
Nordic Journal of Computing

PARAMETRIC PERMUTATION ROUTING VIA

MATCHINGS

PETER HØYER ∗ AND KIM S. LARSEN ∗

Department of Mathematics and Computer Science
Odense University, Denmark

{u2pi,kslarsen}@imada.ou.dk

Abstract. The problem of routing permutations on graphs via matchings is
considered, and we present a general algorithm which can be parameterized by
different heuristics. This leads to a framework which makes the analysis simple
and local.

CR Classification: F.1.2, F.2.2

Key words: permutation routing, matching, graph algorithm

1. Introduction

The routing problem we consider is the following: We are given an undi-
rected connected graph with n nodes and a permutation π of the nodes.
Each node u contains one packet which must be routed to π(u). The rout-
ing is carried out in a sequence of steps. In one step, each packet can either
remain at its current location, or it can be swapped with a neighbor. Thus,
at all times each node has exactly one packet. We are interested in design-
ing an algorithm for this problem with a low complexity measured in the
number of steps necessary in the worst case to ensure that all packets are
routed to their correct locations independent of the initial configuration.
This problem was first defined and investigated in Alon et al. [1993,

1994], and an upper bound of 3(n−1) for the problem was obtained. The im-
provement of this upper bound to 13

5 n was obtained by a minor change in the
algorithm combined with a more careful analysis of the algorithm Roberts
et al. [1995]. Also in Roberts et al. [1995], upper bounds were derived for
some special cases defined by the structure of the graphs: trees of bounded
degree in 2n + o(n), trees of degree at most 3 in 2n, and complete d–ary
trees in n+ o(n).
In Høyer and Larsen [1996], the technical report version of the present

paper, the upper bound for the general case was improved to 2n−3 for n > 1.
Independently, a 2n algorithm as well as a 3

2n + 9 log3 n algorithm was
developed in Zhang [1997]. Clearly, the latter bound is better than the one

∗ Supported in part by the esprit Long Term Research Programme of the EU under
project number 20244 (alcom-it).

Received January, 1997; revised January 1998; accepted May 1998.



2 P. HØYER, K. S. LARSEN

given in the present paper, but unfortunately it is based on complicated
constructions and proofs.

The best lower bound reported is from Alon et al. [1993, 1994], where it
is shown that the star consisting of n nodes requires ⌊32(n− 1)⌋ steps in the
worst case.

We see the following as the two major problems remaining: First, the gap
of an additive logarithmic term between the lower bound and the best upper
bound from Zhang [1997] should be closed. Second, algorithms which can be
parameterized with some kind of measures of the structure of a given graph
should be developed. The special cases treated in Roberts et al. [1995],
as described above, are examples of such measures of graph structure, but
this could be generalized significantly. If there are cycles in the graph, for
instance, this could be exploited to avoid the bottleneck problems present
in all the general results developed so far.

In this paper, we do not solve any of these open problems, but we believe
that our results can contribute to the solution of these. It is the hierarchical
structure of our algorithm as well as the proofs that give this hope. In greater
detail, our algorithm is parameterized by a heuristic. So, in fact, a number
of algorithms can be designed, several of which can be shown to give an
upper bound of 2n− 3. We discuss one such algorithm in the main part
of the paper, and mention another in the conclusion. The algorithm is
recursive and the recursive phases for subproblems start at different times.
The analysis of the algorithm is local and is performed for each subproblem
in isolation, despite of the fact that they may be of varying size and may be
prevented from starting for a while because of other subproblems.

2. Preliminaries

The problem we set out to solve is the following. We are given an undirected
connected graph with n nodes. We are also given a set of n packets. Each
packet is associated with exactly one node in the graph, referred to as the
packet’s destination node. A state is a bijective map from the set of packets
to the set of nodes. Given such a state, called the initial state, we must
find a sequence of states beginning with the initial state and ending with
the state, where each packet is mapped to its destination node. Any two
consecutive states in the sequence must form a step. Two ordered states form
a step if the latter can be obtained from the former by applying a matching.
A matching for the graph is a set of node pairs such that any node is in at
most one pair and any node pair in the matching are connected by an edge
in the graph. The state s2, which is the result of applying a matching to a
state s1, is defined as follows. For any packet p, if s1(p) is not in any of the
pairs in the matching, then s2(p) = s1(p), and if s1(p) is in the matching
paired with s1(q), then s2(p) = s1(q). The goal is to find a sequence of steps
as short as possible, and this problem is normally referred to as Permutation
Routing via Matchings.



PARAMETRIC PERMUTATION ROUTING VIA MATCHINGS 3

Since we are only interested in the length of the sequence, and not in the
complexity of deciding which step to apply when, the problem is an off-line
problem. Traditionally, the number of steps (that is, the number of states
minus one) is used as a measure of complexity, since this can be interpreted
as the running time of a parallel machine or network carrying out one step at
a time. Clearly, if the graph consists of at most one node, then the number
of steps necessary is zero, so in the rest of this paper, we assume that n ≥ 2.
Since there are no restrictions on which type of graphs we route on, all

results in the literature are based on trees (since, if nothing else, routing can
take place on a spanning forest of the graph). We assume without loss of
generality that the graph is a rooted tree. The following result is folklore in
graph theory.

Proposition 1. For any tree T with n nodes, there exists a node u in T
such that each subtree Ti of size ni formed from T by removing u (and all
incident edges) satisfies ni ≤ n/2.

In order to discuss and analyze these routing algorithms, some definitions
are convenient. Suppose a node u has been chosen. Then a tree can be
divided up into the node u and all the subtrees of u. Packets have destination
nodes, and the one with u as its destination is called the green packet. If a
packet has a destination node different from u, it belongs to a subtree,
which is then referred to as the packet’s destination subtree. Packets which
are already in their destination subtree at a given point in time are called
home packets. Other packets in that subtree, with the exception of the green
packet, are called foreign packets. A subtree is completed if it contains all
its home packets, and hence, no other packets.
Like other algorithms in the literature, the main idea of the algorithm is

to select a node u, route packets to their destination subtrees in order to
complete them, and then solve the problem recursively for the individual
subtrees. One of the main elements of our approach, is that we can take
advantage of the fact that recursion can be applied to a subtree as soon as
it is completed, even though this may not hold for other subtrees.
One interesting question that arises is how fast the foreign packets can be

moved out of a subtree, or how fast they can be made ready to move out.
In Alon et al. [1993, 1994], subtrees were “heap-ordered” as the initial step
in the algorithms. There, heap-ordering means placing all foreign packets in
the top part of the subtree, i.e., for any foreign packet, there is no home or
green packet between it and the root. We refer to this as strong heap-order.
If the objective is merely to get foreign nodes out as fast as possible, this is
not necessary. In fact, the general improvement in Roberts et al. [1995] was
obtained by a relaxation of the heap-ordering requirements. We formalize
this idea and refer to it as weak heap-order.
Let Ti be any subtree of u containing f̂i foreign packets and ĥi home

packets. Then T is weakly heap-ordered if, for all j ≤ f̂i, j foreign packets
can be moved out of the subtree in 2j − 1 steps, and all non-home packets



4 P. HØYER, K. S. LARSEN

can be moved out in at most 2f̂i + 1 steps. The subtree Ti is thought of
as being rooted at a neighbor of u. The following algorithm will weakly
heap-order the subtree Ti.

Algorithm Weakly-Heap-Ordering-Algorithm (tree Ti)

(1) For all non-foreign packets p with a foreign packet among one of its
children, match p with exactly one of these foreign packets.

(2) If the green packet is in the subtree, and if the parent of the node hold-
ing the green packet holds a home packet, and neither were matched
in (1), then match that home packet with the green.

(3) Carry out the step defined by this matching.

(4) Repeat the above a total of ĥi steps, adding an extra step if the green
packet is in the subtree.

The following lemma appeared in Roberts et al. [1995].

Lemma 1. Let T be any tree on n nodes, and let u be any node satisfying
proposition 1. Let ĥi denote the number of home packets in subtree Ti. Then
Ti can be weakly heap-ordered in at most ĥi steps if Ti does not contain the
green packet, and at most ĥi + 1 steps otherwise.

Proof. Omitted. A proof of the lemma can be found in Høyer and Larsen
[1996] and in Roberts et al. [1995]. ✷

Weakly heap-ordering of subtrees is one of the important subroutines of
the algorithm to be presented in the next section; the other is cycles. Cycles
are intended to be carried out after all subtrees have been weakly heap-
ordered. A cycle is a sequence of steps, the primary purpose of which is to
route foreign packets in the roots of subtrees through u to their destination
subtrees. However, since moving packets through u disturbs the weak heap-
order of subtrees, subtrees are continuously being weakly heap-ordered in
parallel with this. The purpose of keeping subtrees weakly heap-ordered
is also to make cycles as long as possible, since this improves the overall
complexity.
We first consider the actions involving u in the steps of the cycle. After-

wards, we define the rest of the matchings which ensure that subtrees are
continuously being weakly heap-ordered. Assuming that the green packet
is on u, the first step involves swapping the green packet with some foreign
packet in the root of some subtree Ti. We say that Ti initiates the cycle.
After this step, in each step, the packet p on u swaps with a packet in
p’s destination subtree. This continues until the green packet is again on u.
If the first step is left out, we call it a green cycle (since, eventually, it places
the green packet on u). The length of a cycle is the number of steps in the
sequence.
We now define the remaining parts of the matchings in a cycle. In each

step, the packet on u swaps with a packet in some subtree Ti with root v.



PARAMETRIC PERMUTATION ROUTING VIA MATCHINGS 5

In such a step, the matching is defined as follows. Clearly, u is matched
with v. For all subtrees formed by removing u and v (and all their inci-
dent edges), the matching is defined by rules 1 and 2 in Weakly-Heap-
Ordering-Algorithm. This implies that after this step, all subtrees of u,
with the exception of Ti, are again weakly heap-ordered. Carrying out this
sequence of steps defined above is referred to as executing the cycle.

Among other things, we will prove that immediately after a cycle has been
executed, all subtrees are again weakly heap-ordered. This result depends
primarily on the fact that the tree which initiates the cycle gets the green
packet. Due to the continuous weakly heap-ordering, the green packet will
not get out of that subtree again until all foreign packets have come out.
Thus, when the cycle ends, that subtree, the root of which is also the last
node in the cycle to be matched with u, will be completed. This, as well as
related results, is proven below, after we have presented the algorithm.

3. The Algorithm

In this section, we show that there exists a very simple algorithm that routes
the packets in at most 2n− 3 steps. The algorithm goes through four stages.
For any fixed tree T , let u be any node in T satisfying proposition 1. In the
first stage, for each subtree Ti formed by removing u, we route the packets
in Ti in order to make them ready for the second and third stages. In these,
we exchange packets between the subtrees according to some heuristic α
such that the green packet is routed to u and all other packets are routed
to their destination subtrees. Finally, in stage four, we recursively route the
packets for each subtree.

Within this framework, a specific algorithm is obtained by specifying a set
of rules for how to exchange the packets in stages two and three. We have
tight upper and lower bounds for the running time of any such algorithm.

We allow such a set of rules to depend on the placements of the packets,
i.e., in each step, the choice of a matching may depend on the instance of
the permutation of the packets. We show that this does not improve the
algorithm. The general algorithm is as follows.

Algorithm General-Routing-Algorithm (tree T )

(1) Let u be any node in T satisfying proposition 1. Weakly heap-order
the subtrees of u.

(2) If the green packet is not on u, execute the green cycle.

(3) While there exists a subtree which is not completed, choose an incom-
plete subtree Ti according to the heuristic α and execute the cycle
initiated by Ti.

(4) As soon as a subtree is completed, recursively route the packets in that
subtree.



6 P. HØYER, K. S. LARSEN

In order to analyze this algorithm, we need some basic facts on the cycles.
A similar lemma is stated in Roberts et al. [1995] without a proof.

Lemma 2. (The cycle lemma) Let u be any node in T satisfying propo-
sition 1. If the subtrees of u are weakly heap-ordered, then the following
properties hold:

(1) By executing a non-green (green) cycle of length k + 1 (k), k packets
are routed to their destination subtrees.

(2) If the last cycle, if any, is not the green cycle, then it completes at
least two subtrees.

(3) Suppose the green packet is on u. Then any cycle completes a subtree,
and furthermore, for any incomplete subtree, there exists a cycle which
completes it. In fact, for any incomplete subtree, there exists a cycle
which completes that subtree and one more subtree.

(4) Immediately after any cycle, all incomplete subtrees are weakly heap-
ordered.

Proof. Property 1 clearly holds for a green cycle since in each step, the
packet on u is routed to its destination subtree. For any non-green cycle, it
is only in the first step that a packet is not routed to its destination subtree.
If the green packet is on u, there cannot be exactly one subtree containing

foreign packets. Property 2 follows.
Suppose that the green packet is on u. Let Ti be any incomplete subtree.

By letting Ti initiate a cycle, the green packet is moved from u into Ti and
will not be moved out again before the step where Ti is completed. Note
that, if this cycle has length k + 1, then Ti is completed after exactly k + 1
steps.
To prove the second part of property 3, let Ti be any incomplete subtree.

Since Ti is not completed, it contains some foreign packet p which can be
moved out of Ti as the last foreign packet in Ti. Assume p has destination
subtree Tj , and consider a cycle initiated by Tj . Then Tj will be completed
after this cycle, and therefore p will have been moved out of Ti, which implies
that Ti has also been completed. Thus, Ti and one more subtree, Tj , are
completed by the cycle. Note that, if the cycle has length k + 1, then Ti is
completed after at most k steps.
To prove property 4, let Ti be any incomplete subtree. Assume we swap

the packet on the root of Ti and the packet on u. If Ti is completed by
that step, then afterwards Ti is weakly heap-ordered by definition. Now,
suppose Ti is not completed by the swap. Then Ti requires exactly one
more step to restore its weak heap-ordering. By the proof of the first part
of property 3, the cycle contains a next step, and that step will not involve
the edge between u and the root of the subtree Ti. Hence Ti will, in that
next step, restore its weak heap-ordering. ✷



PARAMETRIC PERMUTATION ROUTING VIA MATCHINGS 7

3.1 Analysis of the general algorithm

In the rest of this section, let T be any fixed tree on n nodes, and let u be any
node satisfying proposition 1. Immediately by lemma 2, for any heuristic α,
the general routing algorithm runs in finitely many steps. Let Sj denote
the number of steps needed to perform stage j (j = 1, 2, 3) in General-
Routing-Algorithm. Let S = S1 + S2 + S3 denote the number of steps
needed to complete all of the subtrees of u.
We start by bounding the running time of the first two stages. Consider the

permutation of the packets immediately after stage 2. For each subtree Ti,
let ni denote the size of Ti, and let hi (fi) denote its number of home (foreign)
packets. Since the green packet is on u, we have ni = hi + fi. Let h =

∑
i hi

(f =
∑

i fi) denote the total number of home (foreign) packets after stage 2.
Observe that n = h+ f + 1.

Lemma 3. Let r denote the degree of u. Let c denote the number of non-
green cycles, i.e., the number of cycles executed in stage 3. Then

S1 + S2 ≤ h+ 1
S3 = f + c ≤ f +min{r − 1, (n− 1)/2}.

Furthermore, if for some subtree Tj of size nj, 2nj = n and Tj is not com-
pleted after stage 2, then S1 + S2 ≤ h.

Proof. The first inequality follows immediately from lemma 1 and prop-
erty 1 in lemma 2. By property 2 and the first (and weak) part of property 3
in lemma 2, there can be at most r − 1 non-green cycles. Furthermore, since
any non-green cycle routes at least two foreign packets to their destination
subtrees, there can be at most ⌊(n− 1)/2⌋ non-green cycles. The second
inequality then follows from property 1 in lemma 2.
To prove the third and last inequality, assume Tj satisfies the conditions

in the lemma. Since Tj is not completed after stage 2, Tj did not contain the
green packet in the beginning of the algorithm. Therefore, since nj = n/2,
Tj did contain a home packet at the beginning.

Now, consider the running time of the first stage of the algorithm. Let ĥi
denote the number of home packets in subtree Ti at the beginning of the
algorithm. Let h1 = h− S2 denote the total number of home packets af-
ter stage 1. Observe that h1 =

∑
i ĥi since the number of home packets

does not change in stage 1. Since Tj did not contain the green packet, by

lemma 1, Tj can be weakly heap-ordered in at most ĥj ≤ h1 steps. Further-
more, each other subtree Ti, i 6= j, can be weakly heap-ordered in at most
ĥi + 1 ≤ (h1 − 1) + 1 = h1 steps. Thus,

S1 + S2 ≤ h1 + S2 = h,

proving the third and last inequality. ✷

We are now in a position to prove that for any heuristic α, all, except at
most one, of the subtrees of u will be completed fast.



8 P. HØYER, K. S. LARSEN

Lemma 4. Let Ti be any of the r subtrees of u. For any heuristic α used in
the general algorithm, if Ti satisfies any of the following two conditions,

◦ Ti is not the unique largest subtree of u, or

◦ ni ≤ n/4, where ni is the size of Ti,

then Ti is completed after at most 2(n− ni) steps.

Proof. By lemma 3, the number of steps before all of the subtrees of u
are completed is bounded from above by

S = S1 + S2 + S3 ≤ (h+ 1) + f +min{r − 1, (n− 1)/2}
= n+min{r − 1, (n− 1)/2}.

Suppose that Ti is not the unique largest subtree, and let Tm be a largest
subtree of u different from Ti. Since each of the subtrees of u contains at
least one node,

n =
∑

j

nj + 1 ≥ nm + ni + (r − 2) + 1 ≥ 2ni + (r − 1).

Thus, r − 1 ≤ n− 2ni, so S ≤ n+ (r − 1) ≤ 2(n− ni).
Now, suppose that Ti satisfies the second condition in the lemma, that is,

Ti is of size of ni ≤ n/4. Then S ≤ n+ n/2 ≤ n+ (n− 2ni). ✷

3.2 Choosing a specific heuristic

Let Tj be a largest subtree of u in T . Suppose that Tj is the unique largest
subtree, and that Tj is of size nj > n/4. By lemma 4, any other subtree, Ti,
will be completed in at most 2(n− ni) steps. Therefore, to obtain an al-
gorithm which completes every subtree Ti in time 2(n− ni), we need only
consider Tj when choosing a heuristic. One now sees that there is a natural
choice to consider, namely the following largest subtree heuristic α0:

◦ If one of the largest subtrees of u, say Tj , is not completed after stage 2,
let Tj initiate the first non-green cycle.

◦ Thereafter, choose any incomplete subtree to initiate a cycle.

Lemma 5. By applying the largest subtree heuristic, α0, every subtree Ti is
completed in at most 2(n− ni) steps.

Proof. By lemma 4, it only remains to be proven that the lemma
holds for the unique largest subtree Tj of u, provided it exists. By prop-
erties 1 and 3 in the cycle lemma, subtree Tj is completed after at most
S′ = S1 + S2 + (f + 1) steps. Now, apply lemma 3. If 2nj < n, then S′ is
bounded from above by h+ 1 + (f + 1) = n+ 1 ≤ n+ (n− 2nj). Otherwise
2nj = n, and then S′ is bounded from above by h+ (f + 1) = n = 2(n− nj).

✷

We remark that by applying α0, one can prove that every subtree is com-
pleted in at most 2(n− nj) steps, where nj is the size of a largest subtree.
We shall, however, not use that fact in this paper.



PARAMETRIC PERMUTATION ROUTING VIA MATCHINGS 9

Theorem 1. For all n ≥ 2, the general algorithm using heuristic α0 uses
at most 2n− 3 steps.

Proof. Clearly, the theorem holds for n = 2. If n > 2 and u has a
subtree of size at least 2, it follows from lemma 5 that the theorem holds by
induction. Otherwise, T is the star of n nodes, so by the second inequality in
lemma 3, T will be routed in at most (n− 1) + ⌊(n− 1)/2⌋ ≤ 2n− 3 steps
by the general algorithm. ✷

An interesting property of the heuristic α0 is that it is independent of
the actual instance of the permutation on the tree. Given only the tree T
(and not the permutation of the packets), we can find a node u satisfying
proposition 1 and a largest subtree Tj . Now, we start the algorithm and
after stage 2, we simply check if the root node in Tj is a foreign packet
or not.
With regards to upper and lower bounds, it can be proven that there

exists an infinite family of trees on which the general algorithm using any
heuristic uses at least 2n− 3 steps for some permutation π. Thus, the
upper bound given by the general algorithm using heuristic α0 in theorem 1
is tight. We can also show that the general algorithm using any heuristic
uses fewer than 3n steps, and that it will in fact use 3n steps, except for
a logarithmically additive term, on some permutations if we just use the
heuristic saying that any incomplete subtree can initiate any non-green cycle.
All of these results can be found in Høyer and Larsen [1996].

4. Concluding remarks

The contribution of this paper lies in the generality and simplicity of the
algorithm, and the characterization of 2n algorithms in terms of what condi-
tions a heuristic must fulfill. Most importantly, the proof of lemma 4 offers
a general technique for analyzing algorithms for routing problems with over-
lapping recursive phases, by considering the situation locally from the point
of view of an arbitrary subtree.
Clearly, choosing an appropriate heuristic is critical to the running time

of the algorithm. However, the one presented here is not the only option.
Another heuristic for which we can also prove an upper bound of 2n is the
following: “If there is a unique subtree which became weakly heap-ordered
strictly later than all other subtrees, then let that subtree initiate the first
cycle. Afterwards, keep choosing a subtree with a maximal number of foreign
packets to initiate each cycle.” More heuristics could be found, but this is
not that interesting in itself.
Below, we discuss some further directions for future work. Clearly, we

would like to see the gap between the lower bound of roughly 3
2n and the

upper bound from Zhang [1997] closed. From the lower bounds mentioned at
the end of the previous section, it is clear that improvements are not found
by simply studying other heuristics. Letting recursive phases overlap even



10 P. HØYER, K. S. LARSEN

more than now may, however, be worth some considerations. Currently,
we let recursive phases start at different times, but not until the packets
belonging to a subgraph have all been moved to that subgraph. It might
be possible to start the recursive phase as soon as “enough” packets have
arrived, in the sense that it can be guaranteed that the remaining packets
will arrive before we run out of packets from that subgraph around the
new root. This could be an alternative or a contributing idea to the one
from Zhang [1997] of dividing the graph into three areas (instead of at least
two as in our paper).
A more general and very interesting problem is that of taking full advan-

tage of the graph structure, i.e., design an algorithm which given a graph
solves the problem as fast possible on that specific type of graph. Here, our
guess is that the problem of solving this optimally is at least NP–hard. The
problem could be generalized even further by making the initial permutation
a parameter as well. We leave these as open problems.

Acknowledgements

The authors would like to thank Joan Boyar for many valuable discussions
contributing to our understanding of the problem.

References

Alon, N., Chung, F.R.K., and Graham, R. L. 1993. Routing permutations on graphs
via matchings (extended abstract). In Proceedings of the 25th Annual ACM Sym-

posium on Theory of Computing , 583 – 591.
Alon, N., Chung, F.R.K., and Graham, R. L. 1994. Routing permutations on graphs

via matchings. SIAM Journal of Discrete Mathematics 7, 3, 513 – 530.
Høyer, P. and Larsen, K. S. 1996. Permutation Routing via Matchings. Technical

Report 1996 – 16, Department of Mathematics and Computer Science, Odense Uni-
versity.

Roberts, A., Symvonis, A., and Zhang, L. 1995. Routing on Trees via Matchings.
Technical Report 494, Basser Dept. of Computer Science, University of Sydney.

Roberts, A., Symvonis, A., and Zhang, L. 1995. Routing on Trees via Matchings.
In Lecture Notes of Computer Science, Vol. 955: 4th Workshop on Algorithms and

Data Structures, 251 – 262.
Zhang, L. 1997. Optimal Bounds for Matching Routing on Trees. In Proceedings of the

8th Annual ACM-SIAM Symposium on Discrete Algorithms, 445 – 453.


