
Regular Expressions with Nested Levels

of Back Referencing Form a Hierarchy

Kim S. Larsen
∗

Odense University†

Abstract

For many years, regular expressions with back referencing have been used
in a variety of software products in common use, including operating sys-
tems, editors, and programming languages. In these products, regular
expressions have been extended with a naming construct. If a subex-
pression is named by some variable, whenever this subexpression matches
some string, that string is assigned to the variable. Later occurrences of
the same variable will then match the string assigned to it. This construc-
tion greatly increases the power of regular expressions and is useful in text
searching as well as in text substitution in large documents. We study the
nested usage of this operator, and prove that the power of the expressions
increase with the number of nested levels that are allowed.

Keywords: Formal languages; regular expressions; back referencing.

1 Introduction

For many years, regular expressions with back referencing have been used in
a variety of software products in common use, including operating systems,
editors, and programming languages. However, it seems that a theoretical study
of this language construction has not been made.

In [2], a vaguely related class of expressions are studied. In the terminology
of our paper, these are regular expressions without alternation and with back
referencing being restricted to using one variable name only.

Using the semantics of regular expressions with back referencing as outlined in
[1], we define nested levels of back referencing and prove that the number of
languages that can be expressed increases with the number of nested levels that
are allowed.

∗Supported in part by the esprit Long Term Research Programme of the EU under project
number 20244 (alcom-it).

†Department of Mathematics and Computer Science, Odense University, Campusvej 55,
DK–5230 Odense M, Denmark. Email: kslarsen@imada.ou.dk.

1

2 Regular expressions with back referencing

We choose a standard syntax for regular expressions with and without back
referencing [1]. Let Σ, the alphabet, be an infinite1 set of symbols, and let Ψ be
an infinite set of names. The following grammar defines the syntax of regular
expressions with back referencing.

E ::= a | E · E | E|E | E∗ | E%α | α | (E)

where a ∈ Σ and α ∈ Ψ.

The precedence of the operators from highest to lowest is as follows: naming
(E%α), Kleene star (E∗), concatenation (E · E), and alternation (E|E). As
usual, we often write EE instead of E ·E, i.e., leaving out the “dot”. If E is a
regular expression with back referencing, we use L(E) to denote the language
it defines.

A complete definition of the semantics of regular expressions with back ref-
erencing can be found in [1]. The semantics of the operators concatenation,
alternation, and star are as usual for regular expressions. Informally, the se-
mantics of naming and use of variables is best explained from an operational
point of view. If we try to “parse” a string, from left to right, according to a
regular expression with back referencing, whenever a substring is matched with
a named subexpression, that substring is assigned to the variable in question.
A later occurrence of this variable matches the string assigned to it.

Before continuing, let us give a few examples (partly from [1]) of the semantics
of these expressions:

• (a|b)∗%α · α · α is the language {www | w ∈ (a|b)∗}.

• (a|b|c)∗ · (a|b|c)%α · (a|b|c)∗ · α · (a|b|c)∗ is the language of strings over
{a, b, c} with at least one repeated occurrence of a symbol.

• (a|b)∗%α · (a|b)∗%β · (α|β) is the language
⋃

u,v∈(a|b)∗{uuv, uvv}.

• ((a|b)∗%α · α)
∗
is the set of all strings over {a, b} of the form s1s1s2s2 · · · sksk

for some k, where the si’s can be any strings of a’s and b’s.

In the last example, notice that in each iteration of the outermost star expres-
sion, a new value is bound to the variable α.

For convenience, we use ei as an abbreviation for e · e · · · · (i times) · e, and
we assume that names are not reused, i.e., in any expression e, for any α ∈ Ψ,
there is at most one subexpression of the form e′%α. This does not restrict
the expressive power and could be avoided at the cost of more cumbersome
definitions and proofs.

1Usually, the alphabet for regular expressions is finite. Here, our goal is to establish an
infinite hierarchy, and we need infinitely many symbols. However, each expression that we
consider is finite and uses only a finite part of the alphabet. For purists, we want to remark
that we could instead have used an infinite family of finite alphabets.

2

There are the following additional requirements, which are necessary in order
to ensure that the use of variables is well-defined:

• If α appears in an expression e, then there must exist a subexpression e′ of
e of the form e′ = e1 · e2, where the α under discussion is a subexpression
of e2, and an expression of the form e′′%α is a subexpression of e1.

• Assume that e′′%α is a subexpression of e. If there exists a subexpression
e′ = e1|e2 of e such that e′′ is a subexpression of ei, where i = 1 or i = 2,
then the name α is only allowed to appear in ei.

• Assume that e′′%α is a subexpression of e. If there exists a subexpression
e′ = e1

∗ of e such that e′′ is a subexpression of e1, then α is only allowed
to appear in e1.

The first requirement ensures that a name is defined before it is used, and the
last two requirements ensure that a string has been assigned to it.

The nested level of a regular expression with back referencing is defined recur-
sively in the structure of the expression. Regular expressions have nested level
zero. The nested level of E%α is one more than the nested level of E. The
nested level of a variable α is the nested level of its defining expression E%α.
For all other operators, the nested level of the expression is the maximum of
the nested levels of the arguments.

In the following sections, we use contexts [3]. These are merely expressions with
a “hole” instead of a symbol. As an example, C[] = (a∗ · [])∗ is a context. If
C[] is a context, C[E] is the expression C[] with the “hole” replaced by E. In
the example, C[b|c] is the expression (a∗ · (b|c))∗.

We use σ(E) (the signature of E) to denote the set of symbols from Σ occurring
in an expression E.

3 The hierarchy

Let Li be the set of languages which can be expressed by a regular expression
with back referencing of at most i nested levels. Thus, L0 equals the set of
regular languages. Clearly, Li ⊆ Lj , if i ≤ j. In this section, we prove that
Li 6= Lj if i 6= j.

Assume that Σ = {al0, a
m
0 , ar0, a

l
1, a

m
1 , ar1, a

l
2, a

m
2 , ar2, . . .} and Ψ = {α0, α1, α2, . . .}.

The superscripts l, m, and r stand for left, middle, and right.

Define the sequence of expressions {xi}i≥0 as follows: x0 = (al0a
m
0 ar0)

∗
and for

i ≥ 1, xi = (ali · xi−1%αi−1 · a
m
i · αi−1 · a

r
i)

∗
.

Clearly, L(xi) ∈ Li. In this section, we show that for all i > 0, L(xi) 6∈ Li−1.
Thus, the sequence of sets of languages forms a hierarchy.

If a regular expression with back referencing R defines the language L(xk) for
some k, then we can prove that R must have a certain form. Basically, the

3

following lemma breaks up the expression R. Looking at R as a syntax tree, it
says that there must exist a path from the root to a leaf on which there are k+1
stars with the property that the symbols adi are introduced gradually going up
this path (there could be more than k + 1 stars total; the statement is merely
that there exists k + 1 stars with this property). More precisely, only symbols
adj with j < i are present in the subexpression under the ith of these stars going
from the the leaf and up.

Lemma 1 Let R be a regular expression with back referencing such that
L(R) = L(xk). Then there exists expressions Ri and contexts Ci, 1 ≤ i ≤ k+1,
such that R can be written as follows:

R = Ck+1[Rk
∗] Ri = Ci[Ri−1

∗], i ∈ {1, . . . , k} R0 = C0[a
m
0]

where σ(R0) = {al0, a
m
0 , ar0} and σ(Ri) = σ(Ri−1) ∪ {ali, a

m
i , ari }, i ∈ {1, . . . , k}.

Proof Let yj be as xk, except that all occurrences of stars in xk are replaced
by j’s, i.e., any subexpression e∗ is replaced by ej . Let M = ∪jL(yj). Clearly,
M ⊆ L(xk) and M is infinite.

We consider all possible Ri’s and Ci’s and show that if they are not of the right
form, then either strings not in L(xk) can be produced (which is a contradic-
tion), or this part of the expression R can only contribute with finitely many of
the substrings in M . This also leads to a contradiction since there are only a
finite number of possibilities for choosing the Ri’s and Ci’s (which is the same
as saying that there are only a finite number of different paths from the root to
a leaf in the syntax tree of a finite expression).

For convenience, define Rk+1 = R. Now, assume for the sake of contradiction
that the lemma does not hold. Let p ∈ {0, . . . , k} be the largest integer for
which we can find expressions and contexts of the right form, i.e., for 1 ≤ i ≤ p,
we have Ri = Ci[Ri−1

∗] and R0 = C0[a
m
0], where σ(R0) = {al0, a

m
0 , ar0} and

σ(Ri) = σ(Ri−1) ∪ {ali, a
m
i , ari }. We consider the different possibilities for why

this sequence cannot be extended to one fulfilling the lemma.

Consider the smallest context C[] such that R = C ′[(C[Rp])
∗] and σ(C[]) \

σ(Rp) 6= ∅ (the context C ′[] is just the rest of R after C[] has been defined).
If no such context exists, either there is no star containing the subexpression
Rp, in which case this path can only produce a bounded number of adp+1’s, or
no symbols with indices greater than p are introduced at all. In any case, this
path’s contribution to M is finite.

If such a context C[] does exist, then, by the choice of p, a symbol with index
greater than or equal to p+2 is introduced, i.e., belongs to σ(C[]) \σ(Rp). But
then the strings will not have the correct form unless symbols with index p+1
are introduced at the same time. However, since C[] is chosen to be the smallest

context fulfilling the requirements listed above, it is not possible to produce an
unbounded number of symbols with index p+1 in between symbols with index
p+2, so again only finitely many strings from M can originate from this path.

✷

4

Theorem 2 Let R be a regular expression with back referencing, and assume
that L(R) = L(xk). Then R has nested level k.

Proof Let R be written as described in lemma 1. We prove that if some Ri,
i ∈ {1, . . . , k}, is not of the form Ri = CA

i [(C
B
i [Ri−1

∗])%α], for some α, then
we get a contradiction. Clearly, this implies that all of these k Ri’s are of this
form, so the nested level is k.

Now, assume to the contrary that Ri is not of the form described above.

We make some transformations on the expression Ri
∗ (in the remaining part of

this proof, we ignore the rest of R). These transformations have the property
that if an expression F is transformed into F ′, then L(F ′) ⊆ L(F). First, we
perform the following transformations on Ri−1:

• Replace an alternation with one of its arguments; if adi−1, for some d ∈
{l,m, r}, is in the signature of one argument and not the other, choose
the former. Otherwise, decide arbitrarily.

• Replace a star with its argument.

The transformations are carried out repeatedly until none of them can be ap-
plied any more. After this, let E′ refer to the expression that Ri−1 has been
transformed into.

Now the remaining parts of Ri
∗ are transformed:

• Replace an alternation with one of its arguments; if E′ is a subexpression
of one of the arguments, that argument is chosen. Otherwise, decide
arbitrarily.

• Replace a star with its argument whenever E′ is not a subexpression of
that argument.

The transformations are carried out repeatedly until none of them can be ap-
plied any more.

The resulting expression has no alternations, and only stars having E′ as a
subexpression. Since, by assumption, there were no namings between Ri−1 and
Ri, this means that in the transformed expression, subexpressions of namings
only contain concatenation as an operator. Now replace all names with the
subexpression which has been given that name, and remove the naming. Since
the named subexpressions only contain concatenation, each subexpression is in
fact simply a string, so this transformation preserves the semantic meaning of
the expression. After this, let F refer to the transformed expression. Thus, F
is of the form (C ′[E′∗])

∗
.

Since L(F) ⊆ L(Ri
∗) and since Ri

∗ is a subexpression of R, the strings in L(F)
must be of the form

x · aliy1a
m
i y1a

r
i · a

l
iy2a

m
i y2a

r
i · a

l
iy3a

m
i y3a

r
i · · · · · z

5

where ali 6∈ σ(x), ari 6∈ σ(z) and x, z, and the yi’s are some strings.

Since stars are only applied to expressions containing E′ as a subexpression,
there must exist a constant p such that L(F) intersected with

(Σ \ {ali})
∗
·aliT

∗ami T ∗ari ·a
l
iT

∗ami T ∗ari · · · · (p times) ·aliT
∗ami T ∗ari ·(Σ \ {ari })

∗
,

where T = {al0, a
m
0 , ar0, . . . , a

l
i−1, a

m
i−1, a

r
i−1}, is still infinite. This is seen as

follows: Let Es be the smallest expression containing E′ as a subexpression
such that Ri can be written Ri = Cs[Es] and {ali, a

m
i , ari } ⊆ σ(Es). Since Es

is the smallest expression with this property, there cannot be any stars in Es

applied to a subexpression containing any of the adi ’s. If there were, strings
would not have the correct form (there would be occurrences of one of the adi ’s
without both of the other adi ’s appearing in between). Removing all stars in
Cs[] (in other words changing all stars to a 1 for “one iteration”), would give
us a regular expression with a bounded number, p, of adi ’s. Since Es contains a
star and σ(E′) 6= ∅, the language is still infinite.

We now apply a sequential transducer [4] to the result of this intersection. The
transducer outputs ε until it meets the first ali after which it outputs whatever
it reads. In this way, we can get rid of the x’s and still have a regular language.
Since the reverse of a regular language is also regular, we can with a similar
transducer remove the z’s. Again using a sequential transducer, we change
every symbol with a subscript different from i to a new symbol b. The strings
in this regular language are of the form

aliy1a
m
i y1a

r
i · a

l
iy2a

m
i y2a

r
i · · · · · a

l
iypa

m
i ypa

r
i ·

where the yi’s only contain b’s. Applying the pumping lemma [5] to this infinite
language shows that it is not regular, and we have obtained a contradiction. ✷

Corollary 3 If Lk is the set of languages which can be expressed by a regular
expression with back referencing of at most k nested levels, then

∀i, j ∈ IN : i < j ⇒ Li ⊆ Lj ∧ Li 6= Lj . ✷

Acknowledgment

The author would like to thank Peter Høyer for many interesting discussions
on this and related issues.

References

[1] A. V. Aho, Algorithms for Finding Patterns in Strings, in Handbook of Theoretical

Computer Science, Vol. A, J. van Leeuwen, ed., Chap. 5, 1073 – 1156: Algorithms
and Complexity (Elsevier Science Publishers, Amsterdam, 1990).

[2] D. Angluin, Finding Patterns Common to a Set of String, Proceedings of the 11th

Annual ACM Symposium on Theory of Computing (1979) 130 - 141.

6

[3] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics (North-
Holland, Amsterdam, 1981).

[4] M. A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Read-
ing, Massachusetts, 1978).

[5] J. C. Martin, Introduction to Languages and the Theory of Computation (McGraw-
Hill, New York, 1991).

7

