
A New Formalism for Relational Algebra

Kim S. Larsen, Michael I. Schwartzbach, Erik M. Schmidt

Computer Science Department, Aarhus University, Aarhus, Denmark

Keywords: databases, relational algebra, query languages

1 Introduction

We present a new formalism for relational algebra, the FC language, which
is based on a novel factorization of relations. The acronym stands for factor-
ize and combine. A pure version of this language is equivalent to relational
algebra in the sense that semantics preserving translations exist in both di-
rections [4].

Advantages of the new proposal include more concise and elegant expressions
for many queries, new possibilities for query analysis, and the ability to
include arithmetic and aggregate functions in a natural way.

The FC language is based on one operator, factor, which takes any number
of relations as arguments and returns a single relation as result. It is related
to the group by operator [2], though more general.

A factor expression is evaluated in three steps: The first step is to factorize
the relational arguments. The second step is to perform simple computations
on the smaller components obtained hereby. The third and final step is to
combine the individual results from step two.

The computation in step two is specified by a small core language for manip-
ulating tuples and atomic values. The combination in step three is always
the union of the results from step two.

We demonstrate how all standard relational operators, and others, can be
translated into the FC language. The translation from FC to relational
algebra is more difficult; we refer the reader to [4] for the definition of this
translation and proofs of correctness.

1

2 Factorizations

Recall that a tuple is a finite partial function from attribute names to atoms.
A relation R(r) is a finite set of tuples r, over a common domain R which is
also referred to as the schema of the relation. As usual, we overload notation
and let r refer to the relation R(r).

A factorization is performed on a collection of relations, relative to a subset
of their common attribute names. Operationally, the decomposition compo-
nents can be found as follows. All tuples of all relations are projected onto
the selected attribute names and duplicates are removed. This yields a set of
component tuples. For each tuple in this set and for each relation argument,
we determine a component relation, which contains exactly those comple-
mentary tuples that combined with the component tuple are contained in
this relation argument.

Definition 2.1 Let r1, . . . , rn be relations and X ⊆
⋂

Rj a set of attribute
names. The factorization of the rj’s on X consists of

• a sequence of component tuples φ1, . . . , φm with common domain X

• for each (i, j) ∈ {1, . . . ,m}×{1, . . . , n}, a component relation Θij with
schema Rj\X

such that

1) the following n equations hold

∀j : rj =
m
∑

i=1

{φi} ×Θij

where {φi} denotes the singleton relation the only tuple of which is
φi, + is interpreted as union, and × as Cartesian product of relations.
These n equations can also be depicted as the following matrix equation

({φ1}, {φ2}, . . . , {φm})













Θ11 Θ12 · · · Θ1n

Θ21 Θ22 · · · Θ2n

...
...

...
Θm1 Θm2 · · · Θmn













= (r1, r2, . . . , rn)

2

2) all the φi’s are pairwise different, i.e., ∀ i, j : i 6= j ⇒ φi 6= φj

3) no row of the (Θij) matrix has all “zeroes”, i.e., ∀i ∃j : Θij 6= ∅

Proposition 2.2 A factorization always exists and is unique up to reorder-
ing of the φi sequence. ✷

Example: Let r1 and r2 be the two relations

A B

a1 b1
a2 b2
a3 b3
a4 b4

and

B C D

b2 c1 d1
b2 c2 d2
b4 c3 d3
b5 c4 d4

The factorization of r1, r2 on B is

(

B

b1
,

B

b2
,

B

b3
,

B

b4
,

B

b5

)























































A

a1

C D

A

a2

C D

c1 d1
c2 d2

A

a3

C D

A

a4

C D

c3 d3

A C D

c4 d4























































= (r1, r2)

3 The FC Language

The set of expressions contains a minimal core language for manipulating
atoms and tuples

3

e ::= α atom expressions
| [A:e] | [] tuple formations
| e1 e2 tuple perturbations
| e.A tuple inspections
| e\A tuple restrictions
| 0 | 1 relation constants
| {e1, . . . ,ek} relation formations
| b?e guards
| f(e) homomorphisms

We also provide two operations on relations

| e1 × e2 Cartesian products
| factor . . . on . . . do . . . factorization operations

The atom expressions are left unspecified, but are intended to be entirely
standard; certainly, they will include the booleans. They could also include
integers as well as arithmetic on the integers.

A tuple formation [A:e] denotes the function which is undefined on all
values except A where its value is e. If ei denotes the function fi, i = 1, 2,
then the tuple perturbation e1 e2 denotes the function which is equal to f2
whenever f2 is defined and otherwise equal to f1. If e denotes f , then the
tuple inspection e.A denotes f(A). If e denotes f , then the tuple restriction
e\A denotes the function which is equal to f except that it is undefined on
A.

The relation constants denote the zero- and unit-element for Cartesian prod-
uct, i.e., 0 = ∅(∅) and 1 = ∅({[]}). A relation formation constructs a
relation from a non-empty set of tuples with common domain.

In the guard expression b?e, the expression b denotes a boolean and e denotes
a relation. If b is true, then the result is e; otherwise, the result is E(∅)—the
empty relation with the schema of e.

Finally, a homomorphism f is a function from relations to atoms such that
f(r1 ∪ r2) equals f(r1)⊕f f(r2), where ⊕f is an associative and commutative
operator on the image of f . The set of homomorphisms is left unspecified
but can include such functions as and, or, min, and max.

4

4 The Factor Operator

The syntax of the factor operator is

factor r1, r2, . . . , rn on A1, A2, . . . , Ak do e

where n ≥ 1, the rj’s are relations, k ≥ 0, {A1, A2, . . . , Ak} ⊆
⋂

Rj is a set
of attribute names, and e is an extended expression denoting a relation. An
extended expression allows the following extra constructs (in addition to the
constructs from the core language):

e ::= tup | rel(j) factorization components

We allow a variation: if one merely writes factor r1, r2, . . . , rn do e, then
the factorization is performed on

⋂

Rj, i.e., on all the common attributes.

The semantics of factor is the function taking r1, r2, . . . , rn to the result
of the following computation. Step one: a factorization of r1, r2, . . . , rn on
{A1, A2, . . . , Ak} is determined. Assume that this results in m component
tuples. Step two: for each φi and (Θi1,Θi2, . . . ,Θin), the expression e is
evaluated in an environment where tup = φi and for each 1 ≤ j ≤ n,
rel(j) = Θij. Step three: the result is the union of these m values. If m=0,
then the result is, of course, the empty relation with the appropriate schema
(determined from e).

Notice that both the decomposition and the combination can be expressed
in terms of the two simplest relational (set-)operators, union and Cartesian
product. In between, one can modify the components.

As a trivial example, observe that rj equals

factor r1, r2, . . . , rn on A1, A2, . . . , Ak do {tup} × rel(j)

for any legal choice of Ai’s.

Proposition 4.1 The factor operation is well-defined, i.e., 1) the schema
of the value of e is the same for each environment and can be statically
determined (which is necessary to define the schema of an empty result),
and 2) the result is independent of the ordering of the φi’s. ✷

5

A small amount of syntactic sugar will prove convenient. If an attribute
name A appears in an extended expression in place of an atomic value, then
it denotes tup.A. Also, we shall write rel rather than rel(1) when factor

takes only a single argument.

Example: If r1 and r2 are the two relations from section 2, then the result
of

factor R1, R2 on B do rel(1)× rel(2)

can be computed as

A

a1
× C D +

A

a2
×

C D

c1 d1
c2 d2

+
A

a3
× C D +

A

a4
×

C D

c3 d3
+ A ×

C D

c4 d4

which equals
A C D

a2 c1 d1
a2 c2 d2
a4 c3 d3

5 Relational Operators

We have chosen to present FC in a style which is more like a language than
like standard relational algebra notation. We also use verbose notation for
the standard relational operators.

To begin with, we investigate the simpler case of the unary factor operation

factor r on A1, . . . , Ak do e

This implies, of course, that all the Ai’s are attribute names of r. The
standard unary relational operators can be translated as follows:

project r on A1, . . . , Ak ≡ factor r on A1, . . . , Ak do {tup}

6

select r where b ≡ factor r do b?{tup}

rename r by A1 ← A2 ≡ factor r do {tup\A1[A2:A1]}

We can also define the translation of the following two nonstandard operators
[3, 2]:

extend r by A:= e ≡ factor r do {tup[A:e]}

group r by A1, . . . , Ak creating A:= f() ≡
factor r on A1, . . . , Ak do {tup[A:f(rel)]}

It turns out that if the core language contains neither operations on atom ex-
pressions (like arithmetic on the integers) nor homomorphisms, then FC and
relational algebra are equivalent. If operations on atom expressions are added
to FC, then this is equivalent to relational algebra with extend (based on
the same operations). If homomorphisms are added to FC, then this is equiv-
alent to relational algebra with group by (and the same homomorphisms).
See [4] for further details.

Many combinations of ordinary operators can conveniently be expressed by
a single factor expression. Consider as an example the following expression
where r is a relation with schema {A1, A2, A3, A4, B1, B2}:

project

extend

select r where B1>B2

by B:=B1+B2

over A1, A2, A3, A4, B1, B

Using factor we can write:

factor r do B1>B2? {tup[B:B1+B2]\B2}

Two points are noteworthy in connection with this example. Firstly, the fac-
tor expression does not need to know the incidental attributes A1, A2, A3, A4.

7

Secondly, the computation is clearly one that should be performed on each
tuple individually. This is evident in the factor expression, which in this
situation basically says “for all tuples in r do ...”. In the former expression
one has to split this simple computation scheme out into operations on three
different relations. In conclusion, this factor translation is not only shorter,
but also considerably easier to program. In a naive implementation, it would
also automatically be more efficient.

A short discussion of optimization is appropriate in connection with this
example. The tuple language of FC lead us to consider new methods of
query analysis. The expression above is one out of a large class of expressions
which can be determined to be injective, in the sense that the tuple language
expression, viewed as a function from tuples to tuples, is injective. This
implies that no duplicates are produced when the query is evaluated. A
linear-time algorithm to decide membership of this class is presented in [5].
The results can to some extent be inherited by the binary queries.

Though these results are inspired by the tuple language of FC, they can
be applied equally well to languages like SQL and the earlier SEQUEL [1].
Instead of analyzing an SQL query directly, we analyze an equivalent FC
query.

We now turn our attention to the usual binary operators. Apart from the
standard union operator, we can also get

union r1 and r2 ≡ factor r1, r2 do {tup}

which is an extension: if the two relations have different schemas, then this
expression produces the union of the projections over the common attributes
names.

Intersection is straightforward:

intersect r1 and r2 ≡ factor r1, r2 do rel(1) = rel(2)? {tup}

Notice that if r1 and r2 have the same schema, then rel(1) and rel(2) equal
either 0 or 1. Thus the guard can be evaluated efficiently.

Of course, another way to obtain the intersection is as a special case of the
join operator. In general join looks as follows:

8

join r1 and r2 ≡ factor r1, r2 do rel(1)× {tup} × rel(2)

This is a very intuitive presentation of join: the different parts of r1 and r2
are stuck together using the available “glue”—the common tup’s.

The difference of two relations is:

difference r1 and r2 ≡ factor r1, r2 do rel(2) = 0? {tup}

As before, this expression is very easy to understand: we take the tup’s that
do not belong to r2.

Consider a relation in which the attributes A,B,C constitute a key. Suppose
we have two versions of what is intended to be the same relation. We can
obtain the key values for which the information in the two versions disagree:

factor r1, r2 on A,B,C do rel(1) 6= rel(2)? {tup}

This is almost a literal translation of: if the information is inconsistent, then
include the key value.

Finally, we present an example of a two-level factor. The divide operator
is defined as

r1/r2 = max{r | r × r2 ⊆ r1}

where R2 ⊆ R1. It is usually quite complicated to derive; however, we can
write it as:

factor r1, r2 do factor rel(1) do {tup} × r2⊆r1? {tup}

which closely follows the definition. Together the two factors provide the
R1\R2 part of the tuples of r1. We then select those that combined with all
of r2 is contained in r1. In comparison, a more standard derivation of divide
is:

9

difference

project r1 over A1, A2, . . . , Ak

and

project

difference

join

project r1 over A1, A2, . . . , Ak

and

r2
and

r1
over A1, A2, . . . , Ak

This is not very intuitive; furthermore, one needs explicit knowledge of the
set R1\R2, i.e., the Ai’s. In [3] divide is derived from two group by’s, but it
involves renamings and projections, and becomes increasingly complex with
the size of k.

6 Efficiency

The FC language can be implemented efficiently. By sorting and merging,
one can compute the factorization of n relations each with T tuples in time
O(nT log(T)). The time for an expression containing exactly one factormust
furthermore include the time for computing the union of the extended expres-
sions. For example, the binary join can be computed in time O(T log(T)+J),
where J is the size of the result, and the unary project can be computed in
time O(T log(T)).

A unary expression factor r do e can be evaluated in linear time when
e is injective, since no sorting is then required. This property can often
be determined statically; an optimal, linear-time algorithm is presented in
[5]. Since select, extend, and rename yield such expressions, the factor

versions of all standard relational operators preserve the complexity of the
originals. As discussed in the previous section and in [5], we can sometimes
even do better, since combinations of standard operators can be expressed as
a single factor expression, for which we may detect an injectivity that was

10

disguised in the original. The results in [5] are fully applicable to standard
languages like SQL.

References

[1] M. M. Astrahan and D. D. Chamberlin. Implementation of a Structured
English Query Language. Communications of the ACM, 18(10):580–588,
1975.

[2] P. M. D. Gray. The GROUP BY Operation in Relational Algebra. In
S. M. Deen and P. Hammersley, editors, Databases, pages 84–98. Pentech
Press Limited, 1981.

[3] P. M. D. Gray. Logic, Algebra and Databases. Ellis Horwood Limited,
1984.

[4] K. S. Larsen. Equivalence of FC and Relational Algebra. In preparation.

[5] K. S. Larsen and M. I. Schwartzbach. Optimal Detection of Query Injec-

tivity. Computer Science Department, Aarhus University, 1990.

11

