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Abstract. When search trees are made relaxed, balance constraints are
weakened such that updates can be made without immediate rebalanc-
ing. This can lead to a speed-up in some circumstances. However, the
weakened balance constraints also make it more challenging to prove
complexity results for relaxed structures.
In our opinion, one of the simplest and most intuitive presentations of
balanced search trees has been given via layered trees. We show that
relaxed layered trees are among the best of the relaxed structures. More
precisely, rebalancing is worst-case logarithmic and amortized constant
per update, and restructuring is worst-case constant per update.

Introduction

Usually, updating in a balanced search tree is carried out as follows: First, a
search is carried out in order to determine the location of the update. Second,
the update is performed. Third, local balance constraints are reconsidered. Since
balance constraints are usually based on path lengths or subtree sizes, these
constraints may have been violated, because most often, an insertion will add
at least one node to the tree and a deletion will remove at least one node from
the tree. If there is a balance problem, this is fixed completely if possible, and
otherwise it is fixed at the cost of introducing a new problem closer to the root.
This problem is then handled recursively until it disappears or is moved all the
way to the root, where balance problems are normally easily fixed.

The three phases described above are referred to as searching, updating, and
rebalancing. Informally, relaxed balance is a term used for the following. If a
search tree has been equipped with relaxed balance, the searching and updating
have been uncoupled from the rebalancing. Thus, it is now possible to search
and make an update without performing any rebalancing. For this to be well-
defined, the balance constraints must be weakened (relaxed) in such a way that
the tree after an update is still in the now broader class of trees. Additionally, the
standard tree, which is made relaxed, should belong to the class, and the overall
goal of the (presumably generalized and/or expanded) collection of rebalancing
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operations is to bring the tree back to fulfilling the constraints of the standard
balanced tree.

The benefit of the uncoupling depends on the environment. Discussions of
this can be found in many of the papers on the subject, but here is a brief
account. In a sequential system, bursts of requests, possibly from an external
source, can be served faster if rebalancing is “turned off” during the period.
After the burst, rebalancing should gradually bring the tree back in balance,
while requests are served at the same time. In a parallel (shared-memory) system,
a näıve implementation would lock the root of the tree so frequently that the
degree of parallelism would be extremely low. In relaxed structures, it is generally
possible to exclusively lock only nodes which will be involved in pointer changes,
instead of all nodes which might be involved in pointer changes. This implies
that most of the exclusive locking will take place close to the leaves.

The cost of the relaxation is that the guaranteed worst-case bound of loga-
rithmic path lengths is temporarily lost. The options are to trust that this does
not become a problem for these short periods of time (maybe the requests are
known to be close to uniform), to monitor path lengths and rebalance when
some limit is exceeded, to dedicate a fixed minimum amount of rebalancing time
to each update (or group of updates), or something else along those lines. The
best solution can only be found when the specifics of the concrete scenario are
known.

However, to ensure that as much time as possible is dedicated to request
processing, it is vital that rebalancing, when it is performed, is performed effi-
ciently. The difficulty in proving the various possible efficiency bounds on the
run-time complexity is of course that after the structure has been relaxed, much
less is known about its appearance. For instance, if k updates are performed on
a standard balanced search tree of size n, usually (k log n), or fewer, rebalancing
operations can easily be shown to completely rebalance the tree. In a relaxed
version, path lengths can approach log n + k, so if k is more than a constant,
will (k log n) operations still suffice?

To make relaxed proposals as usefull as possible in the sequential as well
as in the parallel setting, it is always required that rebalancing is carried out
in local independent steps. However, in the sequential setting, this may not be
mandatory.

Finally, relaxed balance is also a topic of theoretical interest. Search trees are
some of the most important data structures, and this line of work answers some
very fundamental questions concerning whether or not the traditional tight cou-
pling between updating and rebalancing is necessary for the efficient rebalancing
results to follow.

We give a very brief summary of the developments; more details can be found
in [16], for example. Some of the ideas were initiated in [10, 15]. AVL-trees [1, 23]
were investigated in [17, 25, 28], red-black trees [3, 10, 31] in [5–8, 16, 26, 27], and
(a, b)-trees [13, 22], B-trees [4], 2-3-trees [2, 12] in [18, 19, 25]. In [20], a general
result for balanced trees was developed, and in [9, 11, 21, 24, 32], some variations



of the standard schemes were investigated. Locking in a parallel setting was
discussed in [6, 27].

In this paper, we investigate layered trees [30]. A relaxed version of layered
trees was given in [29]. The primary contribution of this paper is to establish the
complexity results which hold for the structure. We give our own presentation
of layered trees with and without relaxed balance; partly to make the paper
self-contained, but also partly because greater precision in the formulation of
rebalancing operations is required in order for a proof of amortized constant
rebalancing to be established.

The paper [29] primarily focuses on the design ideas, and on the important
issue (not least in a parallel setting) of limiting restructuring. The principal
difference between changing a pointer and updating balance information is that
searching can proceed simultaneous with the information updating. Thus, if fine-
grained locking is an option, limiting restructuring operations is more important.
With the set-up in [29], the authors can show that only a constant amount of
restructuring is necessary per update.

Layered Trees

It is possible to give a quite general definition of a layered tree [30]. However, to
present the ideas in a form as simple as possible, we first give one very specific
definition. Later, we discuss the more general alternatives.

A layered tree is a binary search tree. It is leaf-oriented, meaning that all
keys are kept in the leaves. Internal nodes contain routers, which are of the same
type as the keys and often copies of some of these. However, the only purpose
of the routers is to guide the searches to the correct leaves. In a leaf-oriented
binary tree, internal nodes always have two children.

Leaf-oriented trees are often the choice in large database-oriented applica-
tions because keys often have significant amounts of information attached. It is
generally more efficient not to have to encounter this extra information when
searching down the tree and when changing internal nodes due to rebalancing.

Fig. 1. The four basic configurations.

Additionally, when designing relaxed structures, there is no good way of
carrying out deletions in a step-wise and local manner if the tree is not leaf-
oriented. The problem is that if an internal node with two children should be
deleted, the standard method for handling this is to switch keys with its internal



predecessor or successor and delete that node instead. However, that node can
be located a non-constant distance away.

A leaf-oriented binary search tree is called layered if it can be constructed as
described below from the configurations listed in Fig. 1:

1. Select one of the four basic configurations. The top node in the selected
configuration will be the root of the whole tree.

2. Add a number of layers. One layer is added as follows: For each node u in the
already constructed part of the tree which does not have a left (right) child,
select one of the basic configurations and let the top node of the configuration
be the left (right) child of u.

3. Construct a final layer of leaves, by adding a leaf everywhere a left or right
child is missing.

We refer to the level of leaves as layer 0. The layer on top of that is layer 1
and so on. An edge connecting a node in some layer i with a node in the next
layer i + 1 is said to cross the border between the two layers. In the concrete
implementation described in this paper, we assume that borders are explicitly
stored in the structure. The most flexible way of doing this is by storing one bit
in each node such that the bit is zero if it belongs to an even-numbered layer and
one otherwise. The manipulation of this bit in connection with the operations
to be discussed is easy, and we will not describe it explicitly. For easy future
reference we define the following two subsets of basic configurations: the small

configurations CS = { , , } and the large configurations CL = { , , }.

Proposition 1. The height of a layered tree with n leaves is bounded by 2⌊log
2
n⌋.

Proof. We show by induction in the number of layers that a node in layer i has
at least 2i leaves in its subtree. This is trivial for the base case of a single leaf.
For the induction step, we notice that any node u in the configurations from
Fig. 1 at any level i > 0 has at least two descendants at level i − 1. Since each
of these, by the hypothesis, have at least 2i−1 leaves in their subtrees, u has 2i

leaves in its subtree. Thus, the layer of the root is at most ⌊log
2
n⌋, and so there

are at most ⌊log
2
n⌋+1 layers. Since the height of the highest basic configuration

is two, the result follows.

Keys in the search tree come from a totally ordered domain. The keys in
the leaves appear in strictly increasing order from left to right. A router in an
internal node is greater than or equal to any key in its left subtree and less than
any key in its right subtree.

In the light of this and Proposition 1, searching can obviously be performed
in logarithmic time. The update operations, insert and delete, can also be per-
formed in logarithmic time, and with at most a constant number of structural
changes per update [30]. One way of describing this is as follows.

The general idea is to make the update, and register if there is a problem,
i.e., if the tree is no longer constructed according to the layered tree definition.



Recursively, we remove the problem if possible, and otherwise move it to the
next layer. At the root, any problem can be eliminated.

In the following, we describe the updating procedures. Proof of correctness
follows later.

Insertions

To insert a key, we search for the given key as usual in a search tree, and we
end up at a leaf. If that leaf does not already contain the given key, a new leaf
is created using operation New leaf insertion. The new key and the one already
present in the existing leaf are arranged in order, and the key to the left is copied
to the new internal node as its router.

→
↑

↑Root

→ Root T1

↑

→ T2

New leaf insertion. Up root . Up finish. T1 ∈ CS .
T2 ∈ CL. |T2| = |T1|+ 1.

The new internal node is on layer 0, which is not allowed, and is therefore
equipped with a push-up request (↑). This push-up request is dealt with recur-
sively as follows. If it reaches the root, the problem is solved using operation Up

root . Otherwise, if there is room at the next layer, i.e., its parent is part of
a configuration consisting of at most two nodes, the problem is solved using
operation Up finish.

If the parent at the next layer is in a three-node configuration, the problem
is moved up one layer using operation Up push.

Deletions

To delete a key, we search for the given key as usual in a search tree, and
we end up at a leaf. If that leaf contains the given key, we proceed as follows
(the leaf to be deleted is marked with two crossing lines in the figures). If the
parent configuration has at least two nodes, using operation Remove finish, we
can rearrange the nodes such that the leaf and its parent are deleted, while all
configurations are still basic configurations.

↑

→
↑

T1 → T2 →
↓

Up push. Remove finish. T1 ∈ CL.
T2 ∈ CS . |T1| = |T2|+ 1.

Remove continue.



If the next layer has a one-node configuration, we use operation Remove

continue. This introduces a leaf at layer 1, which should be moved down to
layer 0 before the tree can again be guaranteed to be a layered tree. We register
this problem by marking the node with a pull-down request (↓).

A pull-down request is handled recursively as follows. If it reaches the root,
the problem is solved using operation Down root . Otherwise, if the sibling and
parent configurations have at least three internal nodes together, then there are
sufficiently many nodes locally such that the node can be moved down using
either operation Down finish 1 or Down finish 2 , and at least one-node config-
urations can be created everywhere.

Finally, if the parent and sibling configurations contain only one node each,
the problem is moved up one layer using operation Down push.

Observe that only operation Remove continue and Down push create pull-
down requests. Since the only nodes which are marked are leaves or internal
nodes with exactly one child on the next layer, such requests are created only
if the marked node can be pulled down without violating the design criteria for
layered trees.

Root ↓
→

Root

T1
↓ → T3T2

T4

↓

→

T5

Down root . Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS .
|T1| = |T2|+ |T3|.

Down finish 2 . T4 ∈ CL.
T5 ∈ CS . |T4| = |T5|+ 1.

Layered Trees with Relaxed Balance

To make the tree relaxed, we must allow that rebalancing can be interrupted at
any time. In particular, its start can be delayed. In addition, the tree must be
able to accommodate several updates for which the corresponding rebalancing
has not been undertaken.

In addition to the basic configurations, several new configurations are allowed
in the tree; any one or two node basic configuration where the bottom-most node
is marked by a pull-down request, a zero-node configuration (a layer-crossing
edge), and a four node configuration, where the top-most node is marked by
a push-up request. The complete set of extra configurations (up to symmetric
variants) are depicted in Fig. 2.

When an insertion is made, a leaf is replaced by an internal node with two
leaves. If several insertions are made, large trees might be build this way without
respecting the design criteria for relaxed layered trees. Such trees are always
rooted at an internal node marked with a push-up request at layer 0. This part
of the tree is called the unstructured part, while the part satisfying the design
criteria for relaxed layered trees is called the structured part.



↑

↓

↓

Fig. 2. Relaxed configurations.

Rebalancing is now carried out by moving a problem from the unstructured
part into the structured part, and recursively towards the root, until the problem
is removed.

Since we cannot control when a deletion is actually carried out, the leaf
to be deleted is marked physically for deletion by the operation Delete mark .
Observe that the leaf might already be marked with a pull-down request, which
is indicated by a parenthesized pull-down request (↓).

A leaf-oriented relaxed layered search tree can be constructed in the following
way:

1. Select any configuration,except the layer-crossing edge. The top node of the
selected configuration will be the root of the tree.

2. Add a number of layers: For each node u in the already constructed part of
the tree, which does not have a left (right) child: if u is not marked with a
pull-down request, and u is not on the layer above (a layer-crossing edge)
add any of the node-containing configurations as the left (right) child of u.
If u is marked with a pull-down request, add any configuration as the left
(right) child of u, such that exactly one of the child configurations of a node
marked by a pull-down request is a layer-crossing edge.

3. Construct the final layer by adding leaves, leaves marked for deletion, or
unstructured trees to every node on the second to final layer that does not
have a left (right) child, unless that node is marked by a pull-down request,
in which case the node itself is made a leaf or a leaf marked for deletion.

Some operations involve the parent configuration, and some also the sibling
configuration. An operation can generally not be carried out if the involved con-
figurations are marked by requests. However, in some situations, we must allow
that the sibling and parent configurations contain requests to avoid deadlocks.

In the case of deletion, the sibling of the deleted leaf in operation Remove

continue, might be marked for deletion, and is thus of course still marked after
the application of the operation. This is indicated by an asterisk in the modified
operation Remove continue. Analogously, two single-node siblings might both
contain pull-down requests. Therefore, operation Down finish 2 and Down push

are modified to allow this.



↓
→

↓

(↓) → (↓) ∗

→
∗↓

Down push. Delete mark . Modified Remove continue.

Furthermore, since we cannot control when updates are made, two new op-
erations are needed to handle special cases of insertions. If a leaf is marked for
deletion and an insertion is made at the very same leaf, the leaf is recycled as
depicted in operation Insert recycle. If a leaf is marked with a pull-down request
and an insertion is made at the very same leaf, the creation of the new internal
node cancel out with the pull-down request; operation Insert solve.

T4

↓ (↓)

→
(↓)

T5

↓ (↓)
→

↓

(↓) T1

↓

→ T3T2

Modified Down finish 2 .
T4 ∈ CL. T5 ∈ CS .
|T4| = |T5|+ 1.

Modified Down push. Down cancel . |T1| ≥ 2.
|T2|, |T3| ≥ 1.
|T1| = |T2|+ |T3|.

Finally, pull-down requests are created if and only if both child configura-
tions and the parent configuration are single nodes. However, when the request
is to be resolved, this might not still be the case. One child is always a layer-
crossing edge, while the other might be any other configuration. If the other child
contains more than one node, these nodes can be rearranged such that it is no
longer necessary to pull the marked node down. This is done by operation Down

cancel . Observe that push-up requests among the rearranged nodes are anal-
ogously made obsolete, while pull-down requests must follow their respective
layer-crossing child edges. It is an implicit precondition for applying any other
operation involving pull-down requests that operation Down cancel cannot be
applied.

Analogously, the parent (the node marked by a pull-down request) might
not be a single node anymore, in which case the node is just pulled down, using
operation Down finish 3 .

(↓) → (↓)

↓

→
↓ →

Insert recycle. Insert solve. Down finish 3 .



Correctness and Complexity of Relaxed Balancing

By inspecting the individual operations, one can easily verify that the rebalanc-
ing operations satisfy the soundness property; applying any operation turns a
relaxed layered tree into a relaxed layered tree.

Now we show that the collection of rebalancing operations is sufficient.

Theorem 1. Completeness: Let T be a relaxed layered tree. While T contains

at least one node marked by a request, some rebalancing operation can be applied.

Proof. Let R denote the set of nodes marked by a request or marked for deletion
on the top-most layer containing marked nodes.

If the root is in R, then one of the Root operation can be applied. Assume
that the root is not in R. Assume that R contains some node u marked with a
push-up request. Since u is top-most and non-root, the parent configuration is
a basic configuration, and thus either operation Up finish or operation Up push

can be applied. Observe that this is independent of whether or not u is located
in the structured or the unstructured part of the tree.

Assume that R contains no nodes marked by a push-up request. Assume
that R contains nodes marked by a pull-down request, and let u be such a
node in a two node configuration, if any such exist. Consider the configurations
below u. By the soundness property, one of these configurations is a layer-crossing
edge. If the other configuration has at least 2 nodes, then operation Down cancel

can be applied. Otherwise u can be moved down using operation Down finish 3 .
Now assume that R contains nodes marked by a pull-down request, but that

all these are single node configurations. Again, if a child which is not a layer-
crossing edge contains at least two nodes, operation Down cancel can be applied.
Otherwise we know that u’s sibling configuration is either a single node (possibly
marked by a pull-down request) or a basic configuration containing at least two
nodes. In the first case, depending on whether the parent configuration of u has
more than one node or not, either operation Down push or operation Down fin-

ish 2 can be applied (recall that u was a top-most request, which means that u’s
parent configuration is a basic configuration). In the latter case, operation Down

finish 1 can be applied.
Finally, assume that R contains only leaves marked for deletion. By this

assumption, the parent configuration of such a leaf contains no requests, so
either operation Remove finish or Remove continue can be applied.

Amortized Constant Rebalancing

We use the standard potential function technique [33]. Any update operation
creates exactly one problem in the unstructured part. Either a leaf marked for
deletion or an internal node. This problem is either removed by a finishing re-
balancing operation or moved into the structured part as a request which is
then in turn moved a number of times using a non-finishing operation, until it
is removed by a finishing operation.



Theorem 2. Rebalancing is amortized constant.

Proof. Assume that we remove every edge which connects two nodes in different
layers. This splits the tree up into a collection of small trees with at most four
nodes. We let Pi(T ) for i ∈ {1, 2, 3, 4} denote the number of pieces with i nodes
resulting from splitting T .

We define the potential Φ(T ) of the tree T as follows:

Φ(T ) = P1(T ) + P2(T ) + 3P3(T )

Any update operation, including the operation creating a request in the struc-
tured part, and any finishing operation may increase the potential, but it can
do so by at most a constant. What remains is to show that every non-finishing
operation decreases the potential by at least a constant to cover for its own
application. The operations Up push and Down push are the only non-finishing
rebalancing operations.

Operation Up push is applied only if the parent configuration of the node
marked by the push-up request is a three node basic configuration. Recall that
any node marked by a push-up request is the root of a four node configuration.
Thus by the application, a three node configuration and a four node configuration
is replaced by a four node, a two node, and a one node configuration, which
decreases the potential by one.

Operation Down push is applied only if the parent and sibling configurations
are single nodes. Furthermore, operation Down push is applied only if opera-
tion Down cancel cannot be applied. Thus, the children of the node marked by
a pull-down request are a layer crossing edge and a single node, respectively.
After the application, the node pulled down forms a two node configuration to-
gether with the single node child configuration at the child layer. Thus, four one
node configurations are replaced by two one node configurations and a two node
configuration, which decreases the potential by one.

Worst-Case Logarithmic Rebalancing

The previous theorem shows that rebalancing is amortized constant, if we start
with an initially empty tree. However, if we start with a non-empty layered tree,
we cannot use the theorem to guarantee a good complexity immediately. In the
following, we show that even if we start with a layered tree, rebalancing is at
most logarithmic in the worst-case.

Inspired by [16], we define a count function c as follows: If the tree is a
standard layered tree, the count function is one on all leaves, and zero for all
internal nodes. The count sum of a node u is the sum of the count function
applied to all nodes in the subtree rooted at u, i.e.,

∑
v∈Tu

c(v).
In a relaxed layered tree, the count function is maintained as follows: When

an insertion is made, a leaf ℓ is replaced by an internal node with two leaves. The
function value of the internal node is set to c(ℓ)−1, while the count function for
both leaves is initialized to one.



When a leaf ℓ is actually deleted (not just marked), its parent u is deleted
as well. The function value of the node v replacing the parent is then increased
by c(ℓ) + c(u).

When nodes are rotated, some node is the root of the rotation. The function
value of the root is assigned to the new root, while all the remaining function
values are reassigned in-order to the remaining nodes involved in the rotation.

Since the count sum of the whole tree is incremented by insertions, but not
decremented by deletions, the count sum of the root is always n + i where n is
the number of leaves in the tree the last time it was a standard layered tree, and
i is the number of insertions.

Note that the values of the count function are always non-negative, and for
leaves, they are positive.

We define the relaxed layer of a node u to be its layer in a layered tree unless
u and u’s parent are connected by a layer crossing edge. In this case, we define
the relaxed layer to be one higher than its actual layer.

Lemma 1. For any node u on relaxed layer j:
∑

v∈Tu

c(v) ≥ 2j

Proof. By induction on the number of operations on the tree since it was last a
standard layered tree.

The base case follows by an argument similar to the proof of Proposition 1,
since the count sum is exactly the number of leaves in any subtree.

It is easily verified that the result holds for any application of an update
operation or an operation bringing a request into the structured part.

If nodes (in the structured part) are rearranged to form basic configurations,
i.e., we also consider nodes marked by push-up request which are unmarked as
a consequence of the rearrangement, the result follows immediately from the
hypothesis since all such nodes have at least two descendants on the next layer.

If a node (marked by a pull-down request) is pulled down, we have two cases:
It is either pulled down using operation Down push, in which case the relaxed
layer is unchanged, or by a finishing operation, in which case the relaxed layer
is decreased. In either case, the count sum is unchanged, and the result follows
again immediately from the hypothesis.

Observe that any node marked by a push-up request has both its children
on the same layer as itself. Thus, such a node is the root of a subtree with twice
the count sum it needs, and the result follows from the hypothesis—even when
the node is pushed to the next layer.

What remains is to verify that the result holds after the application of op-
eration Down cancel when nodes marked by pull-down requests are rearranged.
However, this follows from the way relaxed layers are maintained. Since both
children of nodes marked by pull-down requests have the same relaxed layer—
that of nodes on the next layer—the result follows from the hypothesis.

Theorem 3. Rebalancing is worst-case logarithmic.

Proof. Rebalancing after any update involves bringing the problem into the
structured part of the tree, applying a number of non-finishing operations, and



applying one finishing operation. Hence, if the number of non-finishing opera-
tions can be bounded by a logarithmic term, the theorem follows. However, the
application of a non-finishing operation moves a problem to a node on a higher
relaxed layer, and as, by Lemma 1, the size of a subtree is exponential in the
relaxed layer, there can be at most a logarithmic number of such layers.

More precisely, if i insertions (and possibly some deletions) are applied to a
tree of size n, we get the bound n+ i =

∑
v∈TRoot

c(v) ≥ 2jRoot , where jRoot is the
relaxed layer of the root.

Since at the root, the number of the layer and the relaxed layer must coincide,
the root is in layer at most ⌊log

2
(n + i)⌋. Including initial, finishing, and non-

finishing operations, at most ⌊log
2
(n + i)⌋ + 2 operations can be applied per

update.

Worst-Case Constant Restructuring

The following result is from [29].

Theorem 4. Restructuring is worst-case constant.

Proof. As was observed earlier, every finishing rebalancing operation removes
at least one request. Hence, at most one finishing rebalancing operation can
be applied per update. Since neither of the non-finishing operations make any
structural changes, the theorem follows.

Concluding Remarks

The objective of this presentation of relaxed layered trees was twofold. We
wanted to give a presentation precise enough that correctness and complexity
proofs could be based on it. At the same time, we wanted to keep the presenta-
tion simple, in the spirit of the presentation of the standard version. The first
objective has been obtained, but, admittedly, some of the simplicity is lost in
the transition to a relaxed version. The problem is that the extra configurations,
which are allowed in the relaxed setting, multiplies the total number of cases.
With the level of precision which is required to establish all the complexity re-
sults, there does not seem to be any way to treat the operations at a higher level
of abstraction to cut down on the number of cases.

On the positive side, we have shown that relaxed layered trees are among the
best relaxed binary search trees. In particular, all the asymptotic complexities
of [16] are matched: No update gives rise to more than a logarithmic number
of rebalancing operations, of which at most one is restructuring. Additionally,
rebalancing is amortized constant per update. It should also be noted that the
potential function used in the proof for amortized constant rebalancing can be
modified to satisfy the requirements for Theorem 1 in [14]. Thus, rebalancing in
relaxed layered trees is exponentially decreasing with respect to the height.

As it is also pointed out in [29], there are many ways of tuning the operations
to improve performance. For instance, several rebalancing operations can be



redefined or extended such that push-up requests and pull-down requests would
cancel out when possible.

There is also a trade-off in the number of legal configurations and the number
of rebalancing operations (and their complexity). For example, one could define
relaxed layered trees without the two node configuration with the bottom-most
node marked by a pull-down request. However, then the set of operations is
increased and some operations must be made larger.
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Overview: All the Operations from within the Paper

The Sequential Structure

→
↑

↑Root

→ Root T1

↑

→ T2

New leaf insertion. Up root . Up finish. T1 ∈ CS .
T2 ∈ CL. |T2| = |T1|+ 1.

↑

→
↑

T1 → T2 →
↓

Up push. Remove finish. T1 ∈ CL.
T2 ∈ CS . |T1| = |T2|+ 1.

Remove continue.

Root ↓
→

Root

T1
↓ → T3T2

T4

↓

→

T5

Down root . Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS .
|T1| = |T2|+ |T3|.

Down finish 2 . T4 ∈ CL.
T5 ∈ CS . |T4| = |T5|+ 1.

↓
→

↓

Down push.



The Relaxed Structure

→
↑

(↓) → (↓)

↓

→

New leaf insertion. Insert recycle. Insert solve.

↑Root

→ Root T1

↑

→ T2

↑

→
↑

Up root . Up finish. T1 ∈ CS .
T2 ∈ CL. |T2| = |T1|+ 1.

Up push.

(↓) → (↓)

T1 → T2

∗

→
∗↓

Delete mark . Remove finish. T1 ∈ CL.
T2 ∈ CS . |T1| = |T2|+ 1.

The modified Remove

continue.

Root ↓
→

Root

↓ (↓)
→

↓

(↓) T1

↓

→ T3T2

Down root . The modified Down push. Down cancel . |T1| ≥ 2.
|T2|, |T3| ≥ 1.
|T1| = |T2|+ |T3|.

T1
↓ → T3T2

T4

↓ (↓)

→
(↓)

T5

↓ →

Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS .
|T1| = |T2|+ |T3|.

The modified Down

finish 2 . T4 ∈ CL. T5 ∈ CS .
|T4| = |T5|+ 1.

Down finish 3 .


