
The Automotive Case Study in the Sensoria Core
Calculi∗

Lúıs Cruz-Filipe1,2

lcfilipe@gmail.com

Francisco Martins1

fmartins@di.fc.ul.pt

Vasco Vasconcelos1

vv@di.fc.ul.pt

1Dept Informatics, Fac. Sciences, University of Lisbon
2SQIG–IT and IST, Tech. Univ. Lisbon

June 29, 2007

1 Introduction

In this note we show how two case studies from the automotive scenario can be represented
in SSCC [4] in a satisfactory way. The first case study (a sight service that dinamically
shows sights according to the driver’s preferences) is straightforward to model. The second
case study (a dinner service that allows the driver to make a reservation at a restaurant with
some interaction) raises some problems with communication and typing of the resulting
processes, which we then show can be solved without compromising the motivation behind
SSCC.

It is also shown how the same two scenarios can be implemented in two other variants
of the Sensoria Core Calculus, namely pSCC [2] and CSCC [3]. The resulting processes
are then briefly compared and the differences and similarities between them discussed.

2 Sight Service (Case study 4.1.1)

Here is the scenario as described in [1].

The driver has subscribed to the dynamic sight service offered by the car com-
pany. The vehicle’s GPS coordinates are automatically sent to the dynamic

∗Research supported by project FET-GC II IST-2005-16004 Sensoria.

1



f
�A : Driver : CCS : SightService : NavService

-1: Activate

-2: Preferences
-3: Connect

-4: Preferences

�
5: compute
GPSdata

-6: GPSdata

� 7: Search
� 8: SearchResult

� 9: SearchResult

-10: Options

�
11: compute

DisplayResult
�12: DisplayResult

� 13: compute MapData

-14: Activate

-15: MapData

Figure 1: Sequence diagram for sight service scenario.

sight server at regular intervals, so the vehicle’s location is known within a
specified radius. Based on the driver’s preferences that were given at the be-
ginning of the trip, the dynamic sight server searches a sightseeing database for
appropriate sights and displays them on the in-car map of the vehicle’s naviga-
tion system. The driver clicks on sights he would like to visit, which results in
the display of more detailed information about this specific sight (e.g. opening
times, guidance to parking etc.).

As suggested in the paper cited above, there are four actors in this scenario. The
driver enables the sight service (via the vehicle’s communication system) and sets his
preferences. The Car Communication System (CCS) manages the communication to and
from the sight service. The sight service has access to a sightseeing database where it
gathers information from. Finally, the vehicle’s navigation system displays the results to
the driver in a graphical way.

The dialogue between the actors is represented by the sequence diagram in Figure 1,
which is essentially the same as in [1].

As a service, the CCS can be implemented as the following process in SSCC. The
notation 〈action〉 stands for an internal action of the system; the numbers on the right
correspond to the numbers of the actions in the sequence diagram.

CCS ⇒ (Preferences). // 1:, 2:
(SightService ⇐ Preferences. // 3:, 4:

〈compute GPSdata〉. // 5:
GPSdata. // 6:

2



(SearchResult). // 8:
feed SearchResult)

>1 SearchResult >
SearchResult. // 9:
(Options). // 10:
〈compute DisplayResult〉. // 11:
DisplayResult. // 12:
〈compute MapData〉. // 13:
(NavSystem ⇐ MapData) // 14:, 15:

This implementation follows the UML diagram above closely. It is easy to prove that

Γ ` CCS : ?Preferences.!SearchResult.?Options.!DisplayResult.end

whenever Γ is such that

Γ ` SightService : ?Preferences.?GPSdata.!SearchResult.end

Γ ` NavSystem : ?MapData.end

The (anonymous) stream has type 〈SearchResult〉.
Observe that the types of all these services (CCS, SightService and NavSystem) corre-

spond precisely to their part of the conversation in the sequence diagram presented above
as seen by the party who invokes them. For example, the type of SightService composes
the arrows labelled 4:, 6: and 8:, which is the trace of its conversation with CCS.

Also the communication along the stream does not correspond to any action in the
sequence diagram. As we will discuss in more detail in the next section, it corresponds to
communication between two sessions within the CCS (the session CCS–SightService and
the session CCS–Driver), and not to communication between different parties.

3 Dinner Service (Case study 4.1.7)

Once again we present the scenario as given in [1].

Paul is very hungry since he is driving without any food for 5 hours, so he
activates the dinner service and enters a pizzeria as desired restaurant type
and a price range between five and ten euros per meal. The navigation system
displays a collection of nearby restaurants that match the preferred settings.
Paul chooses the option to check for available seats in the participating local
restaurants, and as a result the map displays only restaurants with available
tables. Paul chooses “Tony’s Pizza” and gets his reservation acknowledged.
The way to the restaurant’s parking lot is now displayed on the navigation
system map.

3



f
�A : Driver : CCS : DinnerService : NavService

-1: Activate

-2: Preferences
-3: Connect

-4: Preferences

�
5: compute
GPSdata

-6: GPSdata

� 7: Search
� 8: SearchResult

� 9: SearchResult

-10: CheckSeats

�
11: compute
DisplayResult

�12: DisplayResult

-13: ChooseRestaurant
-14: ChooseRestaurant

� 15: ResAccept
� 16: ResAccept

� 17: compute MapData

-18: Activate

-19: MapData

Figure 2: Sequence diagram for dinner service scenario.

Again following the suggestion in the reference paper, we identify four actors in this sce-
nario. The driver enables the dinner service (via the vehicle’s communication system) and
sets his preferences. The Car Communication System (CCS) manages the communication
to and from the dinner service. The dinner service has access to a database of restau-
rants that it can contact in order to acknowledge the reservation. Finally, the vehicle’s
navigation system displays the results to the driver in a graphical way.

The dialogue between the actors is represented by the sequence diagram in Figure 2,
which is again essentially the same as in [1].

However, it is not so straightforward as before to implement the CCS in SSCC. The
problem arises from the need to interact with the driver after receiving information from
the dinner service, and then give feedback to the latter. We present some alternatives and
discuss the drawbacks of each of them.

3.1 Implementation creating a continuation

In this approach, the dinner service, when invoked for the first time, creates a (customized)
new service whose unique ID is sent back to the CCS. Afterwards, the CCS invokes that
new service, which contains some persistent information. This solution deviates slightly
from the sequence diagram above, since the session between the CCS and the dinner service
is actually split into two sessions, one between the CCS and the dinner service (actions 2:
to 8:), another between the CCS and the new service (actions 14: and 15:); see Figure 3.

4



f
�A : Driver : CCS : DinnerService

r

: NavService

-- --
�

-
�

� -create�

�
8’: r

-
��

-
-12’: Activate

-13: ChooseRestaurant

� 14: ResAccept
�

� -
-

Figure 3: Sequence diagram for dinner service scenario with creation of a continuation.
Only the different part is detailed.

CCS ⇒ (Preferences). // 1:, 2:
stream (DinnerService ⇐ Preferences. // 3:, 4:

〈compute GPSdata〉. // 5:
GPSdata. // 6:
(SearchResult). // 8:
feed SearchResult.
(NewService). // 8’:
feed NewService)

as f in (f(SearchResult).
SearchResult. // 9:
(CheckSeats). // 10:
〈compute DisplayResult〉. // 11:
DisplayResult. // 12:
(ChooseRestaurant). // 13:
f(NewService).
(NewService ⇐ ChooseRestaurant. // 13’:, 14:

(ResAccept). // 15:
feed ResAccept)

>1 ResAccept >
ResAccept. // 16:
〈compute MapData〉. // 17:
(NavSystem ⇐ MapData) // 18:,19:
)

5



This approach is interesting because it shows how continuations can be easily passed
as (specialized) services, yielding some form of persistency. However, the CCS as given
will not be typable because stream f cannot be typed consistently (since it is used twice to
pass two bits of information of different types).

3.2 Implementation using an auxiliary service

An alternative approach is to feed new data from the communication system into the dinner
service. However, this is not immediately possible using the syntax of SSCC. In order to
achieve this “backwards” communication, a new (linear) service b is created (whose name
is private to the communication system). Whenever the communication system needs to
send more data to the dinner service, it does so via b. Notice that one service is created
for each message that needs to be sent back.

This solution follows the original sequence diagram (Figure 12) faithfully.

CCS ⇒ (Preferences). // 1:, 2:
(νb)(stream (DinnerService ⇐ Preferences. // 3:, 4:

〈compute GPSdata〉. // 5:
GPSdata. // 6:
(SearchResult). // 8:
feed SearchResult.
b ⇓ (ChooseRestaurant).
ChooseRestaurant. // 14:
(ResAccept). // 15:
feed ResAccept)

as f in (f(SearchResult).
SearchResult. // 9:
(CheckSeats). // 10:
〈compute DisplayResult〉. // 11:
DisplayResult. // 12:
(ChooseRestaurant). // 13:
b ⇑ ChooseRestaurant.
f(ResAccept).
ResAccept. // 16:
〈compute MapData〉. // 17:
(NavSystem ⇐ MapData) // 18:, 19:

))

where:

• b ⇑ v.P stands for (b ⇐ v)>0>P,
which in turn unfolds to stream (b ⇐ v) as f in P.

6



• b ⇓ (x).P stands for (b ⇒ (z)feed z)>1x>P,
which in turn unfolds to stream (b ⇒ (z)feed z) as f in (f(x)P).

Observe that both b ⇑ v.P and b ⇓ (x).P always have the same type as P (but in the second
case P might not be typable without the extra information of the type of x); furthermore,
v:T ` b:?T, hence the use of these abbreviations always fits well with the type system.
Indeed, the only typing problem is the one above – namely stream f can not be adequately
given a type.

3.3 Implemenation with communication via services

The constructions b ⇑ v.P and b ⇓ (x).P may also be used to communicate in the same
direction as the stream, hereby avoiding the typing problems both previous solutions suf-
fered from. Thus, we arrive at a third proposal for modelling the dinner service scenario
within SSCC, which again follows the proposed sequence diagram faithfully.

CCS ⇒ (Preferences). // 1:, 2:
(νa1,a2,b)(

(DinnerService ⇐ Preferences. // 3:, 4:
〈compute GPSdata〉. // 5:
GPSdata. // 6:
(SearchResult). // 8:
a1 ⇑ SearchResult.
b ⇓ (ChooseRestaurant).
ChooseRestaurant. // 14:
(ResAccept). // 15:
a2 ⇑ ResAccept)

|
(a1 ⇓ (SearchResult).
SearchResult. // 9:
(CheckSeats). // 10:
〈compute DisplayResult〉. // 11:
DisplayResult. // 12:
(ChooseRestaurant). // 13:
b ⇑ ChooseRestaurant.
a2 ⇓ (ResAccept).
ResAccept. // 16:
〈compute MapData〉. // 17:
(NavSystem ⇐ MapData) // 18:, 19:

)
)

7



With this solution, it can be easily verified that

Γ ` CCS : ?Preferences.!SearchResult.?CheckSeats.!DisplayResult.

?ChooseRestaurant.!ResAccept.end

in any context Γ such that:

Γ ` DinnerService : ?Preferences.?GPSdata.!SearchResult.

?ChooseRestaurant.!ResAccept.end

Γ ` NavSystem : ?MapData.end.

The types of services a1, a2 and b are exactly as in the previous example. Again, the types
of the services reflect their communication in the sequence diagram with the party who
invokes them: the type of CCS is the concatenation of actions 2:, 9:, 10:, 12:, 13: and 16:;
the type of DinnerService is the concatenation of actions 4:, 6: and 8:; and the type of
NavSystem is simply action 19:.

Observe that all communication via a1, a2 and b is hidden in the type of the ser-
vices; thus, the type also hides all internal communication, which is not represented in the
sequence diagram.

4 Other variants of SCC

In this section we discuss implementations of the same scenarios within other variants of
SCC.

4.1 pSCC

These two scenarios can also be modelled within pSCC [2]. Since pSCC uses 〈v〉 for output
of a value v, we use instead the notation [A] to refer to an internal action A of a process.

The sight service scenario is a straightforward adaptation of the implementation in
SSCC, the major differences being notational.

CCS. (?Preferences). // 1:, 2:
(SightService. 〈Preferences〉. // 3:, 4:

[compute GPSdata]. // 5:
〈GPSdata〉. // 6:
(?SearchResult). // 8:
〈SearchResult〉↑)

>
(?SearchResult).
〈SearchResult〉. // 9:
(?Options). // 10:
[compute DisplayResult]. // 11:

8



〈DisplayResult〉. // 12:
[compute MapData]. // 13:
NavSystem.〈MapData〉 // 14:, 15:

As for the dinner service scenario, the implementation is again very similar to that
within SSCC. Besides the differences in notation, the auxiliary services a ⇑ v and a ⇓ (x)
are also defined differently:

• a ⇑ v.P stands for a.〈v〉 | P (asynchronous output);

• a ⇓ (x).P stands for a.(?x)〈x〉↑ > (?x).P (input).

CCS. (?Preferences). // 1:, 2:
(νa1,a2,b)(

(DinnerService. 〈Preferences〉. // 3:, 4:
[compute GPSdata]. // 5:
〈GPSdata〉. // 6:
(?SearchResult). // 8:
a1 ⇑ SearchResult.
b ⇓ (ChooseRestaurant).
〈ChooseRestaurant〉. // 14:
(?ResAccept). // 15:
a2 ⇑ ResAccept)

|
(a1 ⇓ (SearchResult).
〈SearchResult〉. // 9:
(?CheckSeats). // 10:
[compute DisplayResult]. // 11:
〈DisplayResult〉. // 12:
(?ChooseRestaurant). // 13:
b ⇑ ChooseRestaurant.
a2 ⇓ (ResAccept).
〈ResAccept〉. // 16:
[compute MapData]. // 17:
NavSystem.〈MapData〉 // 18:, 19:

)
)

4.2 CSCC

Another calculus within which these two scenarios can also be modelled is CSCC [3]. Again
this happens in a very similar way to the approach of SSCC. However, the dinner service
case study is somewhat simpler due to the more powerful message-sending mechanism.

9



The sight service becomes the following process.

def CCS ⇒ (in ← Preferences(p). // 1:, 2:
instance Server .SightService ⇐ // 3:

out ← Preferences(p) . // 4:
〈compute g〉. // 5:
out ← GPSdata(g) . // 6:
in ← SearchResult(s). // 8:
out ↑ SearchResult(s)

)
|
(in ↓ SearchResult(s).
out ← SearchResult(s) . // 9:
in ← Options(o). // 10:
〈compute d〉. // 11:
out ← DisplayResult(d) . // 12:
〈compute m〉. // 13:
instance Server .NavSystem ⇐ // 14:

out ← MapData(m) // 15:
)

The dinner service thus becomes the following process.

def CCS ⇒ (in ← Preferences(p). // 1:, 2:
instance Server .DinnerService ⇐ // 3:

out ← Preferences(p) . // 4:
〈compute g〉. // 5:
out ← GPSdata(g) . // 6:
in ← SearchResult(s). // 8:
out ↑ SearchResult(s) .
in ↑ ChooseRestaurant(c).
out ← ChooseRestaurant(c) . // 14:
in ← ResAccept(r). // 15:
out ↑ ResAccept(r)

)
|
(in ↓ SearchResult(s).
out ← SearchResult(s) . // 9:
in ← CheckSeats(c). // 10:
〈compute d〉. // 11:
out ← DisplayResult(d) . // 12:

10



in ← ChooseRestaurant(c). // 13:
out ↓ ChooseRestaurant(c) .
in ↓ ResAccept(r).
out ← ResAccept(r) . // 16:
〈compute m〉. // 17:
instance Server .NavSystem ⇐ // 18:

out ← MapData(m) // 19:
)

5 Conclusions

The second scenario exposes the issue with streams: they render communication assymet-
ric, since a running instance of a service is able to feed information into the process that
invoked it, but the latter process has no way to interact back (directly) with that instance
of the service1.

However, in this scenario, the communication system has to syncronize two sessions
running concurrently (that with the dinner service and another one with the driver) and
information has to run back and forth between them – which is a priori not possible due
to who invoked whom.

A simple way to work around this problem is using continuations, as done in the
approach in Subsection 3.1. Whenever a session needs extra information from the context
to proceed, it saves its state in a new service, feeds the name of that service into the
context and dies. Later on, the context can invoke the continuation of that session with
any extra information that became available in the meantime. Another possibility, explored
in Subsection 3.2, is to use ephemerous services to communicate in the “wrong” direction.

Figure 4 depicts the sequence of messages exchanged between the intervenients (forget-
ting activation commands). Observe that CCS is managing two sessions; the curved arrows
denote information that must be transmitted from one into the other (which CCS should
be able to do). The arrows going left can be implemented by feeding into the appropriate
stream; the arrow going right must be dealt with using one of the two mechanisms detailed
earlier.

This diagram also explains why typing fails for both alternative solutions. Except for
their direction, there is no essential distinction the arrows connecting both sessions CCS
is managing. However, streams are specially tailored to capture the right-to-left arrows,
while the left-to-right have to be implemented by service invocation. But the purpose of
stream communication is quite different: allowing a process invoking several concurrent
services to receive answers from them all without regard to order.

Thus the search for a symmetric manner of modelling all the curled arrows in Figure 4
is motivated not only because of technical problems, but also by desire for coherence. The
third solution proposed to the dinner problem satisfies both requirements: CCS manages

1This is actually the intended motivation behind streams, since when a service is invoked it should go
on running on its own.

11



f
�A : CCS : DinnerService

-
-
-

�
��

-

�

-
- -

�
��

Figure 4: Two services running in parallel. The curved arrows indicate where information
needs to be transmitted between sessions.

communication between the sessions it is involved in in a uniform way, and the resulting
process is typable.

It is interesting to notice that modelling this scenario in pSCC [2] poses exactly the same
questions. The final solution, presented for both calculi, has a slightly dissatisfactory taste
in that the characteristic construction of either calculus (streams, for SSCC, or pipelines, for
pSCC) is not used at the top level, since the service invocation may run in parallel with the
top level process (even must, in the case of pSCC) from the moment when communication
is completely managed by auxiliary services. Of course, these will themselves use either
streams or pipelining to communicate with their parent, but this is not directly visible.

The same scenarios are easier to implement in CSCC, since the message-passing mech-
anisms of that calculus is more directly suitable for the kind of communication needed.

References

[1] M. Banci, A. Fantechi, S. Giannini, and F. Santanni. Automotive case study: a UML
description of scenarios. Technical report, Sensoria, December 2006.

[2] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. pSCC: Revising SCC.

[3] L. Caires and H.T. Vieira. Note on a model of service oriented computation.

[4] I. Lanese, V. Vasconcelos, F. Martins, and A. Ravara. Disciplining orchestration and
conversation in service-oriented computing. To appear in Proceedings of the 5th IEEE
International Conference on Software Engineering and Formal Methods.

12


