. Let ALG be any randomized on-line algorithm. We again show how
to construct an input sequence with an arbitrarily large competitive ratio.

24

The first part of the input sequence is s > 0 messages all arriving at time 0.
Let p(s) be the probability that ALG decides to send a packet before time 1

2
.

This packet may or may not contain all s messages. We now have two cases
depending on p(s).

If p(s) < 1
2
for all s, then the input sequence only contains these s messages.

The expected ratio between the cost of ALG and OPT is then at least

E[ALG(σ)]

OPT (σ)
≥

(1− p(s))
(

η + (1− η)1
2
s
)

η
>

2η + (1− η)s

4η

Since 1 − η > 0, we can get an arbitrarily large ratio by choosing s large
enough.

If p(s) ≥ 1
2
for some s, then t ≫ s more messages arrive at time 1

2
. The ratio

between ALG and OPT is in this case at least

E[ALG(σ)]

OPT (σ)
≥

p(s)
(

2η + (1− η)1
2
t
)

η + (1− η)1
2
s

≥ 4η + (1− η)t

4η + 2(1− η)s

Since 1 − η > 0, we can by choosing t large enough get an arbitrarily large
ratio. ✷

Thus, no on-line deterministic or randomized algorithm is competitive using
the flow-time cost function defined earlier.

7 Concluding Remarks

We have considered a new cost function instead of the cost function which is
almost a standard in theoretical analysis of this type of problems, namely flow-
time. With the new cost function, algorithms can be distinguished effectively,
whereas using flow-time, this is not possible while respecting the LogP model
assumptions. The behavior of the optimal off-line algorithm can be a little
peculiar, however. If we consider sequences where n messages arrive less than
one unit apart, nothing in our cost function encourages the optimal off-line
algorithm to send any messages until the nth message has arrived.

While the behavior of an off-line optimal algorithm is secondary to the ability
of the total set-up to distinguish between good and bad on-line algorithms, our
results are robust enough that the behavior of OPT could be altered. Assume
that we change the cost function such that when a message has been waiting

25

for one time unit (or equivalently, has not been delivered two units after it
became available), a strictly higher penalty is imposed. This will encourage
a different behavior, where messages are sent earlier. However, OPT can still
send all messages with the same cost. It will send at time tn immediately after
the nth message has arrived (as before), but it could also send at all times in
the set {tn − i | i ∈ N, tn − i ≥ 0}.

It is of course also possible to consider entirely different cost functions. A cost
function should be reasonable in the sense that it should be a value which it
would be good to minimize. A cost function should also be useful in the sense
that it should make it possible to distinguish between algorithms. However,
these requirements do not lead us to a canonical choice of cost function.

The choice as to when a packet is considered delivered is somewhat arbitrary.
We have chosen to consider a packet sent at time pi delivered at time pi + 1
(that is time pi plus the gap time, since we have normalized with respect to
the gap), the informal reason being that this is the time when we are allowed
to send again. Other choices give similar results. For instance, if we consider
a packet delivered at the time it is sent, a flow-time cost measure will also
be unable to distinguish between our algorithms. In this case, all the algo-
rithms become non-competitive, i.e., they do not have constant competitive
ratios. Also adding acknowledgment costs, i.e., a constant cost for each packet
sent, gives rise to similar results. For our presentation, we have chosen what
we believe is the simplest cost function which give useful results, under the
constraint that packet times must be at least one unit apart.

Continuing the discussion of our cost function following Definition 1, the only
thing that distinguishes our cost function from fmax with η = 1/2 in [6] is the
included maximization. This is because the constant one in (pi + 1), which
for us reflects when a packet is considered delivered, will take the role of the
acknowledgment cost used in [6]. The more important difference, however, is
the difference in problem formulation regarding the decision as to whether
or not packets may be sent any ε > 0 apart. This decision seems to be so
fundamental that despite similarities in cost functions, our results and the
results in [6] are incomparable.

Finally, our algorithms can in principle be built into any operating system,
though the ease with which this can be done depends on the exact design of
the operating system in question, in particular on the availability of an extra
timer to support interrupts from our algorithm.

Acknowledgments

We would like to thank Brian Vinter for drawing our attention to the Packet
Bundling Problem and for initial discussions regarding the cost function. We

26

would also like to thank the anonymous referees for constructive comments
and suggestions that improved the presentation of the paper.

References

[1] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris
Scheiman. LogGP: Incorporating long messages into the LogP model
for parallel computation. Journal of Parallel and Distributed Computing,
44(1):71–79, 1997.

[2] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and Oded Regev. Mini-
mizing the flow time without migration. In Proceedings of the 31st Annual
ACM Symposium on the Theory of Computing, pages 198–205, 1999.

[3] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[4] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von
Eicken. LogP: Towards a realistic model of parallel computation. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 1–12, 1993.

[5] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic
acknowledgment delay: Theory and practice. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 389–398. ACM
Press, 1998.

[6] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line anal-
ysis of the TCP acknowledgment delay problem. Journal of the ACM
(JACM), 48(2):243–273, 2001.

[7] Jens S. Frederiksen and Kim S. Larsen. Packet bundling. Technical
Report 9, Department of Mathematics and Computer Science, University
of Southern Denmark, Odense, 2002.

[8] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell Sys-
tems Technical Journal, 45:1563–1581, 1966.

[9] Bala Kalyanasundaram and Kirk R. Pruhs. Minimizing flow time non-
clairvoyantly. In Proceedings of the 38th Annual Symposium on Founda-
tions of Computer Science, pages 345–352, 1997.

[10] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP ac-
knowledgement and other stories about e/(e − 1). In Proceedings of the
33th Annual ACM Symposium on Theory of Computing, pages 502–509.
ACM Press, 2001.

[11] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator.
Competitive snoopy caching. Algorithmica, 3:79–119, 1988.

[12] Hans Kellerer, Thomas Tautenhahn, and Gerhard J. Woeginger. Approx-
imability and nonapproximability results for minimizing total flow time
on a single machine. SIAM Journal on Computing, 28(4):1155–1166, 1999.

27

[13] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. Fast measurement
of LogP parameters for message passing platforms. In Proceedings of
the Workshop on Run-Time Systems for Parallel Programming, pages
1176–1183, 2000. Satelite workshop of the International Parallel and
Distributed Processing Symposium.

[14] Stefano Leonardi and Danny Raz. Approximating total flow time on
parallel machines. In Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, pages 110–119, 1997.

[15] Joseph Y-T. Leung and Gilbert H. Young. Minimizing schedule length
subject to minimum flow time. SIAM Journal on Computing, 18(2):314–
326, 1989.

[16] Lawrence A. H. Liang, Wentong Cai, Bu-Sung Lee, and Stephen J.
Turner. Performance analysis of packet bundling techniques in DIS. In
Proceedings of the 3rd International Workshop on Distributed Interactive
Simulation and Real-Time Applications. IEEE Computer Society Press,
1998.

[17] John Noga, Steven S. Seiden, and Gerhard J. Woeginger. A faster off-line
algorithm for the TCP acknowledgement problem. Information Process-
ing Letters, 81(2):71–73, 2002.

[18] Steven S. Seiden. A guessing game and randomized online algorithms.
In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 592–601. ACM Press, 2000.

[19] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202–208,
1985.

28

