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Abstract

While many tree-like structures have been proven to support amor-

tized constant number of operations after updates, considerably fewer

structures have been proven to support the more general exponentially

decreasing number of operations with respect to distance from the update.

In addition, all existing proofs of exponentially decreasing operations are

tailor-made for specific structures. We provide the first formalization of

conditions under which amortized constant number of operations imply

exponentially decreasing number of operations. Since our proof is con-

structive, we obtain the constants involved immediately. Moreover, we

develop a number of techniques to improve these constants.

1 Introduction

When asynchronous processes work on a shared tree-like structure, operations
which are carried out by one process near the root are likely to interfere with
and slow down other processes. In contrast, if the tree structure is large, then
operations near the leaves will most likely not disturb others (this of course is
application-dependent). This scenario is one motivation for considering analyses
of where operations are carried out.
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Many tree-like structures have been proven to have amortized constant time op-
erations. Amortized complexity analysis [14] aims at proving worst-case bounds
for a sequence of operations which are better than the length of the sequence
times the worst-case bound of each operation. A popular method for carrying
out such analyses is the potential function technique. Using this technique, for
purpose of the analysis, one pretends that operations which only take a short
time pay some “time” in to the potential function which can then be used to
reduce the time of operations which take a long time to complete. In this way,
time is averaged out and one can sometimes obtain an amortized time for the
operations which is better than their worst-case times. If Φ is a potential func-
tion assigning an integer value to a state T , then the amortized time of carrying
out some operation which takes time t and changes the state from T to T ′ is
defined to be t + Φ(T ′) − Φ(T ). It is easy to prove that the sum of the amor-
tized times of carrying out all operations in a sequence is an upper bound on
the sum of all the actual times of carrying out all these operations, provided
that the final potential is at least as large as the initial potential. For examples
of amortized constant time operations, which are relevant for this paper, see for
instance [4, 5, 9, 10, 14].

If operations are initiated at the leaves of trees and move towards the root by
local operations, this gives some hope that operations will not often be carried
out close to the root. In particular, this hope is justified if some balance con-
straints on the trees guarantee that all leaves have some minimum non-constant
distance to the root. A typical example of such a scenario is bottom-up rebal-
ancing in balanced search trees. Proofs of exponentially decreasing operations
have been published for (a, b)-trees [5] and insertions into AVL-trees [10].

The proofs in the literature that tree-like structures have amortized constant
operations are often based on the potential function technique, or can easily
be rephrased into that paradigm such that all the operations, excluding the
updates, decrease the potential function. In other words, these operations are
amortized free, meaning that the decrease in potential pays for the cost of the
operation.

The main contribution of this paper is a formalization of these concepts of
balance and locality, and a proof that under these conditions, amortized free
operations imply that the number of rebalancing operations carried out at a
certain level in the tree decreases exponentially in the distance from the leaves.

We have focused on formulating sufficient conditions that are as weak as possible
such that our theorem is as broadly applicable as possible. This means that the
many structures on which operations have been shown to be amortized constant
can now, with very few extra arguments, claim to provide the stronger and more
directly useful exponentially decreasing operations.

However, our proof is constructive, meaning that once exponentially decreasing
operations have been established, constants can also be derived. More precisely,
we obtain constants c1 and c2 such that the theorem guarantees that at most
c1

u
c2

i operations are carried out at a distance i from the leaves in response to u
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initiations of amortized constant time operations from the leaves. The constant
c2 is of course particularly interesting; the larger it is, the better.

For theoretical results, it is interesting to be able to claim that some structure
has exponentially decreasing operations, whereas the constants may not be all
that interesting, but as described above, some constants automatically come out
of applying the main theorem. In practical applications, it might be interesting
to know the best possible constants, and the rest of the paper, after the main
theorem, is devoted to this. A number of techniques are introduced which can
often improve the constants, if the best possible constants are not automatically
provided by a direct application of the main theorem.

Example applications are given in different sections with the purpose of illus-
trating these techniques. Some familiarity with the application areas partial
persistency and AVL-trees would be an advantage. Though our treatment of
these application areas is brief, our presentations should be complete and we
give the relevant references.

Through the applications, we demonstrate that we can obtain new results, but
also that we can derive results matching the published results for existing struc-
tures. This shows that if the constants are of interest, then in many cases the
best possible constants can be found using this collection of techniques. In fact,
the new concrete results in this paper are tight (a pebble game example related
to partial persistency and deletions in AVL-trees).

In summary, we believe that a deeper understanding of complexity issues in trees
is obtained through our results. On the practical side, when other researchers
are interested in establishing new results of exponentially decreasing operations,
our results may be useful. The conditions for when our result can be applied are
fairly straight-forward and easy to remember having seen them once, and this
should make it easier for researchers to recognize these conditions in their work
with tree-like structures and quickly realize whether or not a given concrete
structure has this property. If a researcher is interested in finding the best
possible constants, it may be as easy to create a proof from scratch than to first
obtain a sufficient understanding of our techniques. However, for difficult cases,
our techniques for improving these constants can be an inspiration.

The rest of this paper is organized as follows: In Section 2, we state and prove the
main theorem. In Section 3, we show how to improve the constants obtained
from the theorem for certain structures. In Section 4, we give a first simple
example of how to use the main theorem. In Section 5, we give two additional
examples, and demonstrate a technique for making non-local structures, which
are not directly covered by the theorem, satisfy the theorem as well. In Section 6,
we conclude.
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2 The Main Theorem

We now address the statement and proof of the main theorem. In between
definitions, we try to provide the necessary intuition. However, as a supplement
to this intuition, it might be beneficial to read the first example (Section 4) in
conjunction with the formal part. In Table 1, we summarize the notation which
is introduced gradually in the set-up discussed in this section and the next.

U the set of updates
R the set of (post-processing) operations
L layer function assigning a non-negative integer to each node
C a configuration
ksize maximal number of nodes in a configuration
kheight maximal layer difference in a configuration
ℓi(T ) the set of nodes in layer i
Φ a local potential function
Ti tree at time i
T ′ T after the application of a transformation
∆Φj potential change on layer j, Φ(ℓj(T

′)) − Φ(ℓj(T ))
j0 first layer with potential change
k + 1 span of a transformation
Ni potential change on layers j0 through i
Pi potential change on layers i + 1 through j0 + k
I layers where Ni is negative and Pi non-negative
c1, c2 constants of main theorem in c1#upd/ci

2

N ′ negated sum of all negative potential changes
P ′ sum of all positive potential changes

f ratio P′

N ′
< 1

ct maximum f for all applications of transformation t
kt + 1 maximal span of any application of transformation t
kr maximal kt over all post-processing operations
ku maximal kt over all updates
c maximal ct over all post-processing operations
cu maximal potential increase by any update
cr minimal potential decrease on layers where potential is decreased

Table 1: Summary of notation.

First, we try to give an intuitive explanation of what we are trying to obtain.
We have observed the following:

• When establishing proofs of rebalancing in trees being amortized constant,
the proofs are often structured via a potential function which is incre-
mented by updates and decremented by rebalancing operations. Thus,
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the potential pays for the rebalancing.

• When layers can be defined in trees in a natural manner, the dominating
rebalancing operations can only move a fraction of potential from one layer
to another closer to the root. By dominating, we mean the operations
which do not have an immediate constant bound on how many times they
can be applied after an update. Thus, the amount of potential available
at a layer decreases exponentially towards the root, and then the number
of rebalancing operations must too. Realizing this by using that only a
fraction of the potential on one layer can be moved to the next is also at
the core of the proofs from [5] and [10].

We explore the generality of this intuition by formalizing all the involved con-
cepts.

We aim at stating and proving a result which can be applied to a variety of
tree schemes. By a tree scheme, we think of something such as AVL-trees or
B-trees, i.e., at least some operations for modifying the trees, but also possibly
definitions of nodes in the tree and allowed tree shapes, though these definitions
could be implicit. For instance, one could define the allowed tree shapes as all
the tree shapes which can be created by a finite number of modifications to an
empty tree.

We are particularly concerned with establishing results regarding the properties
of the operations which modify the trees. Such operations can be specified
in many different ways. Sometimes it is done using pseudo-code, sometimes
using a concrete programming language, and sometimes by a collection of local
transformations which can be applied to a tree to modify it. To obtain a unified
and manageable framework, we require that the specifications of the modifying
operations are in the form of local transformations, and we formalize this notion.

Let ksize and kheight be universal non-negative integer constants. If T is a tree,
then a configuration is a constant number of at most ksize connected nodes. A
function L : T → N0 is a layer function on T if the following holds:

• for all nodes u, v ∈ T , where v is a proper ancestor of u, L(v) ≥ L(u)

• for all nodes u, v ∈ C for any configuration C, |L(u) − L(v)| ≤ kheight

• for all leaves u, L(u) = 0

This naturally defines a layer ℓi(T ) = {v ∈ T | L(v) = i} as a subset of T .

We can prove Theorem 1 at the end of this section based on these requirements to
the layer function. However, the result which comes out of applying Theorem 1
to a structure will only be interesting if there are a non-constant number of
layers; typically, it will be Θ(log n).

A local rule is a transformation on T describing before and after configurations.
If a configuration in the tree matches the before-configuration C, it may be
transformed to the after-configuration C′.
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We distinguish between transformations controlled by external events (from here
on referred to as updates) and transformations where the before configuration
matches a configuration in the tree created by another transformation (from
here on referred to as post-processing operations or just operations). We let U
denote the set of updates and let R denote the set of operations.

Consider an update, which by definition is a local rule. Thus, it replaces some
configuration C by C′. We require that for all nodes u ∈ C ∪ C′, L(u) ≤ kheight.
This captures that updates must take place at the leaves, and we use that as
our definition.

In the theorem and proof, potential functions are used, and also for these do we
need a notion of locality. The properties we need are that the global potential
is defined as the sum of local contributions and that a modification in one part
of the tree can only cause changes in local contributions in the vicinity of the
modification in question. Since configurations have already been defined, we
can reuse this concept to express some of these constraints.

A local potential function Φ on T is a potential function fulfilling the following
requirement. It assigns non-negative bounded potential to each node of the
tree, i.e., for all nodes u, 0 ≤ Φ(u) ≤ K, where K is a universal non-negative
constant. We define the potential of a set of nodes as the sum of the potentials
of the nodes in the set.

Our result discusses what happens to a tree over time. So, we are studying a
sequence of trees T0, T1, T2, . . ., where T0 is the initial tree, and each Ti, i ≥ 1
is obtained from Ti−1 by the application of one local rule. Most of the time,
we will be concerned with one transformation, i.e., the step from one tree Ti to
the next Ti+1. To avoid too many indices, we use T to describe the situation
before the transformation in question and T ′ to describe the situation after the
transformation.

Now, when we say “let T be a tree with layer function L and local potential
function Φ”, T refers to a tree scheme, and we assume that for this tree scheme
we have a definition of layers and potential such that for any sequence of trans-
formations applied to an initial tree, if a transformation changes the tree from
one state T to another T ′, then all the requirements to layer functions and local
potential functions hold.

We say that post-processing is amortized free if every post-processing operation
decreases the potential. Note that since an update is an application of a local
rule, which by definition only involves a constant number of nodes, and since
each node can be assigned at most a constant potential by a local potential
function, the increase in potential by an update is at most a constant. Likewise,
a post-processing operation also only involves a constant number of nodes with
constant potential associated with each node, so negative potential changes are
also constant.

To formally express a statement saying that the number of operations decrease
exponentially as we move up in the tree, we must define formally where an
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operation takes place.

Updates as well as operations may involve several layers. We now choose one
of these layers and define it to be the layer where the transformation is carried
out. We could choose any of the constant number of layers involved, but techni-
cally it is most convenient to choose a layer where the potential decreases when
the transformation is carried out. Assume that t ∈ U ∪ R is a transformation,
changing the tree T to T ′. Since updates and operations are defined in terms
of local rules, they can only affect the potential on a constant number of con-
secutive layers. We let ∆Φj denote the potential change on layer j given by
Φ(ℓj(T

′)) − Φ(ℓj(T )). Now the entire change in potential caused by t can be
expressed as:

j0+k
∑

j=j0

∆Φj

for some uniquely defined constants j0 and k such that ∆Φj0 and ∆Φj0+k are
both non-zero. We say that the transformation spans k+1 layers. We emphasize
that this means that the update or operation affects the potential on up to k+1
layers. The number of layers where structural modifications are made could
easily be smaller.

The layer of the transformation t, changing T to T ′, is now defined as follows.
For j0 ≤ i ≤ j0 + k, let

Ni =

i
∑

j=j0

∆Φj , and Pi =

j0+k
∑

j=i+1

∆Φj .

We define the set I = {j0 ≤ i ≤ j0 + k | Ni < 0 and Pi ≥ 0}. In the theo-
rem, we require that post-processing is amortized free. This means that the
set I will be non-empty since every operation decreases the potential of the
tree, and thus j0 + k ∈ I. We say that the operation t is performed on layer
min {i ∈ I | i minimizes Ni }.
Let #upd denote the number of updates made to the tree.

Theorem 1 Let T be a tree with layer function L and local potential function
Φ. Assume that updates are made at the leaves and that post-processing is
amortized free. Then there exist constants c1, c2, where c2 > 1, such that the

number of operations performed on layer i is bounded by c1
#upd

ci
2

, when starting

with a tree with potential zero. ⋄

Proof To show the exponentially decreasing post-processing, we want to bound
the amount of potential that is moved upwards in the tree, and we want to bound
the number of layers this potential is moved.
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For a given application of an operation t ∈ R, changing T to T ′, we define the
following:

N ′ = −
∑

∆Φi<0

∆Φi, P ′ =
∑

∆Φi≥0

∆Φi, and f =
P ′

N ′ < 1.

Thus, f is an upper bound on the fraction of potential which is moved upwards
by this application of t.

Now let ct denote the maximum f for any application of t to any tree. Thus, ct is
the largest possible fraction of potential that is moved upwards by t. Similarly,
let kt be the maximal k for any application of t to any tree such that t spans
k + 1 layers, and let kr = max

t∈R
{kt}, ku = max

t∈U
{kt}, and c = max

t∈R
{ct}.

Finally, let cu be the maximal increase in potential which can be caused by any
update to any tree. Since configurations are of constant size and we have a local
potential function, this is a constant.

An update to the tree may increase the potential. For the purpose of this
proof, we now discuss how to mark and trace this potential. If the potential
has increased by an amount δ, this means that when the before-configuration
C was replaced by the after-configuration C′, the two of which form the local
rule constituting the update, the sum of potential of nodes in C′ is δ larger than
the sum of potential of nodes in C. For the sake of this proof, we mark this
amount δ as coming from the current update. Note that δ may be spread out
over several nodes. All of these nodes would then have (parts of) their potential
marked as stemming from the current update. We do this for every update such
that all potential in the tree is marked at all times. Thus, the potential of any
node in the tree can be viewed as a sum of pieces of potential stemming from
different updates.

When a post-processing operation is carried out, it must, by assumption, de-
crease the total potential. Thus, some of the marked potential disappears, and
the remaining potential may be moved, meaning that the potential of one node
increases while it decreases at another. We make no assumptions as to how this
is done. For instance, for the potential on a given node stemming from a given
update, some of it may disappear, some may remain at the same node, and the
rest may be spread to a number of other nodes. It is now meaningful to talk
about potential from a given update being created, being moved around in the
tree, and eventually disappear.

Since post-processing operations decrease the potential, bounding the movement
of potential up to a given level in the tree can be used to bound the number of
operations carried out at that level.

We now bound the total amount of potential which can be created on layer i

due to any one update t ∈ U by cu · c⌈ i−ku
kr

⌉.
This is clearly true for i ∈ [0, . . . , ku] since the expression becomes cu, which
by definition is a bound. What remains is to show that for all j ≥ 1 and
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i ∈ [ku + (j − 1) · kr + 1, . . . , ku + j · kr], cu · cj is an upper bound.

Neither the layer function nor the local potential function are allowed to change
outside the before- and after-configurations, and within the configurations, kr

is an upper bound on how far potential can be moved. Thus, no potential can
reach any layer within this range unless it has been moved at least j times by
an operation. Since any operation moves at most the fraction c < 1 of the
potential, cu · cj is an upper bound on the potential that might reach layer i.
Note that if an operation spans k + 1 layers, then potential can be moved at
most k layers, namely from the first to the last of the k + 1 layers.

By straightforward calculations, we obtain:

cu · c⌈ i−ku
kr

⌉ ≤ cu · kr
√

c
(i−ku)

=
cu

kr
√

c
ku

kr
√

c
i
.

Thus, after #upd operations, cu

kr
√

cku

kr
√

c
i ·#upd is an upper bound on the total

potential created on layer i.

Now by definition of the layer of an operation, if an operation is carried out
on layer i, the potential decreases on layer i. Let cr denote the maximum
of all these negative potential changes (thus, we choose the smallest absolute
value) taken over all applications of any operation to any tree. Let cr = −cr.
Thus, cr is positive. In total, the potential on layer i is decreased by at least
cr · #opsi, where #opsi denotes the total number of operations performed on
layer i. Combining these inequalities, we get

0 ≤ Φ(ℓi(T )) ≤ cu

kr
√

cku

kr
√

c
i · #upd − cr · #opsi

⇓
#opsi ≤ cu

cr· kr
√

cku

kr
√

c
i · #upd.

If we let c1 = cu

cr· kr
√

cku
and c2 = (kr

√
c)

−1
, the theorem follows. 2

Observe that the layer function should define a non-constant number of layers
in order for the theorem to provide new information. Moreover, if h is the
length of the shortest path of T , then the layer of the top-most node in the
tree must be in O(h), since otherwise we would have that some configuration
spans a non-constant number of layers, or updates are made at a non-constant
distance from layer 0.

If the initial tree has a non-zero potential of Φinit, then this potential can create
at most a linear amount of extra work on each layer. Thus, as a crude upper

bound, #opsi ∈ O
(

Φinit + #upd
ci
2

)

. This is particularly interesting if arbitrarily

large trees with constant potential can be build, and according to [7], this is
indeed possible for (a, b)-trees, for example. In such situations, the results hold
immediately also starting with a nonempty tree.
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3 Splitting Large Transformations

In this section, we present a construction to reduce the span of a transforma-
tion by one, by replacing the transformation by two new transformations with
reduced span. This will reduce kr, in particular, and therefore, potentially, pro-
vide better constants, as it can be seen from the formulas last in the proof of
Theorem 1. The two new transformations should of course together preserve
the semantics of the transformations as a whole, i.e., the result of applying the
two operations one after another should be the same as applying the original
transformation. By introducing nodes on every layer using the first transforma-
tion, we are capable of redefining the potential changes on every layer and we
can obtain the result that for the two new transformations, the span of layers
where potential is changed is strictly smaller than for the old transformation.

We emphasize that the intention is not to change the data structure which is
implemented, but to argue that the data structure has desirable properties.
Thus, the lemma below is an analytical tool. If we can prove good constants
after the application of the lemma below, these constants will apply to the
original structure as well, since fewer transformations are applied in the original
structure.

Let t be a transformation on T . We use the notation B
t7−→ A to denote that

applying t to the before configuration B yields the after configuration A.

Lemma 1 Let T be a tree satisfying the conditions in Theorem 1 with layer
function L and local potential function Φ. Let t ∈ R be a post-processing
operation on T with kt ≥ 1. Then there exists a sequence of configurations
C2, C3, . . . , Ckt

, a sequence of operations t1, t2, . . . , tkt
, satisfying for all i, 1 ≤

i ≤ kt : kti
= 1, a layer function Lnew , and a potential function Φnew on T ,

such that B
t17−→ C2

t27−→ . . .
tkt7−→ A and T satisfies Theorem 1 using Lnew and

Φnew.

Proof The proof is by induction on kt. The base case (kt = 1) is trivial.
Assume that the lemma is true for all kt < N . Consider the case kt = N . We

show how to replace an operation B
t7−→ A by two operations t1 and t′ such that

B
t17−→ C

t′7−→ A for some configuration C such that kt1 = 1 and kt′ = kt − 1.
The lemma will follow by application of the induction hypothesis to t′.

Observe that by the definition of the local potential function, the potential on
layer i cannot change, unless some node is present on this layer. Therefore, to
control the potential on every layer from j0 to j0 + kt, we must ensure that a
node is present on each layer. We add kt + 1 nodes as illustrated in Fig. 1. The
middle configuration is configuration C referred to above. Each node is marked
with the layer it belongs to. All other nodes belong to the layer they belonged
to before the application of t1.

Below, we define the potential function for the “intermediate state”, where con-
figuration B has been replaced by configuration C. Note that we have significant
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B
t1−→

vj0+kt

B
vj0+kt−1

···

···

vj0

t′−→ A

Figure 1: Transformations by first t1 and then t′.

Operation layer j0 layer j0 + 1 layer j0 + 2 layer j0 + kt

t1 ∆Φj0 −x · ∆Φj0 0 0
t′ 0 ∆Φj0+1 + x · ∆Φj0 ∆Φj0+2 ∆Φj0+kt

t ∆Φj0 ∆Φj0+1 ∆Φj0+2 ∆Φj0+kt

Table 2: Potential changes by t1, t′ and t.

freedom in choosing the potential function for this intermediate state. The only
constraint is that all operations should decrease the potential. We decide on
the form shown below, where we leave one constant, x, to be determined. See
Table 2 for potential changes on the different layers.

Φnew(u) =















∆Φj0 , if u = vj0

−x · ∆Φj0 , if u = vj0+1

0 , if u ∈ {vj0+2, . . . , vj0+k}
Φ(u) , otherwise

Some notation will make it easier to express the constraints: for some operation
p, let ∆Φp denote the potential change incurred by applying p. We must show
that we can choose x such that ∆Φt1 < 0 and ∆Φt′ < 0.

We have that ∆Φt =
∑j0+kt

i=j0
∆Φi, ∆Φt1 = ∆Φj0 − x · ∆Φj0 , and ∆Φt′ =

∆Φt − ∆Φt1 .

We consider the cases ∆Φj0 > 0 and ∆Φj0 < 0 separately.

Assume that ∆Φj0 < 0. Then ∆Φj0 − x · ∆Φj0 < 0 implies that x < 1, while

∆Φt′ = ∆Φt −∆Φt1 = ∆Φt − (∆Φj0 − x ·∆Φj0) < 0 implies that x > 1− ∆Φt

∆Φj0

.

Since ∆Φt < 0 and ∆Φj0 < 0, we have that 1 − ∆Φt

∆Φj0

< 1, so we can choose an

x such that 1 − ∆Φt

∆Φj0

< x < 1.

Analogously, assume that ∆Φj0 > 0. Then ∆Φj0 − x · ∆Φj0 < 0 implies that

x > 1, while ∆Φt′ = ∆Φt − ∆Φt1 = ∆Φt − (∆Φj0 − x · ∆Φj0) < 0 implies that

x < 1 − ∆Φt

∆Φj0

. Since ∆Φt < 0 and ∆Φj0 > 0, we have that 1− ∆Φt

∆Φj0

> 1, so we

can choose an x such that 1 < x < 1 − ∆Φt

∆Φj0

. 2

We can reduce the span of updates in the same manner, but it is simpler because
of fewer restrictions. If, in the above lemma, t was an update, which is replaced
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by t1 and t′, then t1 would be considered the update and t′ a post-processing
operation. Thus, t′ must decrease the potential, but there are no constraints on
t1.

4 Partially Persistent Binary Trees

We consider partial persistence as in [4]. A study of partial persistence through
‘pebble games’ has been carried out in [3], and we use a similar presentation here.

A data structure is called persistent if it supports access to more than one ver-
sion, and called partially persistent if only the newest of these versions can be
modified. Persistence has been studied in connection with separate concrete
data structures, but a general method has been devised in [4], which cred-
its [11, 13] for initiating the study of general methods. In brief, a standard data
structure is made persistent by extending the nodes with extra fields. In this
context, only some of these fields, namely the so-called extra pointers, are of
interest. The idea is that when a pointer is changed in the newest version, this
can be done by adding this version-stamped information as an extra pointer.
Searching routines will then check the version number and proceed in a direc-
tion depending on which version is currently being searched. When no more
extra pointers are available in a node, all the newest information is copied into
a new node which then has all its extra pointers available for future updates.
However, now all the nodes pointing to the node which has just been copied
must have their information updated, which will use extra pointers and may
involve copying other nodes.

This method can be related to pebble games. Pebble games are played between
two players and involve a number of piles. In a turn, the first player increases the
number of pebbles on a pile, and the second decreases the number of pebbles,
according to more detailed rules. The object of the game is the maximum
number of pebbles in any pile. Player one must maximize this number and
player two must minimize it. In [12], results are presented for many variations
of such games and it is demonstrated how these games can be useful in the
analysis of data structures, including analyses of persistence.

The more detailed rules can be given by arranging the piles in a tree structure
and imposing various constraints on the moves. The connection to partial per-
sistence using the node-copying method is made by interpreting a used extra
pointer as a pebble.

We consider the following game played on a complete binary tree of height h.
Each internal node has, besides pointers to its children, room for e pebbles, for
some constant e. An update consists of updating a leaf, and putting a pebble on
the parent (this is the equivalent of copying a leaf and using an extra-pointer at
the parent in the node-copying model [4]). Post-processing consists of making
sure no internal node is storing more than e pebbles. The possible operations
are to remove all pebbles from a node and put one on the parent (this is the

12



x → x+1

Update

x

e+1
→ x+1

0

Propagation

e+1Root → 0Root

Root

Figure 2: Transformations for pebble games.

Operation t ∆Φi ∆Φi+1 ct

Propagation −(e + 1) 1 1
e+1

Root −(e + 1) 0 0

Table 3: Potential changes by operations on layer i for the pebble game.

equivalent of copying an internal node and using an extra-pointer at the parent
in the node-copying model), or removing all pebbles from the root.

Since all transformations are described by local rules, we assume that nodes are
capable of storing e+1 pebbles to represent the intermediate state between two
consecutive operations.

The transformations are depicted in Figure 2. The set of transformations showed
in this example (and any of the following) is only complete up to symmetric
variants of the transformations. The number to the right of a node u is the
number of pebbles on this node, denoted π(u). We then define a layer function
L(u) = h(u), where h(u) denotes the height of the node u (leaves at height 0)
and a local potential function Φ(u) = π(u). Using these transformations and
the functions L and Φ, we have proven the following corollary.

Corollary 1 The number of persistence operations in a balanced binary tree
is exponentially decreasing with respect to the distance from the leaves. ⋄

We now use the constructive part of the proof of Theorem 1 to derive constants
for the exponential expression. Since an update puts a pebble on an internal
node on layer 1, we immediately have: cu = 1 and ku = 1.

To derive the remaining constants, we analyze each operation one by one. A
table such as Table 3 can be constructed for the potential changes by each
operation. From the table we derive that kr = 1, cr = e + 1, and c = 1

e+1 .
Using the formula mentioned last in the proof of Theorem 1, the number of
persistence operations at height i, denoted #opsi, is bounded by:

#opsi ≤
1

(e + 1) · 1
e+1

· #upd

(e + 1)i
=

#upd

(e + 1)i
,

where #upd denotes the number of updates to the tree.

Observe that the constant e is completely independent of the size of the tree,
so the exponential expression in the denominator is independent of the size

13



of the subtree. Moreover, this bound is tight, which can easily be verified by
considering a sequence of updates to the same leaf.

5 Designing Local Rules for Non-Local Struc-

tures

In this section, we consider examples of AVL-tree schemes. In the following,
#upd denotes the number of updates. The number of rebalancing operations
on layer i, with respect to some layer function, is denoted #opsi. Moreover,
the search trees considered in the following are leaf-oriented. This means that
all keys stored in internal nodes are routers used only to guide the search, and
all elements are stored in the leaves. This is to satisfy the requirement that
updates are always made near layer 0.

An AVL-tree, which is binary, is balanced if for all nodes, the height difference
between its two subtrees is at most one. When an update (insertion or deletion)
is carried out, this may temporarily disturb the balance criteria. The purpose
of the rebalancing operations is to fix the problem created by the update and
thereby return the tree to a balanced state. This can be done by applying a set
of local operations to nodes on the path from the leave where the update was
made up to the root.

For an introduction to balanced trees with further references to the original
publication as well as to textbooks, see [2].

5.1 Semi-Dynamic AVL-Trees: Insertions

The complexity of sequences of insertions into an AVL-tree [1] is treated in [10],
where it is shown that the number of post-processing (rebalancing) operations
is exponentially decreasing in the height. In this section, we prove matching
bounds using our construction.

Again, as noted in the previous section, transformations on the tree must be
described by local rules, i.e., no transformation (including updates) can make
changes to more than a constant number of nodes. In particular, we cannot
immediately update the balance of all nodes on the search path of an update.

To satisfy this requirement, we introduce a special node that indicates that the
height of the tree below has been increased by one. Rebalancing then consists of
propagating this information upwards, and it ceases when the critical node [10]
or the root is reached. The critical node is the bottommost node on the search
path with non-zero balance. The set of transformations in terms of local rules is
depicted in Figure 3. The special node described above is the white node. We do
not show symmetric operations. Thus, all the operations shown have symmetric
versions where directions and signs are reversed, i.e., left and right are switched

14



→ 0

Update: Insert

bRoot → bRoot

Height Increase

0

b
→ −1

b

Balance Change

1

b
→ 0

b

Absorption

−1

−1
→ 0

0

Single

−1

1

−1

→ 0

1 0

Double 1

−1

1

0

→ 0

0 0

Double 2

−1

1

1

→ 0

0 −1

Double 3

Figure 3: Insert and rebalancing operations on AVL-trees. The balance of a
node is shown to the right of the node. For all operations: b ∈ {−1, 0, 1}.
Symmetric transformations are omitted.

and all balance values are negated. Note that the potential function defined
below only depends on the absolute value of the balance values.

We define the height of a node in a partially rebalanced AVL-tree as follows:

H(u) =







0 , if u is a leaf
max {H(u.l), H(u.r)} , if u is white
max {H(u.l), H(u.r)} + 1 , otherwise

where u.l (u.r) denotes the left (right) child of the node u. The balance of a
node, b(u), is defined as b(u) = H(u.l) − H(u.r). The number to the right of
each node in Figure 3 is its balance. A balanced AVL-tree contains no white
nodes and satisfies b(u) ∈ {−1, 0, 1} for all nodes u.

The layer of a node is simply its height, L(u) = H(u). Observe that as a
consequence of the definition of L(u), the layer of the topmost node of any
operation (except Height Increase) is not changed by the operation.

Finally, we define a local potential function:

Φ(u) = 1b(u)=0 + φ2 · 1u is white,

where u is an internal node, φ denotes 1+
√

5
2 , the golden ratio, and 1p is the

indicator function, i.e., 1p = 1 if p is true and 1p = 0 otherwise. We define the
potential of a leaf to be zero.

With the layer and potential functions we now have, by Theorem 1, that rebal-
ancing is exponentially decreasing in AVL-trees with insertions. To determine
the exact bound, we analyze each transformation on the tree. By analyzing each
rebalancing operation one by one (see Figures 4, 5, 6, 7, 8, 9, and 10), Table 4
can be constructed.

We comment on the restriction b 6= 0 in Table 4 below. First, we note that
we are aiming for the result that the number of rebalancing operations should
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b b→

∆Φi

0

−φ2

Layer i

it+1

it

Figure 4: Height Increase.

0

b

−1

b→

∆Φi

φ2−1

−φ2

Layer i

it+1

it

Figure 5: Balance Change.

1

b

0

b→

∆Φi

1

0

−φ2

Layer i

it+2

it+1

it

Figure 6: Absorption with b 6= 0.

−1

−1

0

0→

∆Φi

1

−φ2+1

0

Layer i

it+1

it

it−1

Figure 7: Single.

−1

1

−1

0

1 0→

∆Φi

1

−φ2+1

0

0

Layer i

it+1

it

it−1

it−2

Figure 8: Double 1.
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−1

1

0

0

0 0→

∆Φi

1

−φ2+1

0

Layer i

it+1

it

it−1

Figure 9: Double 2.

−1

1

1

0

0 −1→

∆Φi

1

−φ2+1

0

0

Layer i

it+1

it

it−1

it−2

Figure 10: Double 3.

decrease with a factor of φ when moving from a layer to one closer to the
root. The result seems to be within reach. The only problem (in Table 4)
being Absorption, which spans three layers and therefore has kt > 1. We apply
Lemma 1 to split the operation in two. The result is shown schematically in
Tables 5.

The update Insert increases the potential of just one layer as shown in Table 6.

We now comment on the assumption of b 6= 0 on the operations Balance Change

and Absorption. The reason for analyzing the case b = 0 separately is that in
that case, those two operations do not give as good results, i.e., the fraction ct

which is 1
φ for the other cases and other operations are closer to one for the

cases b = 0. However, considering the operations in Figure 3, one can observe
that no rebalancing operation introduces a white node with balance zero. Such
a node can only be introduced by an Insert and will then be removed by either
Balance Change or Absorption.

To obtain the best possible result we consider Insert followed by either Balance

Change or Absorption as one update operation. The combined effect of Insert

followed by either Balance Change or Absorption is shown in Figures 11 and 12.

We get the best result if potential is only introduced on the lowest layer, so
we split these two operations as shown in Tables 7 and 8. When splitting an
update, only the first of the new transformations is considered an update. The
others are rebalancing operations. The amount of potential introduced on layer
zero by the new updates is chosen such that the rebalancing operations can
decrease potential by a factor φ when moving it one layer up.

Though this whole process of first combining some operations and then splitting
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Operation t ∆Φit
∆Φit+1 ∆Φit+2 ct

Height Increase −φ2 0 0 0
Balance Change (b 6= 0) −φ2 φ2 − 1 0 1

φ

Absorption (b 6= 0) −φ2 0 1 1
φ2

Single, Double 1–3 −φ2 + 1 1 0 1
φ

Table 4: Potential changes by rebalancing operations on AVL-trees carried out
at layer it.

Operation t ∆Φit
∆Φit+1 ∆Φit+2 ct

Absorption1 −φ2 φ 0 1
φ

Absorption2 0 −φ 1 1
φ

Absorption (b 6= 0) −φ2 0 1 1
φ2

Table 5: Potential changes by resulting transformations after splitting Absorp-

tion.

them in a new way can seem somewhat artificial, it is clear that it only affects
the lowest layers. Nothing has changed further up in the tree, so the result will
also hold for the original set of operations.

We can now apply the formula developed in Theorem 1. By examining the
updates, Insert, Insert1, and Insert2, we find cu = φ3 and ku = 0. From
Tables 4, 7, and 8, we have the values for all rebalancing operations, and find
that c = 1

φ , kr = 2, and cr = φ.

Finally, we find the number of rebalancing operations at height i by plotting into

the formulas last in the proof of Theorem 1: #opsi ≤ φ3

φ· 1

q

1
φ

0 ·#upd
1
√

φi = φ2·#upd
φi ,

matching the result of [10].

We have proven the following theorem:

Theorem 2 For semi-dynamic AVL-trees where the only allowed update is
insertion, rebalancing is exponentially decreasing and the number of rebalancing

operations carried out at layer i is bounded by φ2 · #upd
φi .

5.2 Semi-dynamic AVL-trees: Deletions

The amortized complexity of sequences of deletions with rebalancing in AVL-
trees is treated in [14]. However, unlike for sequences of insertions, to our
knowledge, rebalancing has not been shown to be exponentially decreasing. We
show that in this section, and show that the constants obtained using Theorem 1
and the technique described in the previous section are tight.

18



Transformation t ∆Φ0

Insert 1 + φ2

Table 6: Insert.

0

−1

0→

∆Φi

0

φ2

0

Layer i

2

1

0

Figure 11: Combined effect of Insert and Balance Change.

1 0

0→

∆Φi

1

1

0

Layer i

2

1

0

Figure 12: Combined effect of Insert and Absorption.

Transformation t ∆Φ0 ∆Φ1 ct

Insert1 φ3 0
IBC1 −φ3 φ2 1

φ

Insert; Balance Change 0 φ2

Table 7: Potential changes by resulting transformations after splitting the com-
bined Insert and Balance Change.

Transformation t ∆Φ0 ∆Φ1 ∆Φ2 ct

Insert2 φ(φ + 1) 0 0
IA1 −φ(φ + 1) φ + 1 0 1

φ

IA2 0 −φ 1 1
φ

Insert; Absorption 0 1 1

Table 8: Potential changes by resulting transformations after splitting the com-
bined Insert and Balance Change.
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Again, as in the previous section, we use a special node (this time indicating
that the height of the subtree below has decreased by one) to capture the notion
of a partially rebalanced tree. Again rebalancing is done by propagating this
information upwards, and it ceases when the node is removed by some trans-
formation. The set of transformations in terms of local rules is depicted in
Figure 13. The special node described above is the white node. As in the pre-
vious section, we do not show symmetric operations. Thus, all the operations
shown have symmetric versions where directions and signs are reversed, i.e., left
and right are switched and all balance values are negated. As previously, the
potential function only depends on the absolute value of the balance values.

0 →
Update: Delete 1

−1

0 → 0

Update: Delete 2

−1

0 −1
→

0

0

0

Single

−1

0 0
→

1

−1

0

Terminating Single

−1

0 1

−1

→
0

1

0

0

Double 1

−1

0 1

0

→
0

0

0

0

Double 2

−1

0 1

1

→
0

0

0

−1

Double 3

1

0
→ 0

0

Propagation

0

0
→ −1

0

Absorption

0Root → 0Root

Height Decrease

Figure 13: Operations on AVL-trees to handle sequences of deletions. Symmet-
ric transformations are omitted.

We define the height H(u) and the adjusted height AH(u) of a node u as follows:

H(u) =

{

0 , if u is a leaf
max {AH(u.l), AH(u.r)} + 1 , otherwise

AH(u) = H(u) + 1u is white

Here u.l (u.r) denotes the left (right) child of the node u. The balance of a node
b(u) is defined as b(u) = AH(u.l) − AH(u.r). The number to the right of each
node in Figure 13 is its balance. Again, a balanced AVL-tree contains no white
nodes and satisfies b(u) ∈ {−1, 0, 1} for all nodes u.

The layer function L(u) is defined to be the adjusted height, i.e, L(u) = AH(u).
Again, as a consequence of this definition, the layer of the top-most node is not
changed by any operation, except for Height Decrease.

Finally, the local potential function is defined as follows:

Φ(u) = x · 1|b(u)|=1 + y · 1u is white,
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where u is an internal node. We define the balance of a leaf to be zero, so
the potential is 0 or y. In the formula, x and y are positive constants such
that y > x. One can easily verify that this suffices to show amortized free
rebalancing. Thus, Theorem 1 applies. To determine the constants, we analyze
each transformation one by one, as in the previous section. This results in
Figures 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 from which we extract the
information in Table 9.

0

→

∆Φi

y

0

Layer i

1

0

Figure 14: Delete 1.

−1

0 0→

∆Φi

y−x

0

0

Layer i

it+1

it

it−1

Figure 15: Delete 2.

−1

0 −1

0

0

0

→

∆Φi

y−x

−x

−y

0

Layer i

it+1

it

it−1

it−2

Figure 16: Single.

From the table we find that kr = ku = 2. However, this will again not yield
the best c and therefore not the best c2. For Single, Double 1–3, and Delete 2

having kt > 1, we apply Lemma 1 to reduce kt. See Tables 10 and 11 for the
new potential changes.

We now find from the tables that kr = 1 and c = max
{

x
y , y−x

y

}

= 1
2 (by

choosing y = 2x) and cr = y. By examination of the Delete transformations,
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−1

0 0

1

−1

0

→

∆Φi

0

x

−y

0

Layer i

it+2

it+1

it

it−1

Figure 17: Terminating Single.

−1

0 1

−1

0

1

0

0→

∆Φi

y−x

−x

−y

0

Layer i

it+1

it

it−1

it−2

Figure 18: Double 1.

−1

0 1

0

0

0

0

0→

∆Φi

y−x

−x

−y

0

Layer i

it+1

it

it−1

it−2

Figure 19: Double 2.

−1

0 1

1

0

0

0

−1→

∆Φi

y−x

−x

−y

0

Layer i

it+1

it

it−1

it−2

Figure 20: Double 3.

1

0

0

0→

∆Φi

y−x

−y

0

Layer i

it+1

it

it−1

Figure 21: Propagation.
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0

0

−1

0→

∆Φi

x

−y

Layer i

it+1

it

Figure 22: Absorption.

0 0→

∆Φi

−y

0

Layer i

it

it−1

Figure 23: Height Decrease.

we find that ku = 1 and cu = y. Hence,

#opsi ≤
y

y · 1

√

1
2

1 · #upd
1
√

2
i = 2 · #upd

2i
.

Moreover, this bound is tight. Consider a complete binary tree of height h.
Thus, all internal nodes have balance 0 and the tree has zero potential. Delete
every second element. The effect of this is illustrated by showing the lower
left corner of the tree in Figure 24. Notice that the first deletion changes the

0

0

0 0

→
0

0

0

→
0

−1

0

→
0

−1 →
0

0 →
−1

0

Figure 24: Sequence of operations on AVL-tree: Delete 1, Absorption, Delete 1,
Propagation, Absorption.

balance of the grandparent of the deleted node to a −1 (via an Absorption). This
means that the next deletion results in a Propagation. When this is followed by
an Absorption, a balance of −1 is introduced at the level one higher, and the
process repeats.

If we let n denote the number of leaves, then the n/2 deletions give rise to n/4
Absorption operations and n/4 Propagation operations at level 1; a total of n/2
operations. As the effects proceeds up the tree, the number of operations at a
given level is halved compared to the previous. Thus, at level i, we carry out
n
2i = 2n/2

2i = 2#upd
2i operations.
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Operation t ∆Φ ∆Φit−1 ∆Φit
∆Φit+1 ct

Term. Single x − y 0 −y x x
y

Absorption x − y 0 −y x x
y

Propagation −x 0 −y y − x y−x
y

Height Decrease −y 0 −y 0 0
Single, Double 1–3 −2x −y −x y − x y−x

y+x

Table 9: Potential changes by rebalancing operations on AVL-trees.

Operation t ∆Φit−1 ∆Φit
∆Φit+1 ct

Single1, Double 11–31 −y y − x 0 y−x
y

Single2, Double 12–32 0 −y y − x y−x
y

Single, Double 1–3 −y −x y − x y−x
y+x

Table 10: Potential changes by resulting transformations after splitting Single

and Double 1–3. The layer it refers to the layer of Single (and Double 1–3 ).

We have proven the following theorem:

Theorem 3 For semi-dynamic AVL-trees where the only allowed update is
deletion, rebalancing is exponentially decreasing and the number of rebalancing
operations carried out at layer i is bounded by 2 · #upd

2i . Furthermore, there
exists sequences of operations where this bound is met.

6 Concluding Remarks

A reasonable question to consider is whether or not the theorem has found its
right form. In particular, are all the requirements necessary?

Clearly, if operations are not local, then every operation could involve the root.
Furthermore, requiring that there is a local potential function which assigns at
most a constant amount of potential to each node gives a similar type of control
over the progress of operations. Without this requirement, one can construct
the scenario where every (log n)’th operation progresses all the way to the root,
while all other operations finish immediately at the leaves. Then, assuming
that the height of the tree (as well as the number of layers) is Θ(logn), the
operation can clearly be made amortized free, while the number of operations
cannot decrease exponentially, since the root is accessed too often.

At least this demonstrates a local form of completeness of our approach, in that
no single requirement can be relaxed in isolation.

Finally, more results and examples of applications of our main theorem can be
found in [6], where it is demonstrated how the techniques can be applied to
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Operation t ∆Φ1 ∆Φ2 ct

Delete 21 y 0
Delete 22 −y y − x y−x

y

Delete 2 0 y − x

Table 11: Potential changes by resulting transformations after splitting Delete 2.

search trees with relaxed balance and to (a, b)-trees in particular, and results
matching the ones developed specifically for (a, b)-trees [5, 9] are obtained. For
references on (a, b)-trees with relaxed balance, see [2, 8].
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