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The formalization contains:

• definition of the necessary concepts;

• statement and proof of technical lemmas and use-
ful theorems alike;

• development of automation strategies (“tactics”)
which can help to (partially) solve goals, i.e., build
(parts of) proofs;

• documentation of all the work, both at the mathe-
matical level (discussion of alternative definitions
and statements and proofs of theorems) and at
the technical level.
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Contents of the main library
and where the FTC fits in

The main topics in the formalization of the FTC
and their inter-dependencies

Tree structure of the files
in the formalization of the FTC

Partial Functions

We model a partial function f : R 6→ R with domain characterized by
a predicate P as a λ-term F of type (Πx : R)(ΠHx : P (x))R; that is,
as a binary function whose second argument is a proof term. They are
required to meet the conditions

∀x:R∀H,H ′:P (x)F (x,H) = F (x,H ′) ,

known as proof irrelevance, which allows us to write simply F (x); and

∀x,y:R(x = y) ⇒ (F (x) = F (y)) .

Using this definition and the library of real numbers developed at the
University of Nijmegen, we formalized a constructive proof of the Fun-
damental Theorem of Calculus (FTC). Some of the main steps in the
formalization are presented here.

The Fundamental Theorem of Calculus

If f is a continuous function with a primitive F , then integrals of f can
be evaluated according to the rule

∫ b

a
f (x)dx = F (b)− F (a) .

This equality is valid both classically and constructively.

Rolle’s Theorem

Given a, b ∈ R such that a ≤ b and f (a) = f (b), we can prove classically
that

∃x∈[a,b]f
′(x) = 0 ;

constructively, we can only prove the (weaker) condition

∀ε>0∃x∈[a,b]|f ′(x)| ≤ ε .

As a corollary, we get the result known as the Mean Law, which given
a, b classically states that

∃x∈[a,b]
f (b)− f (a)

b− a
= f ′(x) ;

constructively, it states that

∀ε>0∃x∈[a,b]|f (b)− f (a)− f ′(x)(b− a)| ≤ ε .

The Mean Law is an approximation theorem; in it, the value of x is
unknown. Therefore, in practice both formulations will yield similar
results.

Taylor’s Theorem

If f is n + 1 times differentiable, then we can approximate f by a poly-
nomial in terms of the derivatives of f ; the estimate for the error is
classically given by

∃y∈If (x)−
n∑

i=0

f (i)(x0)

i!
(x− x0)

i =
f (n+1)(y)

(n + 1)!
(x− y)n+1 .

Constructively, we can only establish the weaker result

∀ε>0∃y∈I

∣∣∣∣∣∣
f (x)−

n∑

i=0

f (i)(x0)

i!
(x− x0)

i − f (n+1)(y)

(n + 1)!
(x− y)n+1

∣∣∣∣∣∣
≤ ε

This is also an approximation theorem. In practice, both formulations
allow for the same results; also, both can be used to prove existence and
uniqueness of solutions to some kinds of differential equations.


