
International Journal of Foundations of Computer Science

c

 World Scienti�c Publishing Company

EFFICIENT REBALANCING OF

B-TREES WITH RELAXED BALANCE

KIM S. LARSEN

Department of Mathematics and Computer Science, Odense University

Campusvej 55, DK-5230 Odense M, Denmark

and

ROLF FAGERBERG

Department of Mathematics and Computer Science, Odense University

Campusvej 55, DK-5230 Odense M, Denmark

Received (received date)

Revised (revised date)

Communicated by Editor's name

ABSTRACT

B-trees with relaxed balance have been de�ned to facilitate fast updating on shared-

memory asynchronous parallel architectures. To obtain this, rebalancing has been un-

coupled from the updating so that extensive locking can be avoided in connection with

updates.

We analyze B-trees with relaxed balance, and prove that each update gives rise to at

most blog

a

(N=2)c + 1 rebalancing operations, where a is the degree of the B-tree, and

N is the bound on its maximal size since it was last in balance. Assuming that the size

of nodes is at least twice the degree, we prove that rebalancing can be performed in

amortized constant time. So, in the long run, rebalancing is constant time on average,

even if any particular update could give rise to a logarithmic number of rebalancing

operations. We also prove that the amount of rebalancing done at any particular level

decreases exponentially going from the leaves towards the root. This is important since

the higher up in the tree a lock due to a rebalancing operation occurs, the larger a

subtree which cannot be accessed by other processes for the duration of that lock.

All of these results are in fact obtained for the more general (a; b)-trees, so we have

results for both of the common B-tree versions as well as 2-3 trees and 2-3-4 trees.

Keywords: search trees; parallel environment; relaxed B-trees; (a,b)-trees; rebalancing;

amortized analysis.

1. Introduction

When B-trees

1

are used in an asynchronous parallel environment, locks must be

applied when nodes are updated or when some rebalancing operations are carried

out. If the strict balance conditions known from the sequential case are used, then

these locks will be a major obstacle for the searching and updating processes.

1



This is the approach used by Samedi

2

in the �rst and probably most simple

attempt at adapting B-trees to a parallel environment. Using semaphores,

3

all the

nodes on the path from the root down to an update are locked. The obvious problem

with this approach is that nodes close to the root are locked very frequently and

for long periods of time, thereby preventing a high degree of parallelism. There are

ways to improve on this without fundamentally changing the idea. In a proposal

by Kwong and Wood,

4

locks are kept up to the �rst insertion or deletion safe node,

where a node is insertion safe if it is not full and deletion safe if one deletion will

not make it underfull. When searching from the root, nothing is locked until the

deepest safe node is encountered. The number of locks can still be proportional to

the height of the tree, though.

Lehman and Yao

5

introduce an implementation technique, where at any time

only a constant number of locks have to be kept for any single update. Overow

is still taken care of by the inserting process. Sagiv

6

improves slightly on these

results by using fewer locks and by allowing background processes to rebalance

using compressions.

Finally, in a proposal by Nurmi, Soisalon-Soininen, and Wood,

7

rebalancing is

separated entirely from the updating. A \tag bit" is used to register unbalance,

and background processes deal with problems of unbalance in parallel with searches

and updates. There are several advantages to this scheme. Instead of the standard

locking of whole paths or stepwise locking down paths, the rebalancing processes will

now do only O(1) work at a time before they release locks and move on to another

problem. This implies that, in principle, O(n) processors can simultaneously access

the tree, where n is the size of the tree, since searching does not require exclusive

locking. However, to obtain this, rebalancing must be kept down to a constant

number of operations per update. Another advantage of the uncoupling is that it

is also possible to postpone all or parts of the rebalancing until after peak working

hours. The disadvantage, of course, is that the tree can totally degenerate if there

are not enough background processes to do the rebalancing. The major problem,

which this paper has in common with most of the papers mentioned above, is

that none of them actually analyze the complexity of their proposals, or test their

proposal in comparisons with proposals of others.

However, the proposal of Nurmi, Soisalon-Soininen, and Wood

7

is the most

promising, but it turns out that, in addition to the lack of a proof of complexity,

there are a few other problems. Their operations can lead to inconsistencies and

some unfortunate design decisions have been made, which lead to a worse complexity

than is necessary. We present a corrected set of operations, and, more importantly,

we accompany our proposal by proofs of complexity, the importance of which is

emphasized by the well known fact that minor changes in the restrictions on the

parallel operations can lead to bounds on rebalancing that are order of magnitudes

greater than necessary. In a speci�c example concerning search trees,

12

one small

modi�cation changed the complexity of carrying out n operations from 
(n

2

) to

O(n logn).

Uncoupling was �rst discussed in connection with red-black trees

8

by Guibas

2



and Sedgewick,

8

and later in connection with AVL trees

9

by Kessel.

10

The �rst

fully uncoupled proposal in connection with red-black trees (called chromatic trees)

is by Nurmi and Soisalon-Soininen.

11

This was later improved upon by Boyar and

Larsen,

12

and the new proposal was accompanied by a proof of complexity. A varia-

tion of that proposal has been implemented by Malmi

14

and tested on a large scale.

Preliminary results imply that a high degree of parallelism can be obtained as a

result of uncoupling updating and rebalancing. Further complexity results for chro-

matic trees have been obtained by Boyar, Fagerberg, and Larsen.

13

In connection

with AVL trees, a fully uncoupled proposal was given by Nurmi, Soisalon-Soininen,

and Wood.

7

This was later analyzed and improved.

15

All of the results in this paper are obtained for (a; b)-trees, so we also have

results for all of the special cases, including both of the common B-tree versions as

well as 2-3 trees and 2-3-4 trees. We prove that each update gives rise to at most

blog

a

(N=2)c+1 rebalancing operations, where N is the bound on the maximal size

of the (a; b)-tree since it was last in balance. Assuming that b � a, we prove that

rebalancing can be performed in amortized constant time. We also prove that the

amount of rebalancing done at any particular level decreases exponentially going

from the leaves towards the root.

2. B-Trees and (a, b)-Trees

In this paper, we consider a generalization of B-trees called (a; b)-trees or weak

B-trees.

16

An (a; b)-tree is an ordered tree with minimal node size a and maximal

node size b for integers a and b with b � 2a � 1. The trees in this paper are

leaf-oriented. This means that keys inserted by the user are stored in the leaves.

The internal nodes only contain pointers to subtrees along with the necessary rout-

ing information, which consists of copies of user inserted keys. However, the keys

in the internal nodes are not necessarily present in the leaves, since we do not

want to update the routing information when keys are deleted. Assuming that

an internal node (also called a block or a page) has j children, the content of a

node can be illustrated by the sequence P

1

K

1

P

2

K

2

� � �K

j�1

P

j

, where the K

i

's are

routers (keys) and the P

i

's are pointers. Routers are listed in increasing order, i.e.,

K

1

< K

2

< � � � < K

j�1

. Keys in the subtree pointed to by P

i

are less than or equal

to K

i

, whereas the keys in the subtree pointed to by P

i+1

are greater than K

i

.

If u is a node, which is not the root, we let �u denote the parent of u. The level

of a node u is now de�ned as follows:

l(u) =

�

0; if u is the root,

l(�u) + 1; otherwise.

Additionally, we let c(u) denote the number of keys in u, if u is a leaf, and the

number of pointers in u, otherwise.

For integers a and b, where b � 2a� 1, an (a; b)-tree must ful�ll the constraints:

3



� for any pair of leaves u

1

and u

2

, we have that l(u

1

) = l(u

2

).

� if u is the root

a

, then 2 � c(u) � b.

� if u is not the root, then a � c(u) � b.

Obviously, the purpose of these criteria is to keep the tree balanced and rea-

sonably dense such that access times of log

a

(n) can be maintained, where n is the

size of the tree. For this purpose, two rebalancing operations are de�ned: compress

operations have to be used after a deletion, which causes a violation of the density

criteria, and split operations have to be used when a key has to be inserted into a

full node. The underlying assumption, which is the reason for using an (a; b)-tree

instead of a red-black tree or an AVL tree, is that it is not more expensive to rewrite

a whole node than to rewrite a single key in the node. This is of course only true

when a node is a sector on a disc, or something similar. B-trees are special cases

of (a; b)-trees, where b = 2a � 1 (according to some authors, b = 2a). Further

introduction to B-trees can be found elsewhere.

17

3. Relaxed Balance

We now state the de�nition of (a; b)-trees with relaxed balance, also called a

relaxed (a; b)-tree. This structure, along with a number of update operations, was

originally proposed by Nurmi, Soisalon-Soininen, and Wood

7

(for B-trees).

The purpose of the relaxed balance conditions to be presented below is to allow

updates to be performed without having to rebalance immediately. If that was the

sole goal, then the conditions should be as weak as possible. However, we would also

like to be able to rebalance fast, when we eventually decide to do it. Obviously, we

would want as much information as possible available at this point. As an extreme,

without any information at all, the whole tree would have to be built anew.

Nodes in an (a; b)-tree with relaxed balance are equipped with a tag value, which

is either 0 or �1. The relaxed level of a node is de�ned by:

rl(u) =

�

tag(u); if u is the root,

rl(�u) + 1 + tag(u); otherwise.

For integers a and b, where b � 2a� 1, an (a; b)-tree with relaxed balance must

ful�ll the constraints:

� for any pair of leaves u

1

and u

2

, we have that rl(u

1

) = rl(u

2

).

� if u is a leaf, then 0 � c(u) � b.

� if u is not a leaf, then 1 � c(u) � b.

� if u is a leaf, then tag(u) = 0.

a

Actually, if the root u is also a leaf, we must allow c(u) = 1, as this is the only way to represent

a tree with one key. This will be of no concern in this paper, and it will not be mentioned further.

4



So, leaves are allowed to become completely empty, whereas internal nodes must

contain at least one pointer.

Clearly, an ordinary (a; b)-tree is also a relaxed (a; b)-tree (assuming that each

node u in the (a; b)-tree has tag(u) = 0). When a relaxed (a; b)-tree ful�lls the bal-

ance conditions for ordinary (a; b)-trees, we will refer to it as a standard (a; b)-tree.

The update operations, insert and delete, are described below.

Insert: First, the correct node u is found by searching as usual. If there is room

in the node, i.e., if c(u) < b, then the new key can be inserted directly into its

correct place. Otherwise, u is replaced by three nodes arranged as follows: the

top node is given the tag value �1, and it has exactly two children. These two

children both have tag values 0 and they share all the data which were in u before

the insertion along with the new key. So, one of these nodes receives b

b+1

2

c keys;

the other receives d

b+1

2

e. A copy of the rightmost key in the left child is inserted

in the top node as a router. This is illustrated in �gure 1 (for clarity, we only show

pointers in the �gures, i.e., no keys).

�

�

0

=)

�

0

�



0

�

�	

q

Q

Q

Qs

q

�1

Figure 1: Insertion in case of overow.

Delete: First, the correct node u is found by searching as usual. Then the key,

if present, is deleted.

Notice that the update operations do not cause a violation of the relaxed bal-

ance conditions, but an insertion might violate the balance criteria for standard

(a; b)-trees, and a deletion might violate the density criteria for standard (a; b)-trees.

4. Rebalancing Operations

We now present the collection of rebalancing operations, which is a modi�ca-

tion of the collection from Nurmi, Soisalon-Soininen, and Wood.

7

The purpose of

these operations is to gradually transform an (a; b)-tree with relaxed balance into a

standard (a; b)-tree. There are two types of problems to deal with: a node u may

be negative, i.e., tag(u) = �1, or a node u may be underfull, i.e., c(u) < a (in the

case of the root, c(u) < 2). For technical reasons, if a node u is negative, we do not

designate it underfull, even if c(u) < a.

Root operations: If the root has tag value �1, then its tag value can be set to 0.

If the root has only one child, then the root is deleted and the single child is made

the new root. If both problems are present, then these will be dealt with in one

operation.

Split: If a node u, which is not the root, has tag(u) = �1, and its parent has tag

value 0, then u (and thus also the tag value) can either be deleted or the negative

tag value can be moved closer to the root:

If c(u) + c(�u) � b + 1, then all the pointers from u are moved into �u, and

the routing information is updated (it is b + 1, and not b, since the pointer to u

5



will no longer be necessary if the entire contents of u are moved to �u and u is

deleted). This case is illustrated in �gure 2. If c(u) + c(�u) > b+1, then u and �u

�

�1

�

�	

q

�



0

=)

�

�



0

Figure 2: Split: tag adjustment when j�j+ j�j+ jj � b.

are replaced with three nodes: the top node is given the tag value �1, and it has

exactly two children. These two children both have tag values 0 and they share all

the pointers which were in u and �u before the operation. A copy of the rightmost

key in the left child is inserted in the top node as a router. This case is illustrated

in �gure 3.

�



�1

�

�

�+

q

�

�

0

=)

�

�

0



�

0

�

�	

q

Q

Q

Qs

q

�1

Figure 3: Split: tag adjustment when j�j+ j�j+ jj > b.

Compress: Assume that u is a node such that c(u) < a, and such that u has a

left or right sibling v with tag(v) = tag(u) = 0. If c(u)+c(v) � 2a, then the pointers

from u and v are distributed evenly among these two nodes. This case is illustrated

in �gure 4. Otherwise, all the pointers from u are moved into v and u is deleted.

�



0

�

0

�

�	

q

Q

Q

Qs

q

�

�

=)

�

0



�

0

�

�	

q

Q

Q

Qs

q

�

�

Figure 4: Compress: density adjustment when j�j+ jj+ j�j � 2a.

The parent is updated to reect the movement of pointers. This case is illustrated

in �gure 5. The threshold is 2a, and not b + 1, for example, to avoid removing u

whenever possible, as we do not want unnecessary propagation of underfull nodes

upwards in the tree.

The split operations are also called tag adjusting rebalancing operations while

compress operations are also referred to as density adjusting rebalancing operations.

A root operation may be either.

When these update and rebalancing operations are applied in an asynchronous

parallel environment, nodes must be locked to ensure that processes do not interfere

with each other. All the operations used here are local, and only directly involved

nodes need to be locked. A more elaborate discussion of this is given by Nurmi

and Soisalon-Soininen.

11

Problems arising due to an update, or problems that are

created as a side-e�ect of adjusting tag values or removing an underfull node prob-

lem, can be put into a problem queue by the process which creates the problem.

6



�

0



0

�

�	

q

Q

Q

Qs

q

�

�

=)

�



0

�

�	

q

�

�

Figure 5: Compress: density adjustment when j�j+ jj+ j�j < 2a.

This, along with give-up techniques for rebalancing, is described in more detail by

Goodman and Shasha.

18

Often, when working with more than one process, fairness

is an issue. This is not the case here. If two rebalancing processes are trying to lock

the same nodes, one will give up and instead �x another problem elsewhere in the

tree.

In concluding this section on rebalancing operations, we discuss some of the

problems in the original proposal by Nurmi, Soisalon-Soininen, and Wood.

7

To be

fair, we are convinced that most of these problems are omissions rather than errors.

In that proposal, there are no requirements which must be ful�lled in order for a

compress operation to be applied. If the two nodes in question, u and its sibling v,

do not have the same tag value, then a compress operation will create a tree where

the relaxed balance conditions are violated.

It is not clear how one should �x the problem just described. One could possibly

add the constraint that tag(u) = tag(v). Then no violation can be introduced by

the operation. It turns out, though, that allowing compressions when tag(u) =

tag(v) = �1 increases the complexity of the rebalancing. Split operations will

take care of nodes which have tag values �1, so compress operations should not be

wasted on such problems. As is apparent in our proposal, the solution is to require

tag(u) = tag(v) = 0.

There is another problem with the compress operation in their proposal.

7

They

do not consider the possibility that an underfull node might not have a sibling,

which would make a compress operation impossible. Additionally, they do not

have any constraints on the split operation, but obviously, it must be required

that tag(�u) = 0, where u is the node with negative tag value to which a split

operation should be applied. Without this requirement on the parent node, the

relaxed balance conditions would be violated.

Given that there are a number of restrictions on when the various rebalance op-

erations can be applied, it is necessary to prove that rebalancing is always possible,

i.e., that the rebalancing operations listed are su�cient:

Lemma 1 If T is a relaxed (a; b)-tree, but not a standard (a; b)-tree, then either a

root operation, a split operation, or a compress operation can be applied.

Proof. If T is not a standard (a; b)-tree, then either there is a node with tag

value �1 or there is an underfull node.

Assume that there is a node u such that tag(u) = �1. If the root has tag

value �1, then a root operation can be applied. Otherwise, the tag value of the

root is 0. Let v be the �rst node, which has tag value �1, on the path down from

the root to u. Then v cannot be the root, and tag(�v) = 0, so a split operation can

be applied.

7



Now, assume that there are not any nodes with tag value �1. Then there must

be an underfull node u. If the root has exactly one child, then a root operation can

be applied. So, assume that the root has at least two children. Let v be the �rst

underfull node on the path from the root down to u. Then v must have a sibling.

If not, then �v would have v as its only child, and would also be underfull, which

would imply that v was not the �rst underfull node. Both v and its sibling must

have tag values 0, since we assumed that there were no �1's. This means that a

compress operation can be applied. 2

5. Complexity

Having proved that on any relaxed (a; b)-tree, which is not a standard (a; b)-tree,

at least one rebalancing operation can be applied, the question arises as to how many

such operations can take place before we arrive at a standard (a; b)-tree.

For the complexity analysis in this section, we follow Nurmi, Soisalon-Soininen,

and Wood

7

in assuming that initially the search tree is a standard (a; b)-tree, and

then a series of search, insert, and delete operations occur. These operations may

be interspersed with rebalancing operations. The rebalancing operations may also

occur after all of the search and update operations have been completed; our re-

sults are independent of the order in which the operations occur. In any case, the

(a; b)-tree is always an (a; b)-tree with relaxed balance, and after enough rebalancing

operations, it will again be a standard (a; b)-tree.

If some of the operations are done in parallel, they must involve sets of nodes

which are completely disjoint from each other. The e�ect will be exactly the same

as if they were done sequentially, in any order. Thus throughout the proofs, we will

assume that the operations are done sequentially. At time 0, there is a standard

(a; b)-tree, at time 1 the �rst operation has just occurred, at time 2 the second

operation has just occurred, etc.

In the following, we need the concepts of height, h(u), and relaxed height, rh(u),

of a node u. The height of the root of an (a; b)-tree is de�ned to be the level of its

leaves. The height h(u) of a general node u is the height that the subtree rooted

at u has if it is detached from the tree of which it is a part. The relaxed height of

a node is de�ned similarly from the relaxed level of the leaves.

Clearly, if a node u in an (a; b)-tree has a large height, then the subtree in which

u is the root will also contain many keys. In a relaxed (a; b)-tree, however, if a node

has a large relaxed height, then this is only a sign of there having been many keys

at some point; they may have been deleted since. It turns out to be useful to count

those keys below u which have been deleted. We do this, remembering every key

that ever existed by associating them with nodes currently in the tree.

To begin with, every key is associated with the node it is currently in. When a

deletion occurs, the deleted key is still associated with the node it was deleted from.

When a node is deleted, all keys associated with that node are instead associated

with the parent node immediately before the deletion. An A-subtree of a node u is

now all keys associated with nodes in the actual subtree of u.

Lemma 2 Assume that a number of updates and rebalancing operations are per-

8



formed on a relaxed (a; b)-tree, which was initially a standard (a; b)-tree. At any

time the following holds: If u is the root in the relaxed (a; b)-tree, then there are at

least 2a

rh(u)

keys in the A-subtree of u. If u is any other node, then there are at

least a

rh(u)+1

keys in the A-subtree of u.

Proof. By induction on time. The base case is when no operations have been

performed on the tree, which is then still a standard (a; b)-tree. In this case, the

A-subtree of any node u equals the subtree of u, and rh(u) = h(u). Clearly, an

(a; b)-tree of height h with the minimum number of children, a, from any internal

node has at least a

h+1

keys in the leaves, except that the root may have only two

children, so its subtree can only be guaranteed to contain 2a

h

keys.

For the induction step, we assume that the result holds at some time t, and

prove that no matter which operation is carried out, then the result still holds at

time t+ 1.

Insert: If there is room in the node in which we want to insert the new key, then

the only change is that the A-subtree of this node and all ancestor nodes grow. If

there is not room, then the number of keys in this node, including the new key to be

inserted, must be b+1, which is larger than or equal to 2a. Thus, the two new nodes

with tag value 0 will get at least a keys each, so their A-subtrees are large enough

to match their relaxed height, which is also 0. The parent node has tag value �1,

so its relaxed height is also 0. Thus, the A-subtree of that node contains almost

twice as many keys as required. The only other change is that ancestors of these

three nodes get larger A-subtrees while their relaxed heights remain unchanged.

Delete: The deleted key is still associated with the node in question, so there

are no changes.

Root operations: If the root u has only one child, then this child is made the

new root, and the result follows since this child had a large enough A-subtree before

the operation was carried out. Otherwise, if there are at least two children, then

the tag value �1 is changed to zero. Since each child had an A-subtree of size at

least a

rh(u)

, the result follows.

Split: Recall that the problem node u with tag value �1 cannot be a leaf. If

there is room in the parent node, then the children of u are moved into the parent

node, and the problem node is deleted. As u had tag value �1, this operation will

not change the relaxed height of the parent node. Clearly, the sizes of its and its

ancestors' A-subtrees remain unchanged. If there is not room in the parent node,

then c(u) + c(�u)� 1 � b+ 1. We replace u and �u with three nodes. Two nodes,

u

1

and u

2

, are given at least a of these pointers each and their tag values are set

to 0. By the induction hypothesis, their (at least) a children all had A-subtrees

which were large enough before this operation. So, obviously, u

1

and u

2

also have

large enough A-subtrees. The third node has exactly two children, u

1

and u

2

, and

is given the tag value �1. Therefore, it has exactly the same relaxed height as u

1

and u

2

, and the result follows since it contains the A-subtree of u

1

(and u

2

as well).

Compress: In the compress operation, the underfull node u has a sibling v such

that tag(u) = tag(v). If c(u) + c(v) � 2a, then the pointers from u and v are

distributed evenly among u and v. The only potential problem here, is that the

9



A-subtree of v could become too small. However, if v is a leaf, then tag(v) = 0, so

rh(v) = 0 as well. This means that a keys are su�cient. If v is not a leaf, then it

will have at least a children after the operation. Using the induction hypothesis,

these children all had large enough A-subtrees before this compress operation was

applied. So, with at least a children, v must have a large enough A-subtree after

the operation.

If c(u) + c(v) < 2a, then the contents of u are moved to v and u is deleted.

This will increase the size of the A-subtree of v while its relaxed height remains

unchanged. The ancestors of u and v will still have the same A-subtrees as before.

No other nodes are a�ected (as u is deleted from the tree, nothing has to hold for

u). 2

If T is the initial standard (a; b)-tree and jT j is its size, then after a number of

update operations, i of which are insertions, jT j+ i is a bound on the size (number

of keys) of the relaxed (a; b)-tree at any point during these updates. Let N = jT j+i.

Corollary 1 The relaxed height of any node in a relaxed (a; b)-tree is at most

blog

a

(N=2)c.

The intuition in the design of logarithmic rebalancing is that if a problem cannot

be removed immediately, then it is removed at the cost of introducing another

problem closer to the root (at the parent node). The potential problem in a parallel

environment is that interference between di�erent operations may create problems.

One could easily imagine operations which would cancel each other, for instance.

The theorem below shows that such negative interference does not occur with the

operations de�ned in this paper.

Theorem 1 After k updates in a relaxed (a; b)-tree, which was originally a standard

(a; b)-tree T , at most k(blog

a

(N=2)c+ 1) rebalancing operations can be applied.

Proof. First, we bound the number of operations that can be carried out due to

negative nodes.

An insertion may create one node with tag value �1. Furthermore, a split

operation in removing one node with tag value �1, may create another|we say

that the problem (the tag value �1) has been moved. Thus, only insertion creates a

problem with a negative tag value; a split just moves it. Notice that if the relaxed

height of the node with tag value �1 before the operation was h, then the tag

value �1 is moved to a node of relaxed height h+1. Also, no other operation which

involves a node with negative tag value will change the height of the node with this

negative tag value. Thus, it will keep its relaxed height until it is either deleted or

moved by another split operation.

When an insertion creates a negative tag, the node created will have relaxed

height 0. Since the relaxed height of the tag increases every time it is moved, by

corollary 1, it can be moved at most blog

a

(N=2)c times. After that, since it cannot

be moved again, it must disappear. Counting that operation as well, it takes at

most blog

a

(N=2)c+ 1 rebalancing operations to remove a negative tag value.

Next, we bound the number of operations that can be carried out due to underfull

nodes.

A deletion may create an underfull node. Furthermore, when a compress opera-

10



tion moves all the pointers from one node u into another v, and then deletes u, the

parent node will have one less child. As an e�ect, it may become underfull|but

only if the parent has tag value 0 (since, by de�nition, negative nodes are not called

underfull). Again, we will say that an underfull problem has been moved from u to

�u. Since the parent node has tag value 0, rh(�u) = rh(u) + 1.

As no operation decreases the relaxed height of any node, and as underfull

nodes are created with relaxed height at least 0 (since leaves have tag values 0),

it follows from corollary 1 that an underfull node can be moved by a compress

operation at most blog

a

(N=2)c times. After that, since it cannot be moved again, it

must disappear. Counting that operation as well, it takes at most blog

a

(N=2)c+ 1

rebalancing operations to �x an underfull problem. 2

6. Amortized Complexity Results

In this section, we prove that in the amortized sense, O(1) rebalancing operations

per update are enough to keep a relaxed (a; b)-tree balanced, if b � 2a. For ordinary

(a; b)-trees, this was proven by Huddleston and Mehlhorn,

16;19

and the proof given

here follows the same lines, with the necessary modi�cations due to the relaxation

of the balance rules and the associated new rebalancing operations.

Following the exposition by Mehlhorn

19

, we de�ne the balance b(u) of a node u

(di�erent from the root) to be the function of c(u), the graph of which is depicted

below.

-

c(u)

6

b(u)

�

�

�

�

�

�

�

� @

@

@

a

a+ �

b� �

b

�a

�

If u is the root, then 2 is used instead of a. The slopes of the three line segments

of the graph are, from left to right, 1, 0, and �1. The constant � depends on a

and b, and is de�ned by

� =

(

a� 1; if 2a� 1 � b

b+1

2

c,

d

b+1

2

e � a; otherwise.

This de�nition of � is equivalent to the one used by Mehlhorn.

19

The important

properties of � are the following:

Lemma 3 For b � 2a and a � 2,

� 1 � � � a� 1.

� a+ � � 2a� 1 � b� �.

11



� If c(u) = b

b+1

2

c and c(v) = d

b+1

2

e, then 2�� 1 � b(u) + b(v) � 2�.

Proof. The proof consists of elementary manipulations and is omitted (for veri-

�cation of the third property, note that the double inequality is equivalent to the

statement that at least one of u and v has maximal balance). 2

We de�ne the total balance B(T ) of an (a; b)-tree T to be

B(T ) =

X

u2N

0

(T )

b(u) +

X

u2N (T )

tag(u);

where N (T ) denotes the set of nodes of T and N

0

(T ) denotes the set of nodes of T

having tag value 0. Using B as our potential function, we can prove the following

theorem:

Theorem 2 Assume b � 2a and a � 2. If i insertions and d deletions are per-

formed on a relaxed (a; b)-tree, which was originally a standard (a; b)-tree T con-

taining n elements, then at most

(2 +

1

a

)i+ 2d+

n

a

+ 1

rebalancing operations can occur.

Proof. Insertions, deletions, and rebalancing operations can change B(T ). Denot-

ing this change by �B, we claim that

� For an insertion or a deletion, �B � �1.

� For a tag adjusting operation which creates a new node, �B � 2�� 1.

� For a density adjusting operation which removes a node, �B � �.

� For any other operation, �B � 0.

These claims are proven as follows:

Insertions and deletions: For deletions and for insertions without overow, only

one node u is changed. As c(u) either increases or decreases by one, the claim

is obvious from the graph of b(u). For insertions with overow, two new nodes u

and v are created with c(u) = b

b+1

2

c and c(v) = d

b+1

2

e. The overowing node had

a balance of zero before the operation. Thus, by lemma 3, �B � (2�� 1)� 1 � 0.

Tag adjusting operations which create a new node: Note that negative nodes

never have more than two children: they are created in this way, and no operation

can increase their number of children, as can be seen by inspection of the operations

(in particular, this holds for insertions because leaves always have tag value zero).

Thus, for these tag adjusting operations, the lower two nodes u and v must have

c(u) = b

b+1

2

c and c(v) = d

b+1

2

e after the operation, and the upper node in the

operation must have balance zero before the operation. By lemma 3, �B � 2�� 1.

Density adjusting operations which remove a node: Denote the removed node

by u and its sibling by v. For this operation, we have c(u) � a�1 and c(u)+c(v) �

2a � 1. The removal of u increases B(T ) by an amount �b(u) = a � c(u). De�ne

12



x by c(v) = a + � � x. If c(u) � x, the balance of v changes by an amount

�b(v) � x (this also holds for x negative, since then �b(v) = 0 by lemma 3). As

c(u) + c(v) � 2a� 1 is equivalent to (a��b(u)) + (a+ �� x) � 2a� 1, we obtain

that �+1 � �b(u) +x � �b(u) +�b(v). If c(u) < x, then �b(v) = c(u), so in this

case � + 1 � a = (a � c(u)) + c(u) = �b(u) + �b(v) by lemma 3. The balance of

the upper node in the operation can decrease by at most one. Thus, �B � �.

Other operations: For tag adjusting operations which remove a node, the lower

node is negative and thus has at most two children, as noted above. Hence, the

number of children of the upper node increases by at most one. Since the negative

node is removed, B(T ) cannot decrease. For a density adjusting operation which

does not remove a node, assume that k children are transferred from the node v to

the node u. As u was underfull, its balance increases by minfk; � + 1g (after the

operation, c(u) � b � �, since the children are shared equally between u and v).

As v is not underfull after the operation, its balance decreases by at most minfk; �g.

Hence, B(T ) cannot decrease. Obviously, root operations can only increase B(T ).

Thus the claims are proven. Denote by � the number of tag adjusting operations

which create a new node, and by � the number of density adjusting operations which

remove a node. If T

1

is the initial tree and T

2

the �nal tree, the claims above imply

B(T

1

)� (i+ d) + (2�� 1)� + �� � B(T

2

):

As T

1

is a standard (a; b)-tree, B(T

1

) � 0. By lemma 1 and theorem 1, enough re-

balancing operations will eventually remove all balance problems, so we may with-

out loss of generality assume that T

2

is a standard (a; b)-tree. For such trees, all

tags are 0, making the potential function B used here equal to the one used by

Mehlhorn.

19

Thus, his upper bound on the potential function applies here, yielding

B(T

2

) � �+ �

n+i�d�2

a+��1

. Since � � 1, we have 2�� 1 � �. Hence,

� + � � 1 +

n+ i� d� 2

a+ �� 1

+

i+ d

�

� 1 + (1 +

1

a

)i+ d+

n

a

To bound the rest of the rebalancing operations, we note the following. For

an underfull node u, call a � c(u) (in the case of the root, 2 � c(u)) its amount of

underfullness . The total amount of underfullness in the tree can only increase due to

deletions|by at most one for each deletion (recall that, by de�nition, negative nodes

are not called underfull). The total number of negative nodes can only increase due

to insertions|by at most one for each insertion. All the remaining rebalancing

operations (root operations and the remaining cases of tag adjusting and density

adjusting operations) either reduce the total amount of underfullness in the tree

or the number of negative nodes by at least one. Thus, the remaining rebalancing

operations are bounded by i+ d. This proves the theorem. 2

The theorem above can be paraphrased by saying that when the number of

updates is 
(n), then there are only O(1) rebalancing operations per update. This

applies in particular to the situation where the initial structure is empty, as it is

customary to assume when discussing amortized complexity results.

Huddleston and Mehlhorn,

16;19

also prove that in ordinary (a; b)-trees, the num-

ber of updates that require rebalancing to occur h levels up in the tree is an expo-

13



nentially decreasing function of h. This kind of result is of particular importance in

a parallel environment, since the higher up in the tree a lock due to a rebalancing

operation occurs, the larger the subtree which cannot be accessed by other processes

for the duration of that lock.

Like in theorem 2, the proof of this result can also be adapted to relaxed

(a; b)-trees. To do this, we need a de�nition of relaxed height slightly di�erent

from that of section 5. With the de�nition in section 5, a negative node has the

same relaxed height as its �rst descendant having tag value 0. In this section, we

will need a negative node to have the same relaxed height as its �rst ancestor hav-

ing tag value 0. This can be accomplished by de�ning the variant relaxed height

rh

0

(u) of a node u by rh

0

(u) = rl(l)� rl(u), where rl is the relaxed level de�ned in

section 2, and l is any leaf (recall that all leaves have the same relaxed level). For

the rest of this section, the term relaxed height will refer to rh

0

.

We de�ne the relaxed height of an operation to be the relaxed height, before the

operation occurs, of the lower nodes in the operation, except for root operations,

where we de�ne it to be the relaxed height of the root. Note that the relaxed height

of tag adjustment operations and root operations is at least one, and that the

relaxed height of the other operations is at least zero. We can prove the following:

Theorem 3 Assume b � 2a and a � 2. If i insertions and d deletions are per-

formed on a relaxed (a; b)-tree, which was originally a standard (a; b)-tree T con-

taining n elements, then at most

2i+ n

(�+ 1)

h

rebalancing operations can occur at relaxed height h for h � 1. For h = 0, the bound

is d.

Proof. For an (a; b)-tree T , we de�ne B

h

(T ), the balance at relaxed height h, to

be

B

h

(T ) =

X

u2N

0

h

(T )

b(u) +

X

u2N

h

(T )

tag(u);

where N

h

(T ) is the set of nodes in T of relaxed height h, and N

0

h

(T ) is the set of

nodes in T of relaxed height h having tag value 0. An operation of a given relaxed

height can change some of the B

h

's. We claim that

� For a deletion or an insertion without overow , �B

0

� �1.

� For an insertion with overow , �B

0

� 2�� 1 and �B

1

= �1.

� For a tag adjusting operation of relaxed height h � 1 which creates a new node,

�B

h

� 2� and �B

h+1

� �1.

� For a density adjusting operation of relaxed height h � 0 which removes a

node, �B

h

� �+ 1 and �B

h+1

� �1.

� For all cases not mentioned above, �B

h

� 0 for all h.

14



These claims are simply more detailed statements of the claims in theorem 2, and

their veri�cation follows the same lines. We will not repeat the arguments here.

Denote by �

h

the number of tag adjusting operations of relaxed height h which

create a new node, and by �

h

the number of density adjusting operations of relaxed

height h which remove a node. Also, denote by i

1

the number of insertions without

overow, and by i

2

the number of insertions with overow. If T

1

is the initial tree

and T

2

the �nal tree, the claims above imply

B

0

(T

2

) � B

0

(T

1

)� i

1

� d+ (2�� 1)i

2

+ (�+ 1)�

0

;

B

1

(T

2

) � B

1

(T

1

)� i

2

� �

0

+ 2��

1

+ (�+ 1)�

1

;

B

h

(T

2

) � B

h

(T

1

)� �

h�1

� �

h�1

+ 2��

h

+ (�+ 1)�

h

;

when h � 2. As T

1

is a standard (a; b)-tree, B

h

(T

1

) � 0 for all h. Also, i = i

1

+ i

2

.

For notational convenience, we de�ne �

0

= i

2

(�

0

would otherwise be unde�ned).

Then the inequalities can be rewritten as

B

0

(T

2

) + i+ d � 2��

0

+ (�+ 1)�

0

;

B

h

(T

2

) + �

h�1

+ �

h�1

� 2��

h

+ (�+ 1)�

h

;

for h � 1. By lemma 3, � � 1, so we have 2� � �+ 1. Thus,

�

0

+ �

0

�

B

0

(T

2

) + i+ d

�+ 1

;

�

h

+ �

h

�

B

h

(T

2

) + �

h�1

+ �

h�1

�+ 1

;

for h � 1. Using the second inequality repeatedly, we obtain

�

h

+ �

h

�

i+ d

(�+ 1)

h+1

+

h

X

j=0

B

j

(T

2

)

(�+ 1)

j

(�+ 1)

h+1

;

for h � 0. Without loss of generality, we may assume that T

2

is a standard (a; b)-

tree. For such trees, all tags are 0, making the B

h

's used here equal to the ones used

by Mehlhorn,

19

except that our indices are o� by one compared to his de�nitions.

Thus, with minor modi�cations Mehlhorn's bound on the B

h

's applies here, yielding

P

h

j=0

B

j

(T

2

)(�+ 1)

j+1

� (�+ 1)(n+ i� d) for all h � 0. Hence,

�

h

+ �

h

�

i+ d

(�+ 1)

h+1

+

(�+ 1)(n+ i� d)

(�+ 1)

h+2

=

2i+ n

(�+ 1)

h+1

; (1)

for h � 0.

To bound the rest of the rebalancing operations, we do as follows. For an

underfull node (recall that a negative node is, by de�nition, not called underfull),

de�ne its amount of underfullness as in the proof of theorem 2. For a relaxed (a; b)-

tree T , let C

h

(T ) denote the total amount of underfullness of nodes having relaxed

height h, plus the total number of negative nodes having relaxed height h. It is

easy to verify that

15



� For an insertion with overow , �C

1

= 1.

� For a deletion, �C

0

� 1.

� For a tag adjusting operation of relaxed height h � 1 which removes a node,

�C

h

� �1.

� For a tag adjusting operation of relaxed height h � 1 which creates a new node,

�C

h

= �1 and �C

h+1

= 1.

� For a density adjusting operation of relaxed height h � 0 which does not remove

a node, �C

h

� �1.

� For a density adjusting operation of relaxed height h � 0 which removes a node,

�C

h

� �1, and �C

h+1

� 1.

� For a root operation of relaxed height h � 1, �C

h

� �1.

� For all cases not mentioned above, �C

h

� 0.

Denote by �

0

h

the number of tag adjusting operations of relaxed height h which

remove a node, and by �

0

h

the number of density adjusting operations of relaxed

height h which do not remove a node. Also, denote by r

h

the number of root

operations of relaxed height h. The facts above imply

C

0

(T

2

) � C

0

(T

1

) + d� �

0

� �

0

0

;

C

1

(T

2

) � C

1

(T

1

) + i

2

+ �

0

� �

1

� �

0

1

� �

1

� �

0

1

� r

1

;

C

h

(T

2

) � C

h

(T

1

) + �

h�1

+ �

h�1

� �

h

� �

0

h

� �

h

� �

0

h

� r

h

;

when h � 2. Without loss of generality, we may assume that T

2

is a standard (a; b)-

tree, and thus C

h

(T

1

) = C

h

(T

2

) = 0 for all h. Denote by t

h

the total number of

rebalancing operations of relaxed height h. Since root operations and tag adjusting

operations cannot have relaxed height 0, the above inequalities can (again de�ning

�

0

= i

2

) be rewritten as

t

0

� d;

t

h

� �

h�1

+ �

h�1

;

for h � 1. By inequality (1), the theorem follows. 2

Note that the results in this section do not hold when b = 2a� 1 (Huddleston

and Mehlhorn

16

give a simple counterexample which also applies here).

7. Conclusion

In this paper, we have generalized the proposal of Nurmi, Soisalon-Soininen, and

Wood

7

for relaxed B-trees to relaxed (a; b)-trees, and we have introduced a more

carefully designed set of rebalancing operations. With this new set of rebalancing

operations, the uncoupling of the rebalancing from the updating, allowing a high

degree of parallelism, is obtained at practically no cost, since we have proved that

16



the complexity of rebalancing relaxed (a; b)-trees is essentially the same as the

complexity of rebalancing ordinary (a; b)-trees.

Since B-trees, 2-3 trees, and 2-3-4 trees are special cases of (a; b)-trees, we also

have relaxed versions for these, including the logarithmic rebalancing results. Notice

that, as in the sequential case, the amortized results from section 6 only hold when

b � 2a, so only 2-3-4 trees and the variant of B-trees with b = 2a have these

properties.

Though we have not focused on storage utilization, one remark seems appropri-

ate here. It is clear that underfull nodes waste space, and if many deletions but

no rebalancing operations are done for an extended period of time, the amount of

wasted space can be arbitrarily large. However, if the necessary rebalancing op-

erations are carried out in parallel with the updates, the problem should not be

signi�cantly larger than for ordinary B-trees or (a; b)-trees, as the tree should al-

ways be close to balanced (a precise quanti�cation is di�cult, since it will depend

on the actual order in which the rebalancing processes attend to the problems of

unbalance, as well as on the updates performed). Note that by our amortization

results, \necessary" means O(1) per update on average (when b � 2a).

One important observation (made in the proof of theorem 2) is that nodes with

tag value �1 can never have more than two children, so while the tree is used, such

nodes could be kept in main memory (in records with room for only two values) so

that space is not wasted.

References

1. R. Bayer and E. McCreight, \Organization and maintenance of large ordered in-

dexes", Acta Inform. 1 (1972) 173{189.

2. B. Samadi, \B-trees in a system with multiple users", Inform. Process. Lett. 5 (4)

(1976) 107{112.

3. E. W. Dijkstra, \Co-operating sequential processes", in Programming Languages,

ed. F. Genuys (Academic Press, 1968) 43{112.

4. Y.-S. Kwong and D. Wood, \A new method for concurrency in B-trees", IEEE

Trans. Software Eng. 8 (3) (1982) 211{222.

5. P. L. Lehman and S. B. Yao, \E�cient locking for concurrent operations on B-trees",

ACM Trans. Database Systems 6 (4) (1981) 650{670.

6. Y. Sagiv, \Concurrent operations on B

�

-trees with overtaking", J. Comp. System

Sci. 33 (1986) 275{296.

7. O. Nurmi, E. Soisalon-Soininen and D. Wood, \Concurrency control in database

structures with relaxed balance", ACM Proc. of the sixth ACM Symposium on Prin-

ciples of Database Systems (1987) 170{176.

8. L. J. Guibas and R. Sedgewick, \A dichromatic framework for balanced trees", 19th

IEEE Foundations of Computer Science (1978) 8{21.

9. G. M. Adel'son-Vel'ski�� and E. M. Landis, \An algorithm for the organisation of

information", Dokl. Akad. Nauk SSSR 146 (1962) 263{266. (In Russian. English

translation in Soviet Math. Dokl. 3 (1962) 1259{1263.)

10. J. L. W. Kessels, \On-the-y optimization of data structures", Comm. ACM 26

(1983) 895{901.

17



11. O. Nurmi and E. Soisalon-Soininen, \Uncoupling updating and rebalancing in chro-

matic binary search trees", Proc. of the tenth ACM Symposium on Principles of

Database Systems (1991) 192{198.

12. J. F. Boyar and K. S. Larsen, \E�cient Rebalancing of Chromatic Search Trees",

J. Comp. System Sci., 49 (3), 667-682, 1994. Also in LNCS 621, 151{164, Springer-

Verlag, 1992.

13. J. Boyar, R. Fagerberg and K. S. Larsen, \Amortization Results for Chromatic

Search Trees, with an Application to Priority Queues", Proc. of the 4th Intl. Work-

shop, WADS '95 (1995) 270{281.

14. L. Malmi, \An e�cient algorithm for balancing binary search trees", TKO-B84,

Dept. of Comp. Sci., Helsinki University of Technology", 1992.

15. K. S. Larsen, \AVL trees with relaxed balance", Proc. 8th Intl. Parallel Processing

Symposium (IEEE Computer Society Press, 1994) 888{893.

16. S. Huddleston and K. Mehlhorn, \A new data structure for representing sorted lists",

Acta Inform. 17 (1982) 157{184.

17. J. D. Ullman, \Principles of Database and Knowledge-Base Systems, Vol. 1", (Com-

puter Science Press, 1988).

18. N. Goodman and D. Shasha, \Semantically-based concurrency control for search

structures", Proc. of the fourth ACM Symposium on Principles of Database Systems

(1985) 8{19.

19. K. Mehlhorn, \Data Structures and Algorithms, Vol. 1: Sorting and Searching",

(Springer-Verlag, 1984).

18


