
Constraint Handling in Flight Planning

Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen?

Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark
{andersnk,marco,kslarsen}@imada.sdu.dk

Abstract. Flight routes are paths in a network, the nodes of which rep-
resent waypoints in a 3D space. A common approach to route planning
is first to calculate a cheapest path in a 2D space, and then to opti-
mize the flight cost in the third dimension. We focus on the problem of
finding a cheapest path through a network describing the 2D projection
of the 3D waypoints. In European airspaces, traffic flow is handled by
heavily constraining the flight network. The constraints can have very
diverse structures, among them a generalization of the forbidden pairs
type. They invalidate the FIFO property, commonly assumed in short-
est path problems. We formalize the problem and provide a framework
for the description, representation and propagation of the constraints in
path finding algorithms, best-first, and A∗ search. In addition, we study
a lazy approach to deal with the constraints. We conduct an experimen-
tal evaluation based on real-life data and conclude that our techniques
for constraint propagation work best together with an iterative search
approach, in which only constraints that are violated in previously found
routes are introduced in the constraint set before the search is restarted.

1 Introduction

The Flight Planning Problem (FPP) aims at finding 3D paths for an aircraft in
an airway network, minimizing the total cost determined by fuel consumption
and flying time. The motivation is financial and environmental. Airway net-
works can be huge, due to the added dimension compared with road networks,
and side constraints complicate the problem further. Most of the constraints
are determined by a central control institution, e.g., Eurocontrol in Europe and
FAA in USA, and change rapidly with time in order to take traffic conditions
into account and to minimize the need for later changes by the institution itself.
Therefore, the common practice is to determine the precise flight route only a few
hours before take-off. For this to be feasible and bring any advantage, the route
determination must be quite fast, say on the order of a few seconds. If neces-
sary, the route can then be adjusted during the flight by real-time optimization,
considering more up-to-date information. Over the last years, the strain on the
European airspace has increased to a level where the network must be heavily

? This author was supported in part by the Danish Council for Independent Research,
Natural Sciences, grant DFF-1323-00247.

constrained to ensure safe flights. This also implies increased difficulty in finding
cost-efficient routes respecting the constraints.

We focus on the problem of finding 2D routes in European airspaces in an
off-line setting. Normally, waypoints are defined for one or more intervals of
flight levels, but here we assume that flights are cruising at a given altitude.
This version of the problem is relevant because a common approach to flight
planning in industry is to decompose the problem into two subproblems: finding
a 2D route and expanding it in the third dimension. For both problems, there
are constraints to satisfy and costs to minimize. Moreover, costs are resource-
dependent because they depend on the weather conditions, which vary with time,
and on the weight of the aircraft. This latter depends on the fuel level, the initial
amount of which is also a decision variable of the problem. We use an estimate
based on a great circle distance for this initial amount of fuel and assume that its
more precise determination is done during the vertical route optimization (see
[1], for instance).

The classic shortest path problem has been the focus of considerable amounts
of research for many years. For an extensive survey on recent advances, see [2].
However, many of the new advances rely on preprocessing techniques, most of
which we deem inapplicable in the flight planning context, due to the impact
of the constraints. The problem of finding cheapest flight routes with resource-
dependent costs was studied in [3] and [4], and more recently in [5]. The latter
focuses on a 2D version, presenting three A∗ algorithms with different heuristic
functions. However, constraints are not taken into account in these works while
they are the main focus of our work.

The constraints in the European airspaces come in three different forms: Con-
ditional Routes (CDR), Route Availability Document (RAD), and Restricted
Airspaces (RSA). These are all published by the European air traffic manage-
ment institution, Eurocontrol. RAD constraints are the most general and chal-
lenging. They include local constraints affecting the availability of airways and
airspaces at certain times, but they are primarily conditional types of constraints.
For example, if the route comes from a given airway, then it can only continue
through another airway. Or some airways can only be used if coming from, or
arriving to, certain airspaces. Or flights between some locations are not allowed
to fly over certain airways. Or short-haul and long-haul are segregated in con-
gested zones. RAD constraints must be handled during the route construction
or checked later. There are more than 16,000 of these constraints and they can
be updated several times a day, although most of them remain unchanged for
longer time periods.

Some of these constraints are generalizations of the forbidden pairs type,
which make the problem at least as hard as the path avoiding forbidden pairs
problem that was shown to be NP-hard [6]. Given a topological sorting of the
nodes, restricting to certain structures of forbidden pairs makes the problem
polynomially solvable [7]. However, none of these structures can be guaranteed
in the European airspace network.

Our contribution is the design of a framework for the representation and
propagation of RAD constraints during the search. We formalize the constraints
and extend path finding algorithms, such as best-first and A∗ search [8], to
handle them. In particular, we propose an ad hoc tree structure to represent the
constraints and to check their satisfiability and implications and to simplify their
structure during the search. Then, we study two lazy approaches to constraint
propagation. In one approach, we postpone the expansion of partial paths that
cannot be dominated due to the constraints, but that are less promising than
others in terms of costs. We then reconsider them only if it becomes necessary.
In the other approach, which is similar to a Bender’s decomposition with nogood
cuts, we ignore all constraints in an initial search. If the path found is feasible,
then we found a solution. Otherwise, we include only those constraints that are
violated by the current path and iterate the whole process until a feasible solution
is found. Additionally, we consider an exact and a heuristic approach to removing
active constraints during the search based on geographical considerations.

This work is in collaboration with an industrial partner. Their core business is
in flight route planning. Many of their customers are owners of private planes who
plan their flights shortly before departure. Once they have chosen a destination,
they send a query for a route from some portable device and they expect an
almost immediate answer. Hence, this company is interested in an algorithm
that can solve the problem within a few seconds. The size of the network used
by this company is approximately 100,000 nodes and 3,000,000 edges and we use
these real life data to test our ideas.

2 The Constrained Horizontal Flight Planning Problem

The European airspace is a network of waypoints that can be traversed at differ-
ent altitudes (flight levels). Waypoints are connected across different flight levels
by airways. The overall network could be described as a layered digraph, with
several nodes for each waypoint representing different flying altitudes and arcs
connecting these nodes if they belong to different waypoints. We simplify the sit-
uation by only allowing flights at a single flight level. The flight level is chosen to
be the best cruising altitude for the tested aircraft. Hence, we represent the Eu-
ropean airspace as a 2D network formed by a directed graph D = (V,A), where
the nodes in V represent waypoints defined by latitude and longitude coordinates
and the arcs in A represent feasible airways between the waypoints. Each arc has
associated resource consumptions and costs. The resource consumption for flying
through an arc a ∈ A is defined by a pair τ a = (τxa , τ

t
a) ∈ R2

+, where the super-
scripts x and t denote the fuel and time components of the consumption, respec-
tively. The cost ca is a function of the resource consumption, i.e., ca = f(τ a).1 A
2D (flying) route is an (s, g)-path in D represented by n waypoints plus a depar-
ture node (source) s and an arrival node (goal) g, that is, P = (s, v1, . . . , vn, g),

1 The total cost is calculated as a weighted sum of time and fuel consumed. In our
specific case, we have used 3$ per gallon of fuel and 1000$ per hour.

with s, vi, g ∈ V for i = 1..n, vivi+1 ∈ A for i = 1..n− 1, and sv1, vng ∈ A. The
cost of a route is defined as cP = csv1 +

∑
i=1..n−1 cvivi+1

+ cvng.
The route must satisfy a set C of constraints imposed on the path. These

constraints are of the following type: if a set of nodes or arcs A is visited then
another set of nodes or arcs B must be avoided or visited. The visit or avoidance
of the sets A and B can be further specified by restrictions on the order of the
elements, on the time window, and on the flight level range (although the latter
does not play a role in our 2D setting).

Definition 1 (Constrained Horizontal Flight Planning Problem). Given
a network N = (V,A, τ , c), a departure node s, an arrival node g, and a set of
side constraints C, find an (s, g)-path P in D that satisfies all constraints in C
and that minimizes the total cost, cP .

We use the abbreviation CHFPP for the above.
In most common shortest path problems, a property that usually holds is

the First In First Out (FIFO) property. It states that a path P ′ reaching a node
with a cost worse than another path P reaching the same node cannot become
part of the final solution and can, therefore, be discarded. This property plays
a fundamental role in the efficiency of both Dijkstra and A∗ algorithms.

However, this property does not hold in our CHFPP. Indeed, a path P ′

arriving at a node with a cost worse than another path P reaching the same node
cannot be discarded, because if the conditions activated during the path P ′ are
less stringent than those activated during the path P , then P ′ could still become
part of the best route. Moreover, the performance on a given arc is influenced
by the weight (which in turn depends on the fuel consumed up to that arc) and
by the time at which the arc is traversed (due to the possibly changing weather
conditions). These dependencies of the resource consumptions on the path up to
a given point are reflected in the cost of the next arcs, which, therefore, cannot
be statically determined. Therefore, because of these dependencies of the cost
function, the FIFO property would not hold even if there were no constraints.
However, our experiments (see Section 4) show that for the real cases studied,
no optimal solution is missed by assuming the FIFO property on cost. Hence,
to simplify the presentation, we will assume the FIFO property on cost, but
emphasize that we will not assume the FIFO property on constraints.

2.1 Definition of RAD Constraints

RAD constraints are implications of two types: forbidden and mandatory. They
consist of an antecedent expression p and a consequent expression q. The expres-
sions are Boolean and contain identifiers of locations visited during the flight and
relationships between these. A RAD constraint is satisfied when the antecedent
is false or when an antecedent is true and the consequent is true (in the manda-
tory case) or false (in the forbidden case). Thus, the interpretation is p→ q for
the mandatory and p→ ¬q for the forbidden case. On the other hand, a RAD
constraint is violated if it is mandatory and p→ q is false or if it is forbidden

constraint : ’Forbidden:’ ID ’Antecedent:’ expr ’Consequent:’ expr
| ’Mandatory:’ ID ’Antecedent:’ expr ’Consequent:’ expr

expr_list : expr
| expr expr_list

expr : ’(’ AND expr expr_list ’)’
| ’(’ OR expr expr_list ’)’
| ’(’ SEQ expr expr_list ’)’
| ’(’ NOT expr ’)’
| term
| term time

term : point | airway | airspace | arrival | departure
point : ’Point:’ ID

| ’Point:’ ID ’FL:’ FLIGHT_LEVELS
airway : ’Airway: from’ ID ’to’ ID

| ’Airway: from’ ID ’to’ ID ’FL:’ FLIGHT_LEVELS
airspace : ’Airspace:’ ID ’FL’ FLIGHT_LEVELS
departure : ’Dep:’ ID
arrival : ’Arr:’ ID
time : ’Time:’ date ’to’ date ’-’ time ’to’ time ’-’ WEEKDAYS

Fig. 1. Bison (yacc) grammar for RAD constraints

Forbidden: ID xxxx
Antecedent: (AND (OR Airspace: eg Airspace: ee) (NOT

Point: mohni))
Consequent: Point: petot FL: 0-200
Time: 03-07-16 to 20-12-16 - 08:00 to 16:00 - FrSaSu

AND

AND petot

NOT

mohni

OR

eeeg

Fig. 2. Example of a forbidden constraint and its tree representation.

and p→ ¬q is false. In Fig. 1, we have defined a grammar to specify all possible
types of RAD constraints.

Expressions are written in prefix notation using non-binary operators. Be-
sides well-known operators, there is SEQ (sequence) for which all operands must
be satisfied in the same order as they are presented in the constraint. The terms
represent the possible flight choices, such as waypoint, airways between them,
airspaces, and departure/arrival airports. ID’s are the identifiers of the respective
terms. Note that flight levels, included in the grammar for completeness, are not
relevant in this exposition. Terms that have a time associated with them, are
only satisfied if they are visited within the specified time window. An example
of a constraint can be seen to the left in Fig. 2.

3 Path Finding Algorithms

In this section, we present path finding algorithms for solving the CHFPP to
optimality. We consider classic best-first and A∗ search modified to take the
constraints and the cost dependencies into account. Then, we introduce lazy
approaches to deal with constraints, both during the search and after the search,
leading to an iterated search process.

3.1 Handling the Constraints

In our path finding algorithms, constraints are checked while the route is con-
structed. Each RAD constraint is encoded in a tree data structure, where leaves
are terms and internal nodes are operators (see Fig. 2, right). The truth values
of the leaves are propagated up to the root, which must evaluate to false for the
route to be feasible with respect to the corresponding constraint. Initially, all
terms are in an unknown state. Then, if a term is resolved, the respective term
is removed from the tree and the truth value is propagated upwards.

The set of constraints C is translated into a dictionary of constraint trees
Γ with constraint identifiers as keys and the corresponding trees as values. For
a constraint γ ∈ Γ , we let ι(γ) denote the constraint identifier and T (γ) the
corresponding tree. Then, for each node, v ∈ V , and each arc, uv ∈ A, we
maintain a set of identifiers of the constraints that have those nodes or arcs,
respectively, as leaves in the corresponding tree. We denote these sets Ev and
Euv, with Ev = {ι(γ) | γ ∈ Γ, v appears in γ} and Euv defined similarly.

Partial paths under construction are represented by labels. A label ` is asso-
ciated with a node φ(`) = u ∈ V and contains information about a partial route
from the departure node s ∈ V to the node u. It is written as ` = (P`, c`, ∆`),
where P` = (s, ..., u) is the path taken, c` is the cost of the path, and ∆` is the
set of constraint trees of active constraints for the label `. Active constraints are
those where at least one term in the antecedent or consequent part has been
determined, but where the complete satisfaction of the constraint has not yet
been decided. Note that the constraint trees in ∆` are different from the initial
ones in Γ because some terms may have been resolved and the tree consequently
reduced. Formally, ∆` = {ρ(γ, P`) | ι(γ) ∈ Eu ∪Euv, uv ∈ P`}, where ρ(γ, P`) is
the tree T (γ) after propagation of the terms in P`. However, active constraints
preserve the original identifiers, that is, I(∆`) = {ι(γ) | γ ∈ ∆`} = {ι(γ) ∈
Eu ∪ Euv, uv ∈ P`}. Depending on whether the term is negated or not, some
locations can be advantageous or disadvantageous for a label to visit, opening
up or restricting possibilities ahead This can be determined for each term while
building the constraints and active constraints are flagged as belonging to one
of the two categories when a term is resolved.

All labels created are maintained in a structure Q, called the open list. The
expansion of a label is the operation of extracting a label from Q and inserting a
new label into Q for any node in D reachable by an outgoing arc from the node
of the label under expansion. When a label ` with φ(`) = u ∈ V is expanded
along an arc uv ∈ A, a new label `′ = ((s, . . . , u, v), c` + cuv, ∆`′) is created.
The new set of constraint trees is obtained by copying the trees from ∆`, and
the trees from Γ identified by Ev and Euv. While performing these operations,
the trees are reduced based on the satisfaction of u and/or uv. If the root of a
constraint tree in ∆`′ evaluates to true, then the label `′ is deleted, because the
corresponding route would be infeasible. On the other hand, if a root evaluates
to false, then the corresponding constraint tree is resolved but is kept in ∆`′ to
prevent re-evaluating it if, at a later stage, one of the terms that were logically

s

d

a

b

x c
g

3

2

1

1

1

1

1 1

5

Fig. 3. An example where a partly dominated label leads to an optimal route. The
labels are `1 = ((s, a, x), 3, {C1}), `2 = ((s, d, x), 4,∅) and `3 = ((s, b, x), 2, {C1}).

deduced appears in the path. Formally, ∆`′ = {ρ(γ, P`′) | γ ∈ ∆`} ∪ {ρ(γ, P`′) |
ι(γ) ∈ Eφ(`′) ∪ Eφ(`)φ(`′)}.

For efficiency reasons, we use the following conservative approximation of
logical implication between sets of constraints. We say that ∆`a is implied by ∆`b

if no constraints in I(∆`b)\I(∆`a) are marked as advantageous, no constraints in
I(∆`a) \ I(∆`b) are marked as disadvantageous, and the trees of all constraints
in I(∆`a) ∩ I(∆`b) are identical, in the sense that they are isomorphic when
regarded as ordered trees (sorted in the order of the input of the corresponding
constraints).2 Further, we hash a post-order traversal of the tree so that identity
check is fast. The traversal is performed anew any time the tree is evaluated
(during an expansion) and the hash function is recomputed and stored at the
same time. If we hash to a 64 bit value, false positives are extremely unlikely.

A label `a is dominated by another label `b if φ(`a) = φ(`b), c`a > c`b and
∆`b is implied by ∆`a . A label that is dominated is removed from the open
list and deleted. If φ(`a) = φ(`b), c`a > c`b but ∆`b is not implied by ∆`a ,
then we say that `a is partly dominated by `b. Partly dominated labels cannot
be removed from the open list. As an example, consider the scenario in Fig. 3.
Let C1 = ((a ∨ b) ∧ c) be the only constraint relevant to the example. Let
`1 = ((s, a, x), 3, {C1}), `2 = ((s, d, x), 4,∅) and `3 = ((s, b, x), 2, {C1}) be the
only three labels at x. The label `1 is dominated by `3 and can be discarded.
The route is cheaper and ∆`3 is implied by ∆`1 , as they both contain only C1.
On the other hand, `2 is only partly dominated by `3, because ∆`3 is not implied
by ∆`2 . Hence, `2 is not discarded. Indeed, `2 leads to the cheapest route to g,
since `3 must avoid c while `2 does not have to.

3.2 Best-first and A∗ Algorithms

Our algorithms are based on classic best-first and A∗ algorithms. These algo-
rithms expand labels from an open list Q until a path from source to goal is
proven optimal. When we extract a label from the open list, we choose one of

2 Note that a more accurate determination of subsumption between two trees, ac-
curately reflecting semantic logical implication, would require solving a subgraph
isomorphism that can be quite costly due to its NP-completeness.

smallest cost (best-first) or smallest sum of the cost of the label and a heuristic
estimate of the cost from the corresponding node to the goal (A∗). The algorithm
terminates when the goal g has been reached and the incumbent best path to
g is cheaper than the cheapest label in Q. In best-first, the solution returned is
optimal. In A∗, the solution returned is optimal if the heuristic is both admissible
(the estimated cost must never overestimate the cost from a node to the goal)
and consistent (for every node u, the estimated cost of reaching the goal must
not be greater than the cost of getting to a successor v plus the estimated cost of
reaching the goal from v). Consistency can be shown to be a stronger property as
it also implies admissibility. As heuristic, we use the cheapest path determined
by preprocessing the graph with a backward breadth-first search from the goal
to all other nodes. The guarantee of admissibility and consistency of these esti-
mates is obtained by disregarding the constraints and assuming a cost on each
arc that is a lower bound of the corresponding costs. The lower bound can be
computed by choosing the best weather conditions in the period between the
departure time and an upper bound on the arrival time.

A baseline of the resulting path finding algorithm for solving CHFPP is given
in Alg. 1. The function FindPath takes the initial conditions of the aircraft
as input, i.e., the initial fuel load τx0 , the departure time τ t0, a network N =
(D, τ , c) built using information from the airspace, aircraft performance data,
and weather conditions. Here, τ and c are intended as data tables. The time and
fuel consumption for an arc is looked up in these tables using the inputs: (i) the
fixed flight level, (ii) weight, (iii) international standard atmosphere deviation
(i.e., temperature), (iv) wind component, and (v) cost index.3 Inputs (ii), (iii),
and (iv) depend on the partial path.

Differently from classic path finding algorithms, the algorithm in Alg. 1 in-
cludes an extra comparison with respect to constraints for the domination of
labels (lines 20–21 and 23). Under the FIFO assumption, it would be possible
to determine a strict domination among labels and to add nodes of expanded
labels to a closed list. As a consequence, at most one label per node would be
expanded. However, in our case, domination of labels also needs to take con-
straints into account, for which the FIFO property does not hold. Thus, partly
dominated labels cannot be discarded and the closed list becomes unnecessary.
As a consequence, more than one label from a node can be expanded.

Finally, although D contains cycles and although, theoretically, the cycles
could be profitable because of the time dependency of costs, labels are not al-
lowed to expand to already visited vertices because routes with cycles would be
impractical.

3 The cost index is an efficiency ratio between the time-related cost and the fuel cost
that airlines use to specify how to operate the aircraft, determining the speed of the
aircraft. It is decided upon at a strategic level and cannot be changed during the
planning phase.

1 Function FindPath((τx0 , τ
t
0),N = (D(V,A), τ , c),Γ)

2 initialize the open list Q by inserting `s = ((s), 0, {})
3 initialize `r = ((),∞, {})
4 while Q is not empty do
5 ` ← extract the cheapest label from Q
6 if (c` > c`r) then break . termination criterion
7 if (φ(`) = g) and (c` < c`r) then
8 `r ← `
9 continue

10 foreach node v such that uv in A do
11 `′ ← label at v expanded from `
12 evaluate constraint trees in ∆`′

13 if one or more constraints in ∆`′ are violated then
14 continue

15 Insert(`′,Q)

16 return P`r and c`r

17 Function Insert(`′, Q)
18 foreach label ` ∈ Q with φ(`) = φ(`′) do
19 if (c` > c`′) then
20 if (∆` is implied by ∆`′) then . ` is dominated
21 remove ` from Q

22 else if (c′` > c`) then
23 if (∆` is implied by ∆`′) then return . `′ is dominated

24 insert `′ in Q
25 return

Algorithm 1: A general template for solving CHFPP

3.3 Lazy Expansion

In Alg. 1, partly dominated labels are also added to Q, so only few labels can
actually be dominated. To speed up the algorithm, we attempt a lazy approach
to expansions by postponing the expansion of partly dominated labels. This is
achieved as follows. At each node v ∈ V , we maintain a waiting list of labels,
ωv. Then, instead of adding partly dominated labels at a node v to Q, we add
them to ωv. The idea is that if all successors of the cheapest label at v, ` =
((s, ..., v), c`, ∆`), are able to expand throughout the cheapest path from φ` to
g without being affected by constraints in ∆`, then there is no label that was
partly dominated by ` that would lead to a better route. However, if there is a
successor `′ of ` that cannot expand to the next node in the cheapest path from
φ`, then one of the labels in ωv could potentially lead to a better route, and thus
must be inserted into Q. This is done by backtracking through every node in the
path of the label `′ and, at each node in P`′ , inserting into Q the cheapest label
from the corresponding waiting list.

s

a

x y b

g

1

3

1
2

2 1 1
s

x

a y b

g

4

1

1

1

1 1 1

Fig. 4. Backtracking triggered by domination (left) and cycling (right)

Backtracking is triggered whenever a label cannot be expanded to a reachable
node because a constraint becomes violated and the path infeasible or whenever a
label is dominated. An example of backtracking due to infeasibility was presented
in Fig. 3. There the label l2 is partly dominated by l3 and hence set in ωx, but
when l3 fails to expand to c, l3 is backtracked, resuming l2, which is moved from
ωx to Q. For an example where backtracking is needed because of domination,
consider the situation in Fig. 4 (left). The only relevant constraint is C2 = (a∧b).
At the node x, we have the labels: `1 = ((s, a, x), 2, {C2}) and `2 = ((s, x), 3,∅)
with `2 in ωx because of being partly dominated by `1. At the node y, the
labels are: `3 = ((s, a, x, y), 4, {C1}) (which is the expansion of `1) and `4 =
((s, a, y), 3, {C1}). When the label `3 is discovered to be dominated by `4, it
cannot simply be removed because then we would lose the label `2 that, when
expanded to y, becomes `5 = ((s, x, y), 5,∅), which is only partly dominated by
`4. Hence, we need to backtrack `3 and include `2 in Q.

When we backtrack a label ` to a given node u, we select the cheapest label
`′ from the waiting list at u and add that to the open list. We only need to
backtrack ` once, since backtracking `′ will trigger further moves to the open
list, if it becomes necessary. Therefore, we associate a backtracking indicator
with each label to prevent backtracking from the same label a second time.

Particular care must be devoted to potential cycles. Routes are not allowed to
visit the same node twice, so the detection of cycling in D can also be the cause
of a label not being expanded. Consider the situation in Fig. 4 (right). The only
relevant constraint is C3 = (a ∧ b). The labels at x are `1 = ((s, a, y, x), 3, {C3})
and `2 = ((s, x), 4,∅), with `2 in ωx because of being partly dominated by `1.
Further, at b, we have the label `3 = ((s, a, y, b), 3, {C3}). When we try to expand
`1, we discover it cannot be expanded anywhere without creating a cycle. Then
we consider `3, and discover that it has become infeasible. However, backtracking
`3 does not allow us to resume `2 from ωx because we do not pass through x.
Thus, `2 would never be added to Q and we would not find the one feasible
route. Hence, backtracking must be triggered also when cycles are detected.

To handle this efficiently, we equip all labels ` with a dictionary, H, asso-
ciating nodes with labels. The keys of such a dictionary are the nodes of the
path P`, and the associated value, H(u), is the label at u which is eventually
expanded into `. We use a small hash table and get expected constant time look-
ups. After the initialization of the dictionary, cycles can be detected in constant
time by a look-up. Additionally, we let π(`) denote the label associated with the
predecessor of the last node in P`.

Further, it should be noted that, when backtracking is caused by domination
or cycle detection, it can be delayed. Let `′ be a label that we need to backtrack
and let ` be the blocking label, that is either the dominating label (domination
case) or H(u) if `′ is trying to expand to a node u that is already in P`′ . Let B`′

denote the set of labels that would be added to Q, if `′ were to be backtracked
immediately. Since the labels in B`′ were all partly dominated predecessors of `′,
any successor of those reaching φ(`′) would be more expensive than `′ and thus
they would be (partly) dominated by ` as well. Therefore, backtracking can be
delayed until ` is backtracked, which would allow the successors of labels in B`′

to reach farther than φ(`).
To implement delayed backtracking, we add to the information maintained

with each label ` a list β` of labels that were blocked by ` at some point. Thus,
whenever a label `′ is blocked by ` and should be backtracked, we do the follow-
ing. If ` has already been backtracked, we backtrack `′ immediately, but other-
wise, we delay and add `′ to β` instead. When ` itself is backtracked, besides
π(`), also all labels in β` are backtracked.

Theorem 1. Algorithm 1 with lazy expansion returns optimal routes.

Proof. The algorithm is derived from Algorithm 1, which is optimal, by adding
lazy expansion. To show that lazy expansion maintains optimality, we need to
show that all labels that are still in any waiting list when the algorithm termi-
nates cannot be part of an optimal (s, g)-path.

Let ` be a label at v ∈ V , stored in ωv when the algorithm terminates. Since `
is in ωv, there must exist a label `′ which partly dominated `, i.e., c`′ < c`. Since
` is still in ωv when the algorithm terminates, none of the expanded successors
of `′ can have caused a backtrack. Thus, any possible path from v to any node
in V originating from ` has also been explored by the expanded successors of `′

and is also cheaper.

3.4 Further Elements: Lazy Constraints and Constraint Pruning

Lazy Constraints and Iterative Path Finding. An alternative approach is to ig-
nore the constraints initially and to iterate the search, adding constraints only
when they are actually violated in the route found. First, a route is found with-
out considering any RAD constraints. Then, the route is checked against all
constraints. If no constraints are violated, the route is valid and the algorithm
terminates. Otherwise, if one or more constraints are violated, the constraints
are added to the input data of the path finding algorithm and a new search
is started. The advantage of this procedure is that it avoids considering many
constraints that never turn out to be relevant for the optimal route.

Heuristic Constraint Pruning. Some active constraints may become very unlikely
to be violated if their terms correspond to locations that are already passed by
the label or far from the direct route between the current node of the label and
the goal. Thus, whenever during expansion a label ` evaluates a constraint, we

try to estimate heuristically whether it is still relevant or not. More precisely,
we compare a lower bound and an upper bound for the length of a route from
φ(`) ∈ V to the destination passing through the location u ∈ V (or uv ∈ A)
represented by the term. If the lower bound is larger than the upper bound, then
we declare the term not satisfiable. Let d(P) be the flying distance covered by a
path P and gcd(u, v) be the great circle distance between two airway points u
and v. The lower bound is given by d(P`) + gcd(φ(`), u) + gcd(u, g). We use two
different heuristic values for the upper bound. One is the current result : once
the search finds any feasible (s, g)-path, with `′ being the final label, d(P`′) is
saved as the upper bound. If a better (s, g)-path is found, the bound is updated.
The second heuristic is the remaining distance. It uses d(P`)+(1.3 ·gcd(φ(`), g))
as the upper bound. The factor 1.3 was determined by observing the maximal
deviation of historical routes from the great circle distance. This heuristic is dis-
abled when close (i.e., within 20 nautical miles) to the departure or destination,
as the procedures to exit and enter airports are unpredictable and can deviate
considerably from great circle distances.

4 Experimental Results

Experimentally, we have compared different algorithms obtained from the com-
bination of the elements presented in the previous sections. We consider compu-
tation time, number of labels expanded, and the quality of the routes.

We use real-life data provided by our industrial partner. This data consists
of aircraft performance data, weather forecast data in standardized GRIB2 for-
mat, and a navigation database containing all the information for the graph.
The graph consists of approximately 100,000 nodes and 3,000,000 edges. The
aircraft performance data refers to one single aircraft and tests are run on the
optimal cruising flight level of that aircraft, i.e., the one that yields the best
cost on average weather conditions. The data for the weather forecast is given at
intervals of three hours on specific grid points that may differ from the airspace
waypoints. They are then interpolated both in space and time. A test instance is
specified by a departure airport and time, and a destination airport. A set of 13
major airports in Europe was selected uniformly at random to pursue a uniform
coverage of the constraints in the network. Among the 156 possible pairings,
14 were discarded because of short distance, resulting in 142 pairs that were
used as queries. Great circle distances range from 317 to 1721 nautical miles.
All algorithms were implemented in C# and the tests were conducted on a vir-
tual machine in a cloud environment with an Intel Xeon E5-2673 processor at
2.40Ghz and with 7GB RAM. To account for fluctuations in CPU time mea-
surement, each algorithm was run 5 times on each instance and only the fastest
was recorded. A preliminary comparison between A∗ and best-first unveiled that
best-first is impracticable. Within a time limit of one minute, it terminates only
in 11 instances against 103 of A∗.

Assessment of the FIFO assumption on costs. We tested whether assuming
the FIFO property on costs would lead to suboptimal results. Removing the

FIFO property means that labels in the open list are never dominated. More
specifically, we tested two versions of A∗, one that assumes FIFO, and thus is as
described in the previous sections, and one where the lines 18–23 of the Insert
function in Alg. 1 are omitted. With a timeout of 10 minutes, A∗ without the
FIFO assumption solved 78 out of 142 instances, and in these instances, all
returned solutions were of the same cost as A∗. Thus, we conclude that at least
for our real-life setting, assuming the FIFO property on costs seems to be a good
heuristic that does not affect the optimality of results. Henceforth, we continue
to assess only algorithms that use this assumption.

Empirical run-time. We include in the run-time of the path finding algorithms
both the time used for preprocessing (determining lower bounds for each vertex)
and the time spent for actually performing the search. Initially, we compare the
run-time time of 4 different algorithms: A∗, A∗ with the upper bound heuristic to
ignore constraints (A∗UB), A∗ with the remaining distance heuristic (A∗RD), and
iterative A∗ (iA∗). We use A∗ as a baseline algorithm and calculate the percentage
deviation of running time per instance of the other algorithms with respect to
A∗. A scatter plot of the run-time percentage deviations from A∗ is shown in
Fig. 5 (left column), where the x-axis represents different instances sorted by
great circle distance between query airports. A time limit of one minute was
used in these experiments. Within this time limit, A∗ did not terminate in 39
queries. These cases are detectable by the lack of points for some ordinate in the
first panel in Fig. 5. There does not seem to be a correlation between the size of
the instance and the non-termination of A∗.

We observe that A∗UB keeps returning optimal solutions (not shown), only
results in minor runtime improvements compared to A∗, and does not terminate
in the same 39 instances. Separately, we observed that A∗ does little work after
finding the first path to the goal, indicating that the heuristic cost value used for
selection in all our A∗ algorithms must be very close to the exact value. Thus,
since A∗UB has an impact only after an (s, g)-path has been found, the space
for improvement is small.

A∗RD is considerably faster than A∗ and the number of instances unsolved
within 1 minute is reduced to 15. Unfortunately, the omission of constraints is
sometimes too optimistic, leading to suboptimal routes due to the inaccurate
domination of some labels. This happens in 11 out of the 142 instances where
the solution quality was within 0.1 – 0.6% of the optimal solution. This effect can
be controlled by increasing the 1.3 factor in the remaining distance heuristic, but
this increases the running time. On the other hand, we never experienced that
A∗RD returned infeasible solutions (which could theoretically happen).

The winner of the comparison is by far iA∗. The reduction in computation
time with respect to A∗ is up to 99% in all instances going from running times
of the order of seconds to running times of the order of milliseconds. It solves all
cases where A∗ does not terminate, taking 12 seconds in the worst case (which
is an extreme outlier in iA∗ running times). The number of iterations ranges
between 1 and 10 and although the overall number of expanded labels can in

Fig. 5. Regular algorithms (left) and lazy expansion (right).

some cases become comparable to that of A∗, the reduction in computation time
from not having to handle a large number of constraints is huge.

In the right column of Fig. 5 we assess the impact of the lazy expansion to all
four algorithms. The deviations are still calculated with respect to the results of
the baseline A∗ algorithm. The visual comparisons performed row-wise inform us
that the the lazy expansion improves the running time of the algorithms only in
few cases. While in many instances there is a reduced number of label expansions,
the overhead in run-time due to maintaining the waiting and backtracking lists
is sometimes larger than the time saved.

Instance complexity. In Fig. 6, we investigate the scaling of the algorithms with
respect to instance size. We removed iA∗ from the analysis because its run-
ning times and number of constraints activated are too small (note that iA∗ is
however using A∗ and hence it is implicitly represented). The plots are on a
semi-logarithmic scale with the run-time expressed in milliseconds on the y-axis.
In the left column, we show the dependency on the great circle distance between
the departure and destination airports of the query. We observe that there is
no pattern in the points, indicating that this distance is not a good predictor
for the complexity of the search. In the right column, we show the dependency
of the run-time on the number of constraints that became active during the
search. The plots indicate that this can be an important regressor hinting at an
exponential relationship. Unfortunately, the number of constraints that become
active is known only after the search has taken place. An analysis of the corre-
lation between great circle distance and number of constraints was found to be
inconclusive, hinting at the fact that it is not the length of the route but rather
the density of constraints in the area it crosses that is important.

Fig. 6. Time complexity of the search as a function of distance (left) and as a function
of constraints activated (right). The search is truncated at a time limit of one minute.

5 Conclusions

We have studied constraint handling in path finding algorithms for 2D route
planning. We formalized the structure of these constraints and represented them
with an ad hoc tree structure that makes it efficient to gradually update con-
straints and eliminate terms that become irrelevant during the search. We showed
that from a collection of 16,000 constraints arising in a real-life setting, up to
4,000 were activated during the search of the algorithms. We concluded that a
combination of constraint handling during the search and iterating A∗, intro-
ducing only relevant constraints, leads to significantly better running times than
including all constraints from the beginning. We regarded this approach as a
lazy constraint approach, but it can also be seen as a form of logic-based Ben-
ders decomposition driven by nogood cuts [9]. In our experiments, this approach
reduced the running time of A∗ from a few seconds to a few milliseconds. We
also investigated another type of lazy approach, where the label expansions in
path finding algorithms is conducted lazily. However, our experimental evalu-
ation indicated that in our specific real-life instances, the contribution of this
technique is not as pronounced as the lazy constraint approach. The handling
of constraints during the search was new for our industrial partner, who decided
to implement our algorithms in their product, obtaining an increased robustness
and considerable reductions in running times.

We have also approached the problem with a generic purpose solver via mixed
integer programming. If costs are considered static, the model is a classic min
cost flow model with additional constraints derived from the RAD constraints
that break the total unimodular structure of the constraint matrix. Preliminary
results showed that this approach is slow. The instances were solved on average in
about 12 minutes on an 8 core machine using about 10 GB of memory. However,
this approach cannot deal with the—here fundamental—resource dependency
structure of the costs. We expect this to be an issue with SAT solvers as well.

Throughout we have assumed a static flight level chosen as the one with best
average performance. As future work, we plan to include the vertical dimension
in our flight planning. The size of the network grows dramatically, and this leads
to entirely new challenges.

References

1. Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen. Vertical optimization
of resource dependent flight paths. In Twentysecond European Conference on Ar-
tificial Intelligence (ECAI), volume 285 of Frontiers in Artificial Intelligence and
Applications, pages 639–645. IOS Press, 2016.

2. Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
planning in transportation networks. Technical Report arXiv:1504.05140 [cs.DS],
arXiv, 2015.

3. Alberto Olivares, Manuel Soler, and Ernesto Staffetti. Multiphase mixed-integer
optimal control applied to 4D trajectory planning in air traffic management. In
Proceedings of the 3rd International Conference on Application and Theory of Au-
tomation in Command and Control Systems (ATACCS), pages 85–94. ACM, 2013.

4. Hendrikus M. de Jong. Optimal track selection and 3-dimensional flight planning:
theory and practice of the optimization problem in air navigation under space-time
varying meteorological conditions. Staatsuitgeverij, 1974.

5. Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle,
Thomas Schlechte, and Swen Schlobach. Solving time dependent shortest path
problems on airway networks using super-optimal wind. In 16th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS), pages 12:1–12:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

6. Hananya Yinnone. On paths avoiding forbidden pairs of vertices in a graph. Discrete
Applied Mathematics, 74(1):85–92, 1997.

7. Jakub Kováč. Complexity of the path avoiding forbidden pairs problem revisited.
Discrete Applied Mathematics, 161(10–11):1506–1512, 2013.

8. Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

9. John N. Hooker and Greger Ottosson. Logic-based benders decomposition. Mathe-
matical Programming, 96(1):33–60, 2003.

