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ABSTRACT

New variants of (a, b)-trees with relaxed balance are proposed. These variants have
better space utilization than the earlier proposals, while the asymptotic complexity of
rebalancing is unchanged. The proof of complexity, which is derived, is much simpler
than the ones previously published. Through experiments, some of the most interesting

applications of this data structure are modeled, and it is demonstrated that the new
variants are competitive.
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1. Introduction

For integers a and b such that a ≥ 2 and b ≥ 2a − 1, an (a, b)-tree [12, 24] is a

multi-way search tree where each node has between a and b children, and where all

leaves are at the same depth. For large values of a, this guarantees a small height.

B-trees, the most popular type of (a, b)-tree where b = 2a − 1, were proposed

in [3]. In [26], a relaxed version of B-trees was introduced. The requirements are

relaxed in the following way: nodes are allowed to have fewer than a children, and

leaves are no longer required to be at the same depth. The obvious disadvantage

is that logarithmic heights can no longer be guaranteed. However, new applica-

tions are made possible from the fact that updating can now be performed without

the subsequent rebalancing, and this can be allowed without violating the relaxed

criteria.

In a parallel (shared-memory) setting, it therefore becomes possible to make

updates without locking more than one leaf. This is as opposed to a naive imple-

mentation where significant parts of the whole search path must be locked, thereby

decreasing parallelism in the system. In a sequential setting, rebalancing can be

“turned off” during bursts of updates to increase the processing rate.

If these options are used, it is of course of great interest to be able to rebalance

1



efficiently, and with as few operations as possible get back to a standard tree, where

the strict constraints are fulfilled such that logarithmic height is again guaranteed.

It turns out that this can be done independently in small steps, which is important

for the locking in the parallel setting, and which implies in the sequential setting that

rebalancing can be turned off at any time. However, in the sequential setting, the

most important property is that each update only gives rise to an amortized constant

number of rebalancing operations, meaning that it is relatively easy to catch up

with the rebalancing while still processing requests at a slower pace after the burst.

Proofs that (a, b)-trees with relaxed balance can be implemented efficiently were

given in [19, 20].

An account of the history of relaxed balance from the first ideas in [9, 15] can

be found in [18]. Here is a very brief account of structures other than multi-way

trees.

AVL-trees [1] were made relaxed in [26, 29] with complexity results in [17].

Red-black trees [2, 9, 31] were made relaxed in [27, 28] with complexity results

in [4, 5, 6, 7, 18]. In [21], a general relaxed balance result for balanced trees is

presented, and in [11, 22], variations are developed. Locking techniques for relaxed

structures in a parallel setting are discussed in [5, 28]. Furthermore, an extension

of the locking protocol proposed in [28] which is suitable for applications using a

problem queue is discussed in [10].

In this paper, we focus on two problems in the proposal for relaxed (a, b)-trees

from [20, 26]. The first problem is that when splits, caused by insertions, are

handled, new nodes with degree only two may be created. These nodes cannot

have their degree increased while they exist, meaning that the remaining space in

those nodes is wasted; unless special small nodes are made for this purpose, forcing

the program to deal with nodes of different types. The second problem is that

rebalancing is somewhat restrictive in that only the topmost of a group of these

degree two nodes can be rebalanced.

In response to this, we suggest a new variant based on chaining siblings which

avoids that problem of low degree nodes. This can be seen as the obvious relaxed

version of Blink-trees [16, 23, 30]. However, if updating is very non-uniform, this

proposal may result in longer search paths on average in the relaxed structure.

Therefore, we also suggest another variant for very skew applications. This second

variant is a further development of [20] where degree two nodes may be created,

but where the number of children can increase gradually instead of being fixed at

two until the node disappears. In addition, the rebalancing is more flexible in that

the constraints on when the rebalancing operations can be applied impose fewer

restrictions on the ordering of the rebalancing operations.

We prove that the asymptotic complexity of both of the new proposals match

the results achieved in [20], and the proofs are much simpler than the one from [20].

Additionally, we verify experimentally that the improvements we set out to make

are in fact obtained.

2. Preliminaries
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The trees we consider are leaf-oriented, meaning that all keys are kept in the

leaves. Internal nodes contain routers, which are of the same type as the keys

and often copies of some of these. However, the only purpose of the routers is to

guide the searches to the correct leaves. Leaf-oriented trees are often the choice in

large database-oriented applications, and the preferred choice in designing relaxed

structures, since there does not seem to be a good way of carrying out deletions in a

local manner if the tree is not leaf-oriented. In the rest of the paper, we only consider

leaf-oriented trees. We assume that the leaves contain the keys and references to

the actual data associated with the keys. For convenience, these references are also

referred to as children.

If a ≥ 2 and b ≥ 2a− 1, then an (a, b)-tree can be defined as a multi-way search

tree where:

• The root has at most b children and at least 2 children.

• All other nodes have at most b children and at least a children.

• All leaves have the same depth.

The number of children of a node is often referred to as the degree of the node.

An internal node u with m children (pointers to subtrees) also stores m − 1

distinct routers in increasing order k1, k2, . . . , km−1. Let k0 = −∞ and km = ∞,

then the following search tree invariant is maintained by all operations on the tree:

all keys in the range [ki, ki+1), 0 ≤ i ≤ m − 1, in u’s subtree are stored in the ith

subtree of u.

When insertions are made into an (a, b)-tree, the correct leaf for the insertion

is found and the element is inserted. Then, if the maximal degree constraint is

violated, the leaf is split , creating an extra child of the parent. If the parent’s

degree now exceeds b, it is in turn also split, and so on. If the root is split, a new

root with two children is created.

Deletions are handled similarly, also bottom-up. Once the leaf is found and

the element deleted, the leaf might contain fewer than a elements. In this case,

one considers sharing with either of its siblings, provided that the leaf and one

of its siblings together have at least 2a elements, in which case the elements are

distributed evenly among the two nodes. If there are fewer than 2a elements total

among the node and either one of its siblings, all the elements from the two nodes

are moved to one leaf, and the reference to the other node is removed from the

parent. This is referred to as fusion. A fusion may change the parent’s degree to

a−1, in which case again either a sharing or a fusion is performed, and so on. If the

minimal degree of the root is violated, implying that the root has become unary,

the root is removed making its only child the new root.

Since we are going to consider relaxed (a, b)-trees, we may, for emphasis, refer

to the data structure just defined as standard (a, b)-trees.

In designing a relaxed version of an (a, b)-tree, there are some obvious require-

ments based on our discussion in the introduction concerning the intended parallel

or sequential use of the data structure.
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• The balance constraints should be relaxed such that updates can be performed

without immediate rebalancing.

• It should be possible to gradually change the relaxed tree back into a standard

tree of (guaranteed) logarithmic height.

• Rebalancing must be efficient in terms of the number of operations which are

required in response to an update.

There are several ways of designing operations which fulfill these criteria. In

this paper, we propose two such designs and compare these to a third from [20]. All

three proposals have the optimal asymptotic complexity [32] of a constant number

of rebalancing operations per update. For all three proposals, as well as the original

non-relaxed version, this result holds only provided b ≥ 2a.

3. Relaxation via Chaining

In the following, we define a relaxed collection of balance constraints. Nodes are

equipped with an extra pointer which may or may not be used, and we refer to these

as chain-pointers. These pointers go to the right in the sense that if u points to v,

then all keys in the subtree of v are larger than all keys in the subtree of u. Such

a node v which is referenced by a chain-pointer in u does not have a parent. Thus,

searching must be via u. This idea is very similar to Blink-trees [16, 23, 30], where

every node has such a pointer. In fact, this collection of operations can be seen

as the obvoius way to divide the rebalancing in Blink-trees up into constant-sized

steps.

We refer to any node heading a chained list as referenced, since it is referenced by

its parent, whereas nodes only referenced via a chain-pointer are called unreferenced.

A separating router is kept with the chain-pointer to be used when the unreferenced

node does again get a parent. We let p(u) denote the parent of u, if u is referenced;

otherwise it denotes its predecessor in the chained list of siblings. Furthermore,

c(u) denotes the number of children of u.

We can now define the relaxed level of a node u.

rl(u) =







0 u is the root,
rl(p(u)) + 1 u is referenced,
rl(p(u)) u is unreferenced

Finally, if a ≥ 2 and b ≥ 2a − 1, then a relaxed (a, b)-tree can be defined as a

multi-way search tree as follows.a

• For any pair of leaves ℓ1 and ℓ2, we have that rl(ℓ1) = rl(ℓ2).

• If ℓ is a leaf, then 0 ≤ c(ℓ) ≤ b.

• If u is an internal node, then 1 ≤ c(u) ≤ b.

aEverywhere in this paper, we consider a tree containing a total of at most two elements, stored
at the root, to be a standard (a, b)-tree.
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• If u is not the root, then u is pointed to by either its predecessor sibling or its

parent, but not by both.

Thus, the problems, also called conflicts, we may have in such a relaxed tree

which distinguishes it from a standard (a, b)-tree are the following. Nodes may be

underfull , meaning that they have fewer than a (fewer than 2, if it is the root)

children, and nodes may be unreferenced by a parent if they are instead referenced

by a chain-pointer. In this case, we associate the conflict with the node from where

the chain-pointer originates.

We will see how these problems arise through updating and later how we can

remove the problems. The philosophy in the rebalancing is the usual that problems

are fixed immediately if possible and otherwise moved closer to the root (where

they can always be fixed). The great difference from standard rebalancing is that

rebalancing can be carried out independently in small steps and can be interrupted

at any point (between these steps).

We define all operations by figures, explaining notation the first time it is used.

We show only the pointers (or groups of pointers); it is clear that if pointers are

moved around, keys should be moved accordingly. Greek letters are used for sets of

pointers whereas Roman letters and explicitly drawn pointers ( ) represent single

pointers.

In general for all the operations, the relative order of the keys and therefore also

the references must be preserved. Thus, when references are moved from one node

to its right sibling, it is the references with the largest keys which are moved.

Another matter which cannot be inferred from the illustrations is which nodes

that are new. Here, we decide that when a new chain-pointer is created, the node

pointed to by the chain-pointer is new. So, all references to the old node, identified

as the origin of the chain-pointer, are still valid.

Similarly, when a chain-pointer is removed by removing a node, it is the node

which is pointed to by the chain-pointer which is removed.

Figure 1 shows how insertions are handled.

1)

2)

<b
︷ ︸︸ ︷

α + x =⇒ α x

α β

b
︷ ︸︸ ︷

+ x =⇒

⌈ b+1

2 ⌉
︷ ︸︸ ︷

⌊ b+1

2 ⌋
︷ ︸︸ ︷

α xβ✲

Figure 1: Insert operations; inserting x.

Thus, if x should be inserted into a node u with fewer than b children, the

insertion can be performed directly. If, on the other hand, u is full, then a new

node is created. The new node is referenced by a chain-pointer from u. Out of the

total of b+1 references (the b references along with the new x), the
⌊
b+1

2

⌋
references

with the largest keys are moved to the new node.
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Figure 2 shows deletion, and Figure 3 shows how rebalancing near the root is

handled.

α x =⇒ α x+

Figure 2: Delete; deleting x.

1)

2)

Root

Root

γ δ✲ =⇒
γ δ

Root

Root

γ
=⇒ γ

Figure 3: Root operations.

Figure 4 shows how splits, necessitated by insertions, are performed. If the

top node has fewer than b children, Split 1 is applied; otherwise, Split 2 is used.

Figure 5 shows how sharing, necessitated by deletions, is handled. Notice that 2a

is used as the threshold since this is the minimum number of pointers required to

fill two nodes to the minimum degree. In Figure 6, fusion is illustrated.

Note that we are not concerned with where pointers are actually inserted in

nodes nor in which half of a split node depicted pointers are placed; we merely

show one among several analogous cases.

1)

2)

γ

α β

<b
︷ ︸︸ ︷

δ✲
=⇒

γ

α β

δ

b
︷ ︸︸ ︷

α β

γ δ✲

✲
=⇒

⌈ b+1

2 ⌉
︷ ︸︸ ︷

α

⌊ b+1

2 ⌋
︷ ︸︸ ︷

β

γ δ

Figure 4: Split operations.

3.1. Correctness and Complexity

If u is a node in an (a, b)-tree, we define

au =

{
2, if u is the root
a, otherwise
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1)

2)

c1
︷ ︸︸ ︷

γ

c2
︷ ︸︸ ︷

δ✲ =⇒

⌈ c1+c2
2 ⌉

︷ ︸︸ ︷

γ′ ✲

⌊ c1+c2
2 ⌋

︷ ︸︸ ︷

δ′

α β α β

︸ ︷︷ ︸

c1

γ
︸ ︷︷ ︸

c2

δ
=⇒

︸ ︷︷ ︸

⌈ c1+c2
2 ⌉

γ′

︸ ︷︷ ︸

⌊ c1+c2
2 ⌋

δ′

Figure 5: Share operations. Requirement: either c1 < a or c2 < a, and c1+c2 ≥ 2a.

1)

2)

c1
︷ ︸︸ ︷

γ

c2
︷ ︸︸ ︷

δ✲ =⇒

c1+c2
︷ ︸︸ ︷

γ δ

α β α β

︸ ︷︷ ︸

c1

γ
︸ ︷︷ ︸

c2

δ
=⇒

︸ ︷︷ ︸

c1+c2

γ δ

Figure 6: Fuse operations. Requirement: c1 < a or c2 < a, and c1 + c2 < 2a.

where a is the minimal degree of a non-root node, as already defined.

The following two propositions state the soundness and completeness of the

scheme, respectively. Here, soundness means that after an operation has been

applied to a relaxed (a, b)-tree, the relaxed criteria are still fulfilled. Completeness

means that as long as the tree is not a standard (a, b)-tree, some operation can be

applied.

Proposition 1 Any of the operations turn a relaxed (a, b)-tree into a relaxed (a, b)-

tree.

Proof. Follows easily by inspection of the operations. ✷

Proposition 2 If a relaxed (a, b)-tree contains a conflict, at least one of the rebal-

ancing operations can be applied.

Proof. Assume that the tree contains conflicts. Let u be the topmost and leftmost

node containing a conflict. If u is the root, either Root 1 or Root 2 can be applied.

Assume that u is not the root. If c(u) < a and u has an unreferenced sibling, it

can be fused or shared with it. If it has no such sibling, it has a real sibling, since

u was a topmost conflict and u’s parent therefore has at least two children. Then

u can be fused or shared with its real sibling.

Now assume that c(u) ≥ a. Then u has an unreferenced sibling, since there is

a conflict. The node u itself must be referenced since the conflict was chosen to

be leftmost. Then u’s unreferenced sibling can be inserted into u’s parent while

perhaps splitting that parent. ✷

Theorem 1 If b ≥ 2a, then rebalancing is amortized constant per update.
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Proof. Define the following (not necessarily disjoint) sets:

min = {u | c(u) = au} uf = {u | c(u) < au}

max = {u | c(u) = b} nr = {u | u is unreferenced }

Let the potential of a relaxed (a, b)-tree T be

Φ(T ) = 3(|uf|+ |nr|) + 2|max|+ |min|

Since any update operation involves only a constant number of nodes, it increases

the potential by at most a constant. In the following, we show that any rebalancing

operation decreases the potential by at least one. Since the potential is always at

least zero, the result follows.

Consider the split operations. In the case of Split 1, the potential decreases by

three for the newly referenced node, while it might increase by two for the additional

pointer in the parent. For Split 2, we have that the size of nr remains unchanged,

and in the worst case (b = 2a), one minimally filled node replaces a full node.

In the case of Fusion 1 and Fusion 2, two nodes, u and v, of which at least one

(say u) is underfull, are merged into one. For this proof, we consider the underfull

node u to be the one which is removed. The potential of the node which is the

merger of u and v contributes with a potential less than or equal to that of v.

Additionally, the potential released by removing u is at least one larger than the

possible increase in potential from deleting a pointer in the parent. Thus, in total,

the potential is decreased by at least one.

For Share 1 and Share 2, at most two minimally filled nodes replace one underfull

node. Thus, the potential decreases by at least one. For Root 1, an unreferenced

node is made referenced while creating a minimally filled root, whereas in Root 2

an underfull node is removed. In both cases the potential is easily seen to decrease.

✷

4. Relaxation via Height Adjustments

In this section, we present a different relaxed (a, b)-tree, which is an extension of

the one presented in [20]. Also this scheme has improved space utilization compared

with [20]. However, by using a tree-shaped buffer area like in [20] instead of a

chained list, we are not penalized on searches.

As in [20], nodes are now equipped with tag values. In [20], tags zero and minus

one were allowed. Here, we allow nodes to have positive integer tags as well.

In the following, let the tag of a node u be denoted t(u). As opposed to the

previous section, since there are no chains in the relaxation scheme to be defined

now, p(u) always denotes the parent of u, which must exist for any non-root node u.

The relaxed level rl(u) of a node u in this new type of relaxed (a, b)-tree is defined

as follows:

rl(u) =

{
t(u) u is the root,
rl(p(u)) + 1 + t(u) otherwise

For integers a, b, a relaxed (a, b)-tree must fulfill the following set of constraints:
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• For any pair of leaves ℓ1 and ℓ2, we have that rl(ℓ1) = rl(ℓ2).

• If ℓ is a leaf, then 0 ≤ c(ℓ) ≤ b and t(ℓ) ≥ 0.

• If u is an internal node, then 1 ≤ c(u) ≤ b and t(u) ≥ −1.

The idea is now the same as in the previous section that updates create prob-

lems (conflicts) which locally may violate the standard (a, b)-tree constraints, and

rebalancing operations are designed to gradually remove these conflicts or move

them closer to the root.

In Figures 7 through 12, we illustrate the operations for this data structure. To

show how the tags are adjusted, we write these as superscripts to the nodes. On

the left hand side of the operations (the situation before the operation is carried

out), if the value zero is displayed, the operation can only be applied to nodes with

tag value zero. Similarly, if it reads t1 6= 0, the tag value must be different from

zero. On the right hand side (the situation after the operation is carried out), the

new tag values are displayed as functions of the old tag values.

Updates are handled as shown in Figures 7 and 8. Notice that since we now do

not have chain-pointers, a leaf can only be split easily if there is room for an addi-

tional pointer in the parent. Otherwise, an intermediate level must be introduced,

and tag values must be adjusted such that the relaxed level does not change. From

a correctness point of view, Insert 2 could be used also when the tag value is larger

than zero. The reason for choosing Insert 3 in that case is motivated by complexity

concerns, since positive tag values indicate that levels are missing (if some node has

a positive tag value, any path from the root through that node must have fewer

nodes on it in order for all leaves to be at the same relaxed level).

The operations for handling conflicts near the root are depicted in Figure 9.

Negative tags, which are created by insertions, are treated as shown in Figure 10.

Similar to the discussion above, a negative tag of −1 indicates that there are too

many nodes. More precisely, the references in a node with tag −1 really belong in

the layer above. Thus, each of the operations of Figure 10 basically moves references

from a node with tag −1 up into its parent and removes the tag −1 node. However,

since the total number of references in the parent may exceed b after such a move,

a splitting may be performed as an indivisible part of the operation.

Underfull nodes, created by deletions, can be merged with other nodes as shown

in Figure 11. Finally, positive tags, created by some of these operations, can be

handled using operations in Figure 12.

Before we treat the properties of this structure formally, we discuss some of the

motivating design issues.

Positive tags are introduced when underfull nodes with no siblings are to be

rebalanced. In this case, the parent is a unary node and (parts of) the search path

is just a chained list. Instead of waiting until the parent has been fused or has

shared with one of its siblings, we compress the path to speed up searches to the

underlying subtree.

Space utilization is improved over [20] by examining the parent when nodes are

split, since sparse tag −1 nodes are not created unless it is necessary, i.e., if the
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1)

2)

3)

α t

<b
︷ ︸︸ ︷

+ x =⇒ α tx

α β
t

<b
︷ ︸︸ ︷

γ1 γ2
︸ ︷︷ ︸

b

+ x
=⇒

0

α β
t

︸ ︷︷ ︸

⌈ b+1

2 ⌉
︸ ︷︷ ︸

⌊ b+1

2 ⌋

γ1
0 γ2 x 0

α β
t

c1
︷ ︸︸ ︷

γ1 γ2
︸ ︷︷ ︸

b

+ x
=⇒

t1

α β
t

t1−1

︸ ︷︷ ︸

⌈ b+1

2 ⌉
︸ ︷︷ ︸

⌊ b+1

2 ⌋

γ1
0 γ2 x 0

Figure 7: Insert 1–3. For Insert 3, either c1 = b or t1 > 0.

α tx =⇒ α t x+

Figure 8: Delete; deleting x.

reference to the new node will not fit in its parent. Furthermore, if the pointers

from a tag −1 node fit in the parent when we examine the nodes with the purpose

of rebalancing, we insert them into the parent regardless of the parents tag. In this

way, we can deal with more than just the top-most tag −1 node in a connected

component of such nodes.

4.1. Correctness and Complexity

The following two propositions address the soundness and completeness of the

scheme, respectively.

Proposition 3 Any of the operations turn a relaxed (a, b)-tree into a relaxed (a, b)-

tree.

Proof. We prove the proposition by induction on the number of applied operations

since the tree was last a standard (a, b)-tree. The base case follows trivially, since

any standard (a, b)-tree fulfills the relaxed constraints. Let T be an (a, b)-tree

fulfilling the relaxed constraints. We show that after the application of one of the

operations, T still fulfills the constraints.

It is easily verified that no operation can violate the degree constraints. In the

following, we are therefore only concerned with the operations that change tags and

lengths of search paths.
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1)

2)

Root

Root

γ t1
=⇒ γ 0

0

RootRoot

α
t1 6=0

=⇒ α 0

Figure 9: Root operations.

First observe that if the length of the search path to some subtree is increased

(decreased) by one while the sum of the tags on the exact same path is decreased

(increased) by one, the relaxed levels are unchanged. In particular, internal tag −1

nodes can be created or removed without violating any constraints. Furthermore,

creating a new root, deleting a unary root, or clearing the root’s tag, affects all

leaves equally.

Finally, it is also easily verified that any newly created leaf has tag value at least

zero, and that any newly created internal node has tag value at least −1. ✷

Proposition 4 If a relaxed (a, b)-tree contains a conflict, at least one of the rebal-

ancing operations can be applied.

Proof. Let T be a relaxed (a, b)-tree. Assume that T contains conflicts and let

C be the set of topmost conflicts. Let r denote the root of T . Assume that r ∈ C.

Then either r is underfull, or r has a non-zero tag. In the first case, Root 1 can

be applied, and in the latter, Root 2 can be applied. Hence, in the following, we

assume r /∈ C.

Assume that C contains a node u with t(u) = −1. If the pointers from u fit in

u’s parent p(u), Minus One 2 can be applied. Otherwise, if p(u) is the root, Minus

One 1 can be applied, or if p(u) is not the root, then depending on whether the

extra pointer obtained from splitting p(u) will fit in u’s grandparent or not, either

Minus One 3 or Minus One 4 can be applied.

Now assume that C contains no negatively tagged nodes. Assume that C contains

a node u with t(u) > 0. Observe that u has at least one neighbor (since u was a

topmost conflict, its parent cannot be underfull) and all of u’s neighbors have tags

greater than or equal to zero. Let v be a neighbor of u. Assume that t(v) ≤ t(u);

otherwise consider v instead. If t(v) > 0, Positive 1 can be applied. Now assume

that t(v) = 0. If c(v) < b − 1, then depending on whether p(u) has more than

two children or not, either Positive 2 or Positive 3 can be applied. Finally, if

c(v) ≥ b− 1, Positive 4 can be applied.

Finally, assume that C contains no non-zero tagged nodes. Thus, all nodes in C

are underfull. Again u has at least one neighbor, and every neighbor of u has tag

zero. Hence, either Fuse or Share can be applied to u and its neighbor. ✷

Note that the Compress operations are not necessary in order to show com-

pleteness, but the conflicts introduced by them can be handled. In the following,

we show that allowing nodes to have positive tags, or allowing negatively tagged

nodes to have larger degree than two, does not change the asymptotic complexity
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1)

2)

3)

4)

c1+1
︷ ︸︸ ︷

γ1 γ2
0

δ1 δ2
−1

︸ ︷︷ ︸

c2>b−c1

=⇒

RootRoot

γ1 δ1
0

︸ ︷︷ ︸

⌈ c1+c2
2 ⌉

δ2 γ2
0

︸ ︷︷ ︸

⌊ c1+c2
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Figure 10: Minus One operations.

of rebalancing.

Theorem 2 If b ≥ 2a, then rebalancing is amortized constant per update.

Proof. Define the potential of a node u, denoted Φ(u), to be:

Φ(u) =







3t(u) +







4 c(u) = 1
3 1 < c(u) < a
1 c(u) = a
2 c(u) = b
0 otherwise

t(u) ≥ 0

1 + 2(c(u)− 1) t(u) < 0

Note that the cost of decreasing the number of pointers in any node depends on

the value of a. If a = 2, the potential is increased by at most 3 if the number of

pointers is reduced by one. However, if the number is not reduced to below two,
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γ t2 6=0
=⇒ γ t1+t2+1

t1

Figure 11: Handling underfull nodes. 1) Fuse, 2) Share, 3) Compress 1, 4) Com-

press 2.

only an increase of 1 can be incurred. If a > 2, the increase in potential is always

at most 2 when the number of pointers is reduced by one. Analogously, the cost

of increasing the number of pointers in any node regardless of its tag and a is at

most 2.

First observe that any update operation increases the potential by at most a

constant. Hence, if we can prove that the application of any rebalancing operation

decreases the potential by at least 1, the theorem follows from the completeness of

the scheme. We consider each operation separately.

Both root operations Root 1 and Root 2 clearly decrease the potential since

conflicts are removed and no new ones can emerge.

From Proposition 3, it follows that any negatively tagged node has at least one

child. In Minus One 2, a potential of at most 2 is needed on the right hand side if

the parent has a non-negative tag, but at least 3 is released if the negatively tagged

node has at least two children. In the case where the negatively tagged node has

only one child, the resulting node has the exact same number of children as the

parent, and thus the same potential. If the parent has a negative tag, we have one

pointer fewer in negatively tagged nodes on the right-hand side, but all stored in

one node instead of two. Thus, the potential decreases by 1.

For the remaining Minus One operations, we have that at least a potential of 5

is released, since the negatively tagged node has at least 2 children (otherwise the

parent would not be split), and in this case, the parent has b children. On the right

hand side, we have in Minus One 1 a potential of at most 2, since we create at
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Figure 12: Positive operations.

most two minimally filled nodes. In Minus One 3, we may create a minimally filled

node, and we add one pointer to a node summing to at most 3. Finally, in Minus

One 4, we create a tag −1 node with two children, and at most one minimally filled

node. Hence, we need a potential of at most 4.

In Positive 1, a potential of at least 6 is released from reducing the positive tags

of two nodes. However, the number of pointers in one node is reduced by one, and

a degree two node (with non-negative tag) is created. This increases the potential

(regardless of a) by no more than 5. In Positive 2, the number of pointers in one

node is reduced by one, but to no less than 2, while the added pointer does not

increase the potential. Totally, the potential is decreased by 1. In Positive 3, the

increase and decrease of positive tags cancel out, but a degree 2 node is replaced

by a non-full node, which has had its number of pointers increased by one. Thus,

totally a potential of at least 1 is released. Finally, in Positive 4, a positive tag is

decremented at the cost of making at most two minimally filled nodes.

Since the resulting node after a Fusion has potential equal to or less than that

of the larger of the fused nodes, the potential decreases by at least one since the

potential of an underfull node is larger than the cost of decreasing the number of

pointers in a node by one—regardless of a. In Share, an underfull node is replaced

by at most two minimally filled nodes. Since the potential of a unary node is larger
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than the increase in potential when a positive tag is incremented, the two Compress

operations are easily seen to decrease the potential. ✷

5. Experimental Results

In the previous sections, we have shown that the three proposals for (a, b)-trees

with relaxed balance, the one from [20] and the chain-based and height-based from

this present paper, have identical asymptotic amortized complexities.

In this section, we investigate the constants, focusing of course on search times

(path lengths), but also on space utilization (creation of nodes) and parallel effi-

ciency with number of nodes to be locked exclusively during rebalancing as a key

figure.

The design of the tests reflects that the interesting applications for relaxed search

trees are the ones which involve storing highly dynamic sets. We examine to which

extend the structures are capable of handling a large number of updates to an ini-

tially balanced tree without increasing the lengths of search paths excessively, even

if no rebalancing is carried out (simulating a period where rebalancing is temporar-

ily “turned off”). In addition, once rebalancing is undertaken, we investigate how

much work is required to make the tree balanced again, and how much of the tree

is made temporarily inaccessible due to locks (in case of a parallel application).

Though searching in the parallel setting also requires locks, these may be shared,

whereas rebalancing involving pointer changes requires exclusive locking. These are

referred to as x-locks in the tables.

Though we also register information relevant to parallel applications, our exper-

iments are carried out in a sequential setting only.

The sizes of the trees are kept roughly constant such that measurements of the

average length of search paths are comparable. All conflicts are kept in a FIFO

queue, and if a dequeued conflict cannot be handled, it is added to the rear of

the queue. A dequeued conflict which no longer violates the constraints is just

discarded, and such an operation is not counted as a rebalancing operation.

We consider the case where keys are drawn from a uniform distribution, and

another case where keys come in groups, i.e., a whole sequence of keys are inserted

in the direction of a single leaf.

5.1. Uniform Updates

A tree of size 50,000 is build using insertions and the tree is rebalanced com-

pletely after each insertion. A measure for the average response time (number

of nodes visited) is measured. In this experiment, as in all the following, 50,000

uniformly distributed searches are made to estimate this number.

Then 100,000 insertions of uniformly chosen elements are made, followed by

100,000 deletions of uniformly chosen elements. This is repeated five times for a

total of 1,000,000 updates. Then the average response time is measured again.

Finally, the tree is completely rebalanced.

Table 1 shows the results obtained. The number of rebalancing operations as
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well as the number of exclusive locks required in a parallel setting are counted. To

compare the space usage, the final size and the total number of node allocations

during the process are counted. Finally, the average path length for the balanced

and unbalance tree is measured. Recall that for a balanced (a, b)-tree, by definition,

the path length is the same to all leaves.

We refer to our present proposals, in order of presentation, as Chain and Height,

and to the proposal from [20] as LF.

Method Rebalancing Nodes created Response time
Operations x-locks Final size Total Balanced Unbalanced

a, b = 2, 4:
Chain 103183 243627 34937 80754 10.00 11.91
LF 152228 446898 37216 156752 10.00 12.28
Height 102852 321653 37261 105865 10.00 11.10
a, b = 3, 6:
Chain 63918 148534 18491 48707 8.00 9.69
LF 90731 250396 18806 95590 8.00 10.11
Height 59460 178974 18837 62734 8.00 8.93
a, b = 4, 8:
Chain 46639 107959 12520 34857 7.00 8.61
LF 64164 171898 12578 68531 7.00 9.03
Height 41740 122672 12483 45221 7.00 7.91

Table 1: Experimental comparison for uniform applications.

As can be seen from the table, the number of rebalancing operations used by

Chain and Height are comparable, and roughly 2

3
of the number used by LF. How-

ever, Height locks approximately 3.05 nodes per rebalancing operation on average

as compared to Chain’s 2.3 and LF’s 2.75. For LF and Height, this number tends

to decrease as a, b increase due to fewer expensive non-leaf operations. In contrast

to Blink-trees, where only one node needs to be locked at a time [14], for all relaxed

proposals, it is generally the case that all the nodes involved in an operation must

be locked at the same time.

The final sizes of all the trees are comparable. However, Chain only makes 50%

of the node allocations made by LF and 75% of the allocations made by Height. The

average search time after 1,000,000 updates is comparable for all three algorithms,

although Height seems to perform a little better than the others.

5.2. Non-Uniform Updates

We now modify the above experiment such that the presence of conflicts in

the trees become more evident. Under a uniform distribution, they have a great

tendency to cancel out.

Insertions are now made as follows. One element (a leaf) is chosen and a sequence

of keys all from a small interval around the chosen element (and not already present

in the tree) are inserted in random order. The length of the sequence is chosen to
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be approximately 2b2 such that the number of elements is significantly larger than

what will fit in one leaf. In this way, a tree of size 50,000 is build. After each

insertion, we apply (at most) two rebalancing operations (using the FIFO queue).

This keeps the tree almost balanced.

Then 400,000 updates are made, while the average path length is measured

for every 20,000 updates. The first 200,000 updates consist of alternating 10,000

insertions in sequences and 10,000 uniform deletions, with no rebalancing. Then

rebalancing is resumed (again two rebalancing operations per update), while 10,000

uniform insertions alternating with 10,000 uniform deletions are made, until the

400,000 updates are reached.

This models the situation that after a burst of updates, where rebalancing has

temporarily been turned off, we start rebalancing again while servicing update re-

quests at a slower pace. The results are shown in Table 2.

Method Rebalancing Nodes created
Operations x-locks Final size Total

a, b = 2, 4:
Chain 142975 361433 30148 82982
LF 170534 504291 30825 153282
Height 114893 357484 30633 96007
a, b = 3, 6:
Chain 93003 234566 16745 49469
LF 104876 290954 16712 93304
Height 68236 206586 16758 54918
a, b = 4, 8:
Chain 68979 174053 11533 34929
LF 76536 206469 11578 67101
Height 49024 147022 11554 38178

Table 2: Experimental comparison for insertions in sequences.

The number of rebalancing operations used by Height are now clearly lower

than for both Chain and LF. Despite the fact that Height locks more nodes per

operation, it totally locks fewer than any of the two others. As can be observed

from Figure 13, which shows the average path length at different times during the

400,000 updates, Height and Chain regain balance faster than LF, once rebalancing

is undertaken. However, the average path length for Height is always the shorter.

The reason for this is that the extra nodes allocated by Height are used more ef-

ficiently since insertions arrive in bursts, and fewer sparse tag −1 nodes are created.

However, Chain still allocates the smallest number of nodes.

6. Concluding Remarks

As demonstrated by the experiments, we have reached our goal of improving

upon the drawbacks of the original proposal for relaxed (a, b)-trees, while preserving

the property that rebalancing is amortized constant.

17



Number of updates

Avg. path
length

✲

✻

15

20

10

200,000100,000 300,000

Chain

LF

Height

Figure 13: Average path length as function of number of updates, a, b = 2, 4.

In the experiments described in the test section, we have used the traditional

definition of requiring that all nodes (except the root) have at least a children before

we consider the tree balanced. Experiments show, however, that often in practice, it

is better to ignore this requirement and only remove a node if it becomes empty [13].

We have run all tests with this strategy as well, and the strategy improves upon

all the proposals with roughly the same percentage. Thus, the relative ordering

remains the same and the same conclusions are reached.

For teaching and verification purposes, it is worth noting that the proof of

complexity for both of the proposals in this paper, but primarily the former, are

much simpler than the one given originally.

In addition, the second proposal of this paper represents a step in the direction of

making rebalancing fully parallel, in the sense that any conflict can be addressed at

any time without sacrificing the worst-case complexity. Attempts in that direction

has been made for red-black trees. In [8, 25], a rebalancing operation may be applied

to any conflict, but it has not been possible to prove a reasonable complexity result

at the same time. It ought to be a topic for further research to obtain this for

(a, b)-trees or in fact for any balanced tree scheme.

Finally, in [20], logarithmic results are proven which complement the amortized

constant results. More precisely, it is proven that one update cannot give rise to

more than roughly loga N rebalancing operations, whereN is the maximal size of the

tree during the period. However, in practice, the amortized constant results, stating

that rebalancing after k updates can be handled in O(k) rebalancing operations,

are by far the more important guarantee. Therefore, we have omitted the rather

lengthy logarithmic proofs here. We have, however, verified that the proof technique

from [20] can also be used here, so our two new proposals also have that property.
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