
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

ON-LINE SEAT RESERVATIONS

VIA OFF-LINE SEATING ARRANGEMENTS∗

JENS S. KOHRT and KIM S. LARSEN

Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

{svalle,kslarsen}@imada.sdu.dk
http://www.imada.sdu.dk/∼{svalle,kslarsen}

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

When reservations are made to for instance a train, it is an on-line problem to accept
or reject, i.e., decide if a person can be fitted in given all earlier reservations. However,

determining a seating arrangement, implying that it is safe to accept, is an off-line
problem with the earlier reservations and the current one as input. We develop algorithms
with optimal running time to handle problems of this nature.
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1. Introduction

In Danish as well as other European long-distance train systems, it is very common

to make reservations. Near weekends and holidays, almost all tickets are reserved

in advance. In the current system, customers specify their starting and ending

stations, and if there is a seat available for the entire distance between the two

stations, a reservation is granted. Then the customer is given a car and seat number

which uniquely specifies one seat in the train set. The problem of giving these seat

numbers on-line has been studied extensively,9,10,8,4,3 and the conclusion is that

no matter which algorithm is used, the result can be quite far from optimal. How

far depends on the pricing policy. For unit price tickets, a factor of about two is

lost, depending on more specific assumptions. If the price depends linearly on the

distance, measured in number of stations, then the result can be much worse.

We give a very simple example of how mistakes are possible in this scenario.

Much more advanced examples can be found in the literature cited above. In the

∗A preliminary version of this paper appeared in the Eighth International Workshop on Algorithms
and Data Structures, Lecture Notes in Computer Science, vol. 2748, pages 174–185, Springer-
Verlag, 2003.
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example, we assume the stations are numbered 1, 2, 3, and 4, and we assume that

the train has only two seats, seat 1 and seat 2. The first reservation is (1, 2), and

without loss of generality, we give the seat number 1. The next reservation is (3, 4).

If we give seat 2 to this reservation, then the next reservation will be (1, 4), which

we must reject, even though it could have been accommodated had we given seat 1

the second time as well. If, on the other hand, we give seat 1 to the reservation

(3, 4), then we might get first (1, 3), which we can give seat 2, and then (2, 4), which

we must reject. Thus, no matter which decision we make on the second reservation,

we may accommodate fewer than possible, if we knew the entire future.

Because of these results, it is tempting to switch to a different system, where

seat numbers are not given in response to a reservation, but instead announced

later. Many people expect that soon we will almost all be equipped with PDAs

(personal digital assistants) or just cell phones, so it will be practically feasible to

send the seat number to the customer shortly before the train may be boarded. An

electronic bulletin board inside the train could inform the remaining customers of

their seat number. Notice that in both the example scenarios above, it would be

possible to seat all customers, if seat numbers are not determined until after all

reservations are made.

Computing a seating arrangement off-line is a well-known problem. The input to

the problem is a sequence of requests for seat reservations of the form (begin, end),

where begin and end indicates stations. The stations are assumed to be numbered

consecutively from one up to the number of stations. We assume that the train

travels through the stations in numerical order, so for all requests we assume that

the number of the end station is strictly greater then the number of the begin

station. A fixed number N of seats are available and they are numbered from one

through N .

A seating arrangement is a function f from the sequence of requests into the set

of seat numbers {1, . . . , N}. The arrangement is feasible if for all pairs of requests,

(b, e) and (b′, e′), where f((b, e)) = f((b′, e′)), either e ≤ b′ or e′ ≤ b, i.e., if two

reservations are placed on the same seat, then one person gets off no later than

at the station where the other person gets on. The objective of the off-line seating

arrangement problem is to accommodate as many requests as possible.

The decision version of the off-line problem is equivalent to the channel-

assignment problem13 and both of these problems can be viewed as variants of

coloring of interval graphs.14 In Ref. 13, it is shown that the off-line problem can

be solved in the optimal time Θ(n log n) in the decision tree model, where n is

the number of requests. The optimality follows by a reduction from the element

uniqueness problem.11

In the on-line seating arrangement problem, the requests are given one by one

and the algorithm has to decide about each request before knowing the later re-

quests. The Refs. 9, 10, 8, 4, 3 focus on the quality of on-line algorithms measured

as the ratio of the number of requests for reservations which are accommodated

by the on-line algorithm to the number of requests which are accommodated by
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an optimal off-line algorithm (optimal with regards to this quality measure; these

papers are not concerned with computational efficiency).

The problem we consider is in some sense in between the on-line and off-line

problems described above, since we wish to compute the final seating arrangement,

but we must decide on-line for each reservation whether or not it can be accommo-

dated. Here, a reservation can be accommodated if the inclusion of the reservation

into the collection of already accepted reservations will still allow for a solution,

given the number of seats available. Further, as in the on-line version of the prob-

lem, the off-line algorithm is given the reservation requests in a sequence and has to

accept as many as possible under the two restrictions that the requests are treated

in the order they are given, and that a request must be accepted whenever this is

possible.

Thus, we want a data structure with an operation insert, which inserts a reser-

vation into the data structure if the resulting collection allows for a solution using at

most N seats, where N is a fixed constant. If not, then the request for a reservation

should be rejected. We also want an operation output, which from the data structure

extracts a seating arrangement. We assume that each reservation is accompanied

by some form of identifier (reservation number, cell phone number, or similar) such

that each customer can be notified regarding his or her allocated seat. The output

must be sorted by increasing starting station. Finally, we want an operation delete

that allows customers to cancel their reservation.

We provide a data structure where the running time of the operations are op-

timal in the pointer machine model.7 Let n be the current number of reservations,

and let p be the current number of different stations (which could be a lot smaller

than n and also smaller than the number of possible stations). The time complexity

of insert and delete is O(log p) and the time complexity of output is O(n).

Given the motivating application for our data structure, it might be interesting

to build pauses into the output operation such that it outputs data for the current

station and then waits until the next station is reached, i.e., at a given station

(possible shortly before the train arrives), all customers with reservations starting

there are informed of their seat number. In such a scenario, our data structure

allows us to perform insertions of reservation, provided that the starting station

of the reservation is later than the current station, and the output would still be

correct, i.e., it would be the same as if all reservations were made before the output

operation was initiated. Similarly, deletions of reservations can be carried out when

the starting station of the reservation has not yet been reached. The total time

spent on outputting will still be O(n), where n is the total number of intervals,

which have been inserted and not deleted. The fact that this gradual outputting

can be done efficiently may be even more interesting in non-train scenarios, if our

algorithm is used to allow computers to reserve some resources for particular time

intervals, e.g., in a variant of the channel-assignment problem.

Our structure is similar to segment trees (in Ref. 6, this data structure is re-
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ported to have been described first in Ref. 5) and dynamic segment trees.15 Segment

trees are data structures for storing intervals represented by their endpoints. This

is similar to our problem since a reservation can be considered an interval where

the begin and end station are the two endpoints. A segment tree is an extension

of a standard balanced binary search tree. It is initialized by specifying a set of

possible endpoints. Each possible endpoint is stored in a unique leaf ordered from

left to right. Subsequently, intervals can be inserted into the segment tree under the

restriction that endpoints for the intervals are chosen only from the set of possible

endpoints from when the structure was initialized.

In contrast, to obtain optimal time complexities, we need to be able to insert new

endpoints (stations) dynamically. Otherwise, in situations where there are sequences

of stations where nobody gets on or off, we would arrive at a suboptimal complexity.

This can be handled by dynamic segment trees, but these are fairly complicated

(which is not surprising because they solve a more involved problem). For the

dynamic segments trees of Ref. 15, the time complexity of insert is O(log n) and

the time complexity of delete is O(a(i, n) log n), where a is related to the inverse

Ackermann function1 and i is a constant. This function grows extremely slowly

and can for all practical purposes be considered a constant. The time complexity

is only amortized because the structure must be rebuild occasionally. The space

requirements are O(n log n). It may be possible to adjust dynamic segment trees

to solve our problem. However, the problem scenarios are not comparable since

dynamic segment trees must be able to answer stabbing queries, whereas we must

be able to provide an efficient output operation and also efficiently disallow insert

operations if and only if some stabbing query after the insertion would yield a set

with a cardinality greater than N . In the main part of the paper, for simplicity, we

refer to and compare with the better known segment trees.

2. The Algorithms

In this section, we follow the graph tradition and talk about intervals, endpoints,

and colors instead of reservations, stations, and seat numbers, respectively. Thus,

a reservation, which consists of a begin station and an end station, can be viewed

as an interval with two endpoints, and instead of referring to a reservation being

on a given seat, we say that the interval is given a color. The feasibility definition

is then expressed in this setting as follows. A coloring of the intervals, which is a

function from the sequence of intervals into the set of colors {1, . . . , N}, is feasible
if for all pairs of intervals in the sequence, (b, e) and (b′, e′), where (b, e) and (b′, e′)

are given the same color, either e ≤ b′ or e′ ≤ b.

We first discuss the simple datatypes used in our algorithms. Intervals have left

and right endpoints, which we refer to as begin and end. When we simply refer to an

endpoint, it can be either of the two. The intervals are closed to the left and open to

the right. The only reason for this choice is ease of terminology. It is convenient that

intervals are disjoint if and only if the corresponding reservations can be placed on
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the same seat (which rules out making the intervals closed). At the same time it is

convenient that the union of a number of consecutive intervals is again an interval

(which rules out making the intervals open). The concrete choice is arbitrary, i.e.,

the intervals could just as well have been open to the left and closed to the right.

Intervals may also have a color. If necessary, we assume that intervals are also

equipped with a unique identifier such that otherwise identical intervals can be

distinguished.

The data structure we propose is a binary tree for storing intervals. The leaves

represent the set of all the different endpoints which have been used. They appear

in the leaves in sorted order from left to right. To be precise, if we consider all

the intervals which have been inserted into the structure at a given time, the set

of different endpoints from these intervals is stored in the leaves—one endpoint in

each leaf, i.e., the number of leaves equals the cardinality of the set of endpoints

from the intervals. Even if the same endpoint has been used more than once in the

sequence of intervals, it only appears in one leaf.

The tree is built from nodes which contain the following information: a left and

right reference to the left and right subtrees, respectively, and the attribute cover,

which stores the interval covered by a node. For a leaf node, the cover interval is

the interval from the endpoint of the leaf to the endpoint of the next leaf to the

right, and for an internal node, this is the union of all the intervals of the leaves in

its subtree. At any leaf node, the intervals which begin or end at the endpoint of

the leaf are stored in the attributes BeginList and EndList, respectively.

We need to be able to determine efficiently whether or not we can fit in a given

new interval, i.e., if we add this interval to the collection of intervals accepted so

far, is it still possible to find a feasible coloring?

Let us consider the interval [a, b) and let x1 < · · · < xm be all the endpoints

from previous accepted intervals which fall in between a and b. A necessary and

sufficient condition in order to fit in [a, b) is that among [a, b) together with all

previously accepted intervals, there are at most N intervals overlapping each of the

cover intervals [a, x1), [x1, x2), . . . , [xm, b) (see the correctness section). If a is not

an endpoint in the structure at this time, [x0, x1) is used instead of [a, x1), where x0

is the largest endpoint smaller than x1. Similarly, [xn, xn+1) may be used instead of

[xm, b). In any case, these intervals are cover intervals of subsequent leaf nodes. We

cannot afford to check all these subintervals separately, but fortunately with our

tree representation, we can do better. We refer to the number of accepted intervals

overlapping one of the small subintervals, [xi, xi+1), as the density of this interval.

To verify this property efficiently, we introduce local values, k and ∆k, in the

nodes of the tree. Our manipulation of these values will ensure that the density

information that we need can always be computed efficiently.

We can explain the intuition behind k and ∆k from a static equivalent of our

structure. In the dynamic case, these properties no longer hold, and k and ∆k can

only be understood as a means of maintaining a certain invariant which we will
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Fig. 1. An example of where ∆k-values are incremented. This is done at all the filled nodes.
The inserted interval is [x4, x14). Notice that for any leaf xi where 4 ≤ i < 14, the ∆k-value is
incremented at exactly one node from the root of the tree to xi. For all other xi, all nodes from
the root of the tree to xi keep their ∆k-values.

discuss later.

In the dynamic case, we do not store endpoints (stations) before they are used

in some request (reservation). Now imagine instead that we build a tree where all

possible endpoints are stored consecutively in the leaves initially, after which we

move on to process intervals. Assume that we insert [a, b). Then we would increment

the ∆k-value of exactly those nodes where the cover interval is contained in [a, b)

and no node closer to the root has that property. An example of this is given in

Fig. 1.

The effect of these increments is that for any path from the root to some leaf,

storing some endpoint xi, a ≤ xi < b, exactly one node has its ∆k-value incre-

mented. We later argue that only a logarithmic number of nodes need to be visited.

Furthermore, we maintain that the k-value of a node is the maximal sum of ∆k-

values from that node down to a leaf in its subtree. Thus, if we think of an interval

as being registered at the nodes where we increment the ∆k-values, the k-value of

a node is the maximal density of positions in the node’s subtree with regards to

intervals registered in that subtree.

Now, to determine whether or not an interval [a, b) can be accepted, we must

check whether or not the inclusion of the interval will increase the density of any

of the small subintervals, e.g., [xi, xi+1), to more than N . This is done by recursive

checks down the tree as follows. Initially, we assume that we have N colors available

(corresponding to N free seats). We adjust this number as we discover non-zero

∆k-values on our way down the tree. There are two non-trivial cases. If the cover

interval of the node we are currently at is contained in the interval we wish to

insert, [a, b), then the insertion of [a, b) will increase the density by one for all the

small subintervals under this node. The interval [a, b) can therefore be included if
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and only if the number of colors available are at least one more than the current

maximal density (stored in the k-value of the node). If the cover interval is not

contained in [a, b), but overlaps it, then all the registered intervals at this node

(counted in the ∆k-value) overlap [a, b); we reduce the number of colors available

by ∆k and proceed recursively to the subtrees.

When switching to the dynamic case, we are forced to move ∆k-values around

when we rebalance the tree. However, we maintain the two properties which we

used to implement the density check described above. We define the ∆-length of

a path from a node to a leaf as the sum of all ∆k-values on that path. Now, the

properties are the following:

(1) The ∆-length of any path from the root to a leaf is exactly the density of the

cover interval of that leaf.

(2) The k-value of a node is the maximum ∆-length of any path from that node to

any leaf in its subtree.

As a basis for our data structure, we use a worst-case logarithmically balanced

search tree such as a red-black tree12 or an AVL-tree.2 This means that in addition

to the attributes for tree nodes described above, attributes appropriate for rebal-

ancing should also be present, but since the exact choice of tree is irrelevant, we

just assume that the necessary attributes are present.

For clarity, we assume that the starting point is a leaf node covering the interval

−∞ to ∞ with k = ∆k = 0 and empty BeginList and EndList.

To ensure that the two demands regarding k and ∆k, as given above, are met, we

initialize the ∆k-values of new leaf nodes to zero. When inserting a new interval into

the structure, we increment the ∆k-value of exactly one node on any path from the

root node to a leaf, the cover interval of which intersects the new interval. All other

nodes maintain their ∆k-values. Subsequently, we update the k-values bottom-up.

The algorithms for insertion is given in Fig. 2. The procedure insert is called with

the root of the tree as its first argument and the interval to be inserted as its second

argument. We use “attribute” notation, so if x is an interval with attributes begin

and end (the endpoints of the interval), then x.begin and x.end are used to denote

these. Similarly, leaf nodes have two lists of intervals called BeginList and EndList.

We assume that those are equipped with standard operations such as append, so

we can write, e.g., n.BeginList.append(x) to mean “append x to BeginList in node

n”.

As a first step in the insert procedure, we check if the new interval fits in, as

described above. If it cannot, no further action is taken. In the motivating applica-

tion, this is where the customer would be informed that the reservation is rejected.

If, on the other hand, we get a positive response, we proceed to inserting the two

endpoints of the interval. If an endpoint already exists, we merely append the in-

terval to the appropriate list in the leaf of intervals beginning (or ending) at the

endpoint stored in the leaf. If the endpoint is new, we must first introduce a new

leaf, and possibly rebalance the tree. As the final step of an insertion, we update
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proc insert(tree: Node, x: Interval)

if okToInsert(tree, x, N) then

insertEndpoint(tree, x.begin, true, x)

insertEndpoint(tree, x.end, false, x)

updateDensity(tree, x, 1)

func okToInsert(n: Node, x: Interval , c: Integer): Boolean

if n.cover ∩ x = ∅ then
return True

else if n is a leaf or n.cover ⊆ x then

return c ≥ n.k + 1

else

c′ ← c − n.∆k # Calculates the number of colors left

return okToInsert(n.left, x, c′) and okToInsert(n.right, x, c′)

proc insertEndpoint(tree: Node, b: Real , beginInterval: Boolean, x: Interval)

n ← findLeaf(tree, b) # Finds leaf with maximal a such that a ≤ b

if n.cover.begin 6= b then

split(n) # Splits n as described in the text

n ← n.right

rebalance(n) # Rebalances the tree bottom-up if necessary

if beginInterval then n.BeginList.append(x) else n.EndList.append(x)

proc updateDensity(n: Node, x: Interval , d: Integer)

if n.cover ⊆ x then

n.∆k ← n.∆k + d

n.k ← n.k + d

else

if n.left.cover ∩ x 6= ∅ then
updateDensity(n.left, x, d)

if n.right.cover ∩ x 6= ∅ then
updateDensity(n.right, x, d)

n.k ← max(n.left.k, n.right.k) + n.∆k

Fig. 2. The insert operation.

the density information by incrementing ∆k-values (notice that for now we only

call updateDensity with parameter d equal to one). This is analogous to the check

performed in okToInsert.

With slightly more complicated code, it is possible to combine searches down
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[
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k,∆k

]





[a, b)

0, 0

BL,EL
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[b, c)

0, 0

[ ], [ ]





Fig. 3. A split operation performed on a leaf initially containing the interval [a, c). In the nodes,
the first line shows the cover interval and the second line shows the k-value and ∆k-value of
the node. The third line shows the BeginList and EndList of leaf nodes. The new endpoint b is

inserted.

the tree. However, this will only improve the complexity by a constant factor. For

readability, we have divided it up, so that we first check whether the insertion is

at all possible, then we insert the endpoints (if they are not already present) and

update the corresponding BeginList and EndList, and as the last step we update

the counters.

With regards to the details of inserting a new leaf and rebalancing, a local op-

eration is performed at the leaf where the search ends. The setting of the attributes

in the new node is shown in Fig. 3, where it is demonstrated how one leaf is re-

placed by one internal node and two leaves. Note that the leaf before the operation

represents the point a, so all intervals beginning or ending at that leaf are stored

in BL and EL, respectively. After the operation, the left-most leaf represents the

point a, so these BL and EL lists are stored there. The right-most leaf represents

the new point b and therefore initially does not have any associated intervals. In

the code segments, we use split(n) to denote this local operation at the leaf n where

the search ends.

After this change, the tree may need rebalancing. This is done differently for

different balanced tree schemes. However, we only assume that it is done bottom-

up by at most a logarithmic number of local constant-sized transformation on the

search path. Such transformations on a search tree can always be expressed as a

constant number of rotations. In Fig. 4, we show how attributes should be set for

∆k-values in connection with a left rotation. A right rotation is similar. In the code

segments, rebalance(n) denotes the bottom-up rebalancing from node n.

Note that the new k-values can be calculated using the ∆k-values, and the new

cover values for the two internal nodes of the operation can be recomputed using

their children. Notice also that the two properties regarding density information

are preserved: The sum of ∆k-values on any root to leaf path is unaltered by

the rotation and as already remarked, the k-values of the nodes involved can be
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Fig. 4. A left rotation with old and new ∆k-values shown.

proc delete(tree: Node, x: Interval)

updateDensity(tree, x, −1)
deleteEndpoint(tree, x.begin, true, x)

deleteEndpoint(tree, x.end, false, x)

proc deleteEndpoint(tree: Node, b: Real , beginInterval: Boolean, x: Interval)

n ← findLeaf(tree, b) # Finds leaf containing the endpoint b

if beginInterval then n.BeginList.remove(x) else n.EndList.remove(x)

if n.BeginList.isEmpty() and n.EndList.isEmpty() then

delete(n) # Deletes n as described in the text

rebalance(n) # Rebalances the tree bottom-up if necessary

Fig. 5. The delete operation.

recomputed.

The considerations for delete are similar. We must update the density informa-

tion by deleting the interval, we must remove the actual reservation from the two

leaves, and we must delete the endpoints if no other intervals share them. These

actions reverse actions taken during an insert. The delete operation is shown in

Fig. 5. In Fig. 6, we show how a node is removed from the tree in the case where

no other intervals share the endpoint. Notice how the updates to the ∆k-values

preserve the invariants. For the first case, where the node to be deleted is a left

child of its parent, b must be changed to a c on the path from the point of deletion

up towards the root, until the procedure reaches the root or a node which has the

deleted node in its right subtree. From that node, the b’s must also be changed to

c’s on the path down to the predecessor of the deleted node (the node containing

[a, b) before the update). In the code segments, we refer to this operation at node n

as delete(n).

As for insertion, rebalancing is a matter of carrying out a number of rotations,

so the details given for insertions cover this case as well.

Finally, the output operation is shown in Fig. 7. We assume that we have a
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Fig. 6. A delete operation performed on a node with the cover interval [b, c). There are two cases
depending on whether the node to be deleted is the left or right child of its parent.

high-order operation, “using in-order”, to give us an in-order traversal of a tree.

Alternatively, we can use a tree implementation where leaves are linked, so we can

traverse them directly.

Finally, we note that in an actual implementation, some of the values we use

can be computed rather than stored.

First, it is only necessary to store the k-values in the nodes, since the ∆k-value

for any node n can be calculated as n.∆k = n.k −max(n.left.k, n.right.k).

Second, it is sufficient to store the starting point of the cover intervals in the

nodes. The other endpoint can be computed as we traverse the path. This would

also eliminate the need for the traversal down towards the predecessor of a deleted

node to change b’s to c’s.
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proc output(tree: Node)

s ← new Stack of N Colors

# Optional wait until first station is reached can be inserted here

for each Leaf v in tree using in-order do

for each Interval x in v.EndList do

s.push(x.color)

for each Interval x in v.BeginList do

x.color ← s.pop()

print x

# Optional wait until next station is reached can be inserted here

Fig. 7. The output operation.

3. Correctness and Complexity

The goal is to be able to seat all the customers and to accept insertions if and only

if a seating arrangement can still be found if the insertion is accepted; and of course

to carry out these operations efficiently. In terms of colors, we want to color each

interval with one of the N colors (seats) such that no two overlapping intervals

(reservations) receive the same color. For reference, the equivalence between such a

coloring being obtainable and the density at all small subintervals being at most N

is a consequence of interval graphs being perfect.14

3.1. Correctness

Regarding correctness, there are three essential properties our structure should

have. First, it should allow an insertion if and only if the resulting set of intervals

can be colored under the constraints described above. Second, a deletion should

correctly undo an insertion. Third, a legal coloring using at most N colors should

be printed by the outputting procedure.

Regarding the first point, we claim that for any path from the root node to a

leaf node, its ∆-length is exactly the same as the number of intervals inserted into

the tree which intersect the cover interval of the leaf node, i.e., the density of the

cover interval of the leaf. Furthermore, we claim that for any node, its k-value is

the maximum ∆-length of a path to a leaf in its subtree. This is true because the

insertion and the deletion of an interval ensures it and rotations preserve it.

An insertion of an interval ensures it by incrementing ∆k in nodes such that their

cover intervals are disjoint while together covering the inserted interval exactly and

furthermore updating the k-values bottom up. Similarly for deletions. Rotations

preserve it by ensuring that ∆k-values remain associated with the correct intervals

and recomputing the k-values based on the ∆k-values.
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When deciding whether or not the insertion of an interval is possible, okToInsert

is used. By using the ∆k-values, this function keeps track of how many colors are

left in the recursion on the way to the bottom of the tree. An insertion is only

accepted if it will not increase the maximum ∆-length from the root of the tree to

more than the allowed number of colors.

Regarding the second point, deletion preserves the properties involving ∆-

lengths and k-values, as described under insertion in the text above, and removes

the interval from the lists in the leaves. If this deletion removes the last occur-

rence of an endpoint, the node representing that endpoint is removed, using the

transformation in Fig. 6, which correctly updates the k-values and ∆k-values.

Regarding the third point, we must argue that we output a legal coloring which

means that we use at most N colors and no two overlapping intervals receive the

same. The fact that no two overlapping intervals receive the same color is ensured

by the stacking mechanism where the color is simply removed from the stack of

available colors when it is used for an interval and it is not pushed onto the stack

again until that interval has ended. The fact that we use at most N colors follows

from the fact that the number of colors in use (the ones which are not on the stack)

is exactly the density at the given point.

3.2. Complexity

If the underlying search tree guarantees time O(log p) searches and rebalancing,

where p is the number of leaves (which is the same as the number of different

endpoints), then insertEndpoint is also completed in O(log p) steps.

Regarding updateDensity, the argument for its complexity is similar to the cor-

responding argument for segment trees. At a first glance, it seems that the searching

down the tree could split into many different paths. However, we argue that this is

not the case.

In general, the search may stop (the first if-part) or continue (the else-part)

either to the left or to the right, or possibly in both directions. For a number

(possibly zero) of steps, we may from each node just continue down one of the two

paths. Then at some node u, we may have to continue down both of them. We

argue that there are no further real splits off the two search paths from that point

on.

Let us consider the search down the left-most path. At the left child of u, we

know (since there was also a search splitting off to the right) that the interval to be

inserted covers the right-most point in our subtree. This is the essential property

(we refer to it as the right-cover property), and it will be maintained on the rest of

the search down the path.

At any node on this path, starting with the left child of u, if we continue down

to our left child, then the recursive call to the right child will fall into the if-case

and therefore terminate immediately because of the right-cover property. At the

same time, the right-cover property will hold for the search to the left. If there is no
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search to the left, but only to the right, the right-cover property also clearly holds

in that case.

The analysis for okToInsert is similar to updateDensity, except that instead of

checking directly before calling, we use an additional recursive call when deciding

whether the cover interval of a node intersects the interval to be inserted.

For deletion, the argument is similar. However, we assume that the user reserva-

tion encodes a pointer to the reservation. The reservations stored in the BeginLists

and EndLists are kept in a doubly-linked list such that they can be removed in

constant time.

The work of output consists of a linear time traversal of the nodes of the tree

which is done in time O(p) ⊆ O(n), where p is the number of different endpoints

used in the intervals, plus some constant work per interval which is then also O(n).

Finally, the space requirements are Θ(n): the procedure insertEndpoint uses

constant extra space per interval, and the procedure updateDensity only modifies

integers already present in the structure.

3.3. Optimality

We consider the lower bound of the time complexity of the total process of inserting

n intervals and outputting the result. If we only measure the running time in terms

of the size of the input, n, then O(n log n) is an upper bound on the running time of

the algorithm, and in the worst-case, time Ω(n log n) is also necessary (see argument

and reference below), so the time complexity of the problem is in Θ(n log n).

We consider a more detailed analysis where we also include the number p of

different endpoints. If p is O(log log n), for instance, then the running time of our

algorithm is O(n log log n), and we would like to prove that this is optimal.

Clearly time Ω(n) is required to output the result. If, as we do, output is provided

in time O(n), insert requires time Ω(log n) in the worst-case, in the cases where

p ∈ Θ(n). Otherwise, we can solve the off-line problem in time o(n log n), and

this has been proven impossible in the decision tree model in Ref. 13 by a simple

reduction from the well-known element uniqueness problem,11 which is known to

require time Θ(n log n).

However, this only settles optimality for p ∈ Θ(n). We now assume that p ∈ o(n)

and argue that also in this case is the result optimal.

Let us first consider the following sorting problem: we are given a sequence of n

distinct objects x1, x2, . . . , xn, equipped with keys of which p ∈ o(n) are distinct. We

argue that in the decision tree model, the time to sort such sequences is Ω(n log p).

By sorting, we here mean outputting the objects in an order such that the keys of

the objects are nondecreasing.

First, we obtain a lower bound on the number of possible outputs. We can think

of the number of different ways we can place the xi’s in p distinct boxes under

the restriction that none of them may be empty. We first remove p objects with

distinct keys from the sequence, placing them in each their box, thereby removing
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the restriction. The remaining n−p objects can be placed in the p different boxes in

pn−p different ways. The number of binary comparisons we would have to use in the

worst-case to choose correctly between pn−p different possible outputs is log(pn−p),

assuming that we can balance our decision tree perfectly; otherwise it only gets

worse. Now, log(pn−p) = (n− p) log p ∈ Ω(n log p), since p ∈ o(n).

As a simple corollary, n intervals with at least p different endpoints cannot in

general be sorted on starting point faster than Ω(n log p).

However, this sorting problem can be solved using the data type discussed in

this paper. Let N = n so that all intervals will fit, use insert to insert each interval

one at a time, and output to obtain the result. Hence, since the sorting problem

requires time Ω(n log p), the problem in this paper must also require time Ω(n log p).

Note that even though p ∈ o(n), the lower bound on the running time could

still be Ω(n log n). This happens for instance when p ∈ Θ(
√
n), since Ω(n log

√
n) =

Ω(n log n). In those cases, the upper bound is of course also O(n log n).

4. Concluding Remarks

Without making the data structure more complicated, it is possible to make some

minor extensions.

As presented here, we use a constant number N as the number of seats available.

It would not be a problem to make this value dynamic, as long as it is never changed

to a value smaller than the k-value of the root of the tree, i.e., the number of seats

which currently are necessary in order to accommodate all reservations.

Furthermore, the intervals we consider are all closed to the left and open to the

right. This can easily be extended to the general case as in Ref. 15, where either

side may be open or closed, by using alternately open and closed intervals in the

leaves of the structure: (−∞, a1), [a1, a1], (a1, a2), [a2, a2], . . .

In some special cases, it is also straight-forward to implement split and join

operations on the tree. If we for split require that no intervals in the tree contain

the splitting point inside the interval, and for join require that the intervals in the

two trees do not intersect each other, then both operations can be implemented in

O(log p) time.

In the seat reservation scenario, it is natural to ask if the techniques can be

extended to include group reservations. Here, we interpret group reservations to

mean that an additional requirement is imposed upon the seat allocation algorithm,

namely that the members of the group must be assigned consecutive seat numbers

(colors).

The answer to this question is negative as the following example shows. We give

the reservations [1, 5), [4, 8), and then the two group reservations, both of size n−2,
where n is the number of seats, [2, 3) and [6, 7). Clearly the maximal density is at

most n−1. However, the reservation [1, 8) cannot be placed, which is easily seen by

considering all possible placements, up to symmetry, of the first four reservations.

As a more general remark, it is important to notice that we do not need to
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assume that the stations which are used are numbered from 1 through p. In fact,

we do not even need to assume that they are integers. One can think of the stations

as floating point numbers. One could consider a less dynamic version of the problem

and assume that stations are numbered from 1 through p, treating p as a constant.

This would make it possible to obtain different theoretical results and better results

in practice, in the cases where p really is small. However, the results would be less

general and therefore not necessarily as easily applicable to other problems, such as

the channel-assignment problem. The theoretical treatment would also be entirely

different, since if elements are known to be from a small interval of integers, many

problems become computationally much easier.
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