
When Six Gates are Not EnoughI

Michael Codisha, Lúıs Cruz-Filipeb, Michael Franka, Peter Schneider-Kampb

aDepartment of Computer Science, Ben-Gurion University of the Negev, Israel
bDepartment of Mathematics and Computer Science, University of Southern Denmark

Abstract

We apply the pigeonhole principle to show that there must exist Boolean func-
tions on 7 inputs with a multiplicative complexity of at least 7, i.e., that cannot
be computed with only 6 multiplications in the Galois field with two elements.

Keywords: multiplicative complexity, Boolean functions, circuit topology

1. Introduction

The multiplicative complexity of a Boolean function is the minimal number
of multiplications over the Galois field GF (2) needed to implement it. As a
measure of a function’s non-linearity, it is an important property with many
applications, e.g., in the analysis of cryptographic ciphers and hash functions [1],
or in the study of the communication complexity of multiparty computation [2].

On a circuit level, multiplications over GF (2) correspond to AND gates,
while additions correspond to XOR gates and the unit to the constant> (TRUE).
Thus, an equivalent characterization of the multiplicative complexity of a Boolean
function is to consider the minimal number of AND gates needed to implement
the function in the presence of an arbitrary number of XOR gates. It is this
second characterization which will be used throughout this paper.

Given a number of inputs n, the maximal multiplicative complexity of an
n-ary Boolean function is denoted by M(n). In other words, M(n) measures
how much intrinsic non-linearity is possible given a fixed number of arguments.
Determining lower bounds for M(n) is an interesting question that has been
widely addressed e.g. in [1, 3, 4]. In this article, we apply a pigeonhole argument
to prove that M(7) ≥ 7, raising the previous best known lower bound by 1.

The structure of this paper is as follows. We present the necessary back-
ground in Section 2, and define an abstract notion of topology of a circuit in
Section 3. In Section 4, we introduce a symmetry break to reduce the upper
bound on the number of Boolean functions of n inputs computable by circuits
with k AND gates. In Section 5, we study the different ways in which we can in-
terconnect those AND gates, showing that we can drastically reduce the number

ISupported by the Israel Science Foundation, grant 182/13, and by the Danish Council for
Independent Research, Natural Sciences.

Preprint submitted to Elsevier August 19, 2016

ar
X

iv
:1

50
8.

05
73

7v
1

 [
cs

.C
C

]
 2

4
A

ug
 2

01
5

of relevant circuits by a generate-and-prune algorithm inspired by [5]. Combin-
ing these two results, we apply a pigeonhole counting argument in Section 6 to
obtain our new lower bound. We conclude with an outlook on future work in
Section 7.

2. Background

A Boolean function on n inputs, or an n-ary Boolean function, is a function
from {0, 1}n → {0, 1}. The set of all Boolean functions on n inputs is denoted
Bn, and |Bn| = 22

n

. We will often write ⊥ for 0 and > for 1.
It is well known that every Boolean function can be implemented by means

of a circuit consisting of only AND (∧), XOR (⊕) and NOT (¬) gates. Fur-
thermore, since ¬x = x ⊕ >, the NOT gates can be removed if we allow the
use of the constant >. As observed in [3], we can assume AND gates to be
binary and XOR gates to have an unbounded number of inputs. Such circuits
are called XOR-AND circuits therein; in this paper, we will refer to them simply
as circuits. Due to the associativity of XOR, any circuit with k AND gates can
therefore be specified using exactly 2k + 1 XOR gates: 2k of them producing
the inputs for the AND gates, and an additional one to produce the output.

Definition 1. For each natural number n, let Xn = {xi | 1 ≤ i ≤ n} denote
the n inputs to a circuit, and X+

n = Xn ∪ {>}. A circuit with n inputs and k
AND gates is a pair C = 〈A,O〉, where:

• A = 〈ai | 1 ≤ i ≤ k〉 is a list of k AND gates, where the i-th gate
ai = 〈Li, Ri〉 with Li, Ri ⊆ {aj | 1 ≤ j < i} ∪X+.

• O ⊆ A ∪X+
n is the output (XOR) gate.

Intuitively, each element of A represents an AND gate, whose inputs are the
outputs of two XOR gates whose inputs are given by Li and Ri, which we will
informally write as (

⊕
Li)∧ (

⊕
Ri). O represents the final XOR gate, and the

function fC computed by C returns the output from this gate.

Example 1. Consider the circuit depicted in Figure 1, which computes the
majority function on 4 bits (returning > if at least three of the bits are >). In
our notation, this circuit is represented as C = 〈A,O〉, where:

A = 〈a1, a2, a3, a4〉 a1 = 〈{x1}, {x2}〉 a3 = 〈{x1, x2}, {a2}〉
O = {a3, a4} a2 = 〈{x3}, {x4}〉 a4 = 〈{a1}, {x3, x4, a2}〉

Lemma 1 (Lemma 15 from [3]). At most 2k
2+2k+2kn+n+1 functions from Bn

can be computed by circuits with k AND gates.

Proof [3]. For the i-th gate, there are 22(n+1+i−1) possible sets Li and Ri: each
may use the n inputs, >, and the i−1 previous AND gates. For the output, there
are 2n+1+k possibilities. Thus, there are at most 2n+1+k ×

∏k
i=1 22(n+1+i−1) =

2n+1+k+k(k+2n+1) = 2k
2+2k+2kn+n+1 potentially computable functions.

2

x1
x2
x3
x4

a1

a2

fC(~x)
a3

a4

Figure 1: A circuit computing the majority function on 4 bits. The labels on the AND gates
are as in Example 1. Here, fC(~x) = ((x1⊕x2)∧ (x3 ∧x4))⊕ ((x1 ∧x2)∧ (x3⊕x4⊕ (x3 ∧x4)).

For n = 7 and k = 6, Lemma 1 yields an upper bound of 2140 functions from
B7 computable with 6 AND gates, i.e., 6 AND gates are potentially enough to
compute all 22

7

Boolean functions with 7 inputs.
Table 1 represents some known values and lower bounds for M(n). The fully-

determined values of M(n) for up to 4 inputs are folklore, and easily shown to be
correct, while 5 was shown in [4] using an exhaustive computer-based exploration
of all 48 equivalence classes of B5. The latter approach does not directly scale
to 6 inputs, as the number of equivalences classes of B6 explodes to 150,357.

The lower bound for 6 inputs is based on the observation that trivially
M(n) ≥ n−1. As the above table shows, this bound is tight for the determined
values of n ≤ 5. The counting argument from [3] gives a non-trivial lower bound
for n ≥ 8, leaving the open questions of whether the lower bounds for 6 and 7
inputs are tight. We prove that this is not the case for 7 inputs.

3. Topology of a circuit

Our results capitalize on one abstraction: the notion of topology of a circuit,
which intuitively forgets all connections except those between the AND gates,
distinguishing only the different ways in which they use each others’ outputs.

Definition 2. A (circuit) topology is a set A of AND gates, as in Definition 1,
except that L ∪ R ⊆ A for all 〈L,R〉 ∈ A. Given an AND-XOR circuit C =
〈A,O〉, the topology of C is 〈〈L ∩ A, R ∩ A〉 | 〈L,R〉 ∈ A〉.

Informally, a topology abstracts from the linear part of the circuit, consid-
ering only the connections between the AND gates; different circuits with the
same topology can compute different Boolean functions.

Example 2. The topology of the circuit C in Figure 1 is {a1, a2, a3, a4}, with
a1 = a2 = 〈∅, ∅〉, a3 = 〈∅, {a2}〉 and a4 = 〈{a1}, {a2}〉.

Definition 3. Let T be a topology. A function f ∈ Bn is computable by T if
f is computed by some circuit C whose topology is T .

n 1 2 3 4 5 6 7 8
M(n) 0 1 2 3 4 ≥ 5 ≥ 6 ≥ 9

Table 1: Known determined values and lower bounds of M(n) for up to 8 inputs.

3

The notion of topology allows us to give a different proof of Lemma 1. Since
each AND gate consists of two subsets of the previous gates, the total number
of different topologies on k gates is

k∏
i=1

(
2i−1

)2
= 2

∑k
i=1 2(i−1) = 2k

2−k . (1)

On the other hand, each input to each gate in a topology abstracts from 2n+1

concrete circuits (those containing the AND gates specified in the topology, plus
any combination of circuit inputs and possibly >), so there are(

2n+1
)2k × 2k+n+1 (2)

circuits with any given topology, where the second term in this product counts
the number of possibilities for the output gate. Combining both estimates,

we obtain a total of 2k
2−k ×

(
2n+1

)2k × 2k+n+1 = 2k
2−k+2kn+2k+k+n+1 =

2k
2+2k+2kn+n+1 different circuits. In the next sections, we will optimize the

bounds in Equations (1) and (2) separately.

4. Breaking symmetry on negations

In this section, we note that there are different circuits with the same number
of AND gates that compute the same n-ary Boolean functions, and that we can
provide a syntactic characterization for many of these, thus improving the bound
of Equation (2).

Definition 4. Let C = 〈A,O〉 be a circuit. We say that C is negation-normal
if there is no gate 〈L,R〉 ∈ A such that > ∈ L ∩R.

Lemma 2. Every n-ary Boolean function computable by a circuit with k AND
gates can be computed by a negation-normal circuit with k AND gates.

Proof. By using the equivalence (X ⊕ >) ∧ (Y ⊕ >) ≡ (X ∧ Y) ⊕ X ⊕ Y ⊕ >
we can rewrite any circuit so that no AND gate has > added to both its inputs.
Observe that both sides of the equation use only one AND gate.

Theorem 1. The number of negation-normal circuits on n inputs with a given

topology on k AND gates is at most
(
3× 22n

)k × 2n+k+1.

Proof. The argument is similar to the one establishing Equation (2). Each AND
gate in the topology corresponds to 3 × 2n × 2n possibilities: each input can
receive any subset of circuit inputs (the two 2n factors), and either one may also
receive >, but not both. The possibilities for the output gate are unchanged.

Combining this result with Equation (1), we obtain the following result.

Corollary 1. At most 3k × 2k
2+2kn+n+1 functions from Bn can be computed

by circuits with k AND gates.

4

On its own, this (small) improvement does not produce any new lower
bounds for M(n); in particular, for n = 7, the number of functions potentially
computable with 6 AND gates becomes 36 × 236+84+7+1 > 29 × 2128 = 2137.

5. Breaking symmetry on topologies

We now focus on improving the bound in Equation (1) by showing that some
topologies compute the same functions.

Definition 5. The set T 0
k is the set of all possible topologies with k AND gates.

Our goal is to remove elements from T 0
k while preserving the set of all func-

tions computable by a topology in that set. The first observation is that the
actual order of the AND gates is irrelevant for the function computed by the
actual circuit, so we can eliminate topologies that only differ on these labels.

Definition 6. Two topologies T and T ′ are equivalent, denoted T ≡ T ′, if there
is a permutation π of {1, . . . , n} such that: 〈L,R〉 ∈ T iff either 〈π(L), π(R)〉 ∈
T ′ or 〈π(R), π(L)〉 ∈ T ′, where π is structurally extended to sets and pairs.

It is easy to check that this relation is an equivalence relation.

Lemma 3. Let T and T ′ be topologies, with T ≡ T ′, and C be a circuit with
topology T . Then there is a circuit C′ with topology T ′ such that fC = fC′ .

Proof. Construct C′ by renaming the AND gates in C according to π. By com-
mutativity and associativity of ⊕, together with commutativity of ∧, a straight-
forward reasoning by induction establishes that faiC = f

aπ(i)

C′ for 1 ≤ i ≤ k, and

therefore that fC = fOC = f
π(O)
C′ = fC′ .

Consecutive AND gates in a topology can be grouped in disjoint layers, such
that the gates in each layer only depend on the outputs of gates in previous
layers. The algorithm in Figure 2 computes the maximal layering of the gates
– the one such that no layer can be extended forward.

Algorithm Layering

(input) topology T = 〈〈Li, Ri〉 | 1 ≤ i ≤ k〉
(init) ` := 1, S1 := ∅
(loop) for i = 1..k

if S` ∩ (Li ∪Ri) = ∅
then S` := S` ∪ {ai}
else ` := `+ 1, S` = {ai}

(output) layering S1, . . . , S`

Figure 2: Algorithm Layering to compute a maximal layering of a topology.

The following definition captures the idea that gates should only be in a
layer ` if one of their inputs depends on a gate in the previous layer `− 1.

5

Definition 7. A topology T = 〈〈Li, Ri〉 | i = 1, . . . , n〉 is well-layered if its
layering S1, . . . , Sm is such that, for every i and k, if ai ∈ Sk, then Li∩Sk−1 6= ∅.

Example 3. The topology from the circuit in Figure 1 has layers {a1, a2} and
{a3, a4}, and thus it is well-layered, as both a3 and a4 use the output of a2.

The topology {a′1, a′2, a′3, a′4} for the same circuit, where a′1 = a2, a′2 = a3,
a′3 = a1 and a′4 = a4, is not well-layered: its layers are {a′1}, {a′2, a′3} and {a′4},
and gate a′3 does not use any gate in the previous layer.

Lemma 4 (Layering). Every topology is equivalent to a well-layered topology.

Proof. Let T = 〈〈Li, Ri〉 | i = 1, . . . , k〉 and S1, . . . , Sm be its layering. Assume
T is not well-layered, and let i be the smallest index such that ai ∈ S` and
Li ∩ S`−1 = ∅.

If Ri∩S`−1, then build T ′ by replacing 〈Li, Ri〉 with 〈Ri, Li〉 in T . Otherwise,
let j = max{z | az ∈ Li ∪ Ri}, with max(∅) = 0; let π be the permutation
inserting i between j and j + 1 (so π(i) = j + 1, π(z) = z+ 1 for j < z < i, and
π(z) = z for all other z), and take T ′ = π(T), interchanging Li and Ri in ai if
aj ∈ Ri. Observe that T ′ is still a valid topology.

In either case, all indices up to i satisfy the layering condition. In the first
case this is trivial; in the second case, note that j cannot occur in Lj+1, . . . , Li or
Rj+1, . . . , Ri in T ′, so j+1, . . . , i remain in the same layers as the corresponding
j, . . . , i− 1 in the layering of T .

Iterating this construction yields a well-layered topology equivalent to T .

Corollary 2. Let T 1
k be the set of well-layered topologies in T 0

k . If f ∈ Bn is
computable by a topology in T 0

k , then it is computable by a topology in T 1
k .

Proof. Consequence of Lemmas 3 and 4.

We now begin to eliminate redundant topologies from T 1
n . Our results make

use of the following identity, valid for all Boolean values P and Q.

P ∧Q ≡ P ∧ (P ⊕Q⊕>) (3)

Definition 8. A topology T is minimal if the following hold for all 〈L,R〉 ∈ T .

(i) (A) If L 6= ∅, then L 6⊆ R, and (B) If R 6= ∅, then R 6⊆ L.

(ii) If L ∩R 6= ∅, then (L ∩R) < L \R and (L ∩R) < R \ L, where < is any
(fixed) total ordering of ℘({a1, . . . , ak}).

Lemma 5. If f ∈ Bn is computable by topology T , then it is computable by a
well-layered and minimal topology T ′ with the same number of AND gates as T .

Proof. Let C be a circuit computing f with topology T . Without loss of gener-
ality we can assume T is well-layered. Assume also that T is not minimal. We
show that we can transform C so that the three conditions are met; at each stage,
the triple 〈v1, v2, v3〉 indicating the number of gates violating conditions (i-A),
(i-B) and (ii), respectively, decreases w.r.t. lexicographic ordering. Since C is
finite, iteration produces a circuit with minimal topology.

6

(i-A) Assume that gate a = 〈L,R〉 is such that L ⊆ R, so that R = L ∪ R′.
Then the function computed by this gate can be written as ((

⊕
L)⊕A)∧

((
⊕
L) ⊕ (

⊕
R′) ⊕ B), and by (3) this is equivalent to ((

⊕
L) ⊕ A) ∧

((
⊕
R′)⊕A⊕B⊕>). Replacing a by 〈L,R′〉 yields a circuit that has one

less violation of condition (i-A).

(i-B) Assume that gate a = 〈L,R〉 is such that R ⊆ L, so that L = L′ ∪ R.
The construction is analogous, using the equivalence between ((

⊕
L′) ⊕

(
⊕
R)⊕A) ∧ ((

⊕
R)⊕B) and ((

⊕
L′)⊕A⊕B ⊕>) ∧ ((

⊕
R)⊕B).

In order to ensure that the resulting topology is well-layered, it might be
necessary to interchange L′ and R in the gate replacing a, as possibly only
R intersects the previous layer.

(ii) Assume that gate a = 〈L,R〉 is such that L ∩ R 6= ∅, so that L = X ∪ L′
and R = X ∪R′, with all of L′, R′ and X not empty (otherwise condition
(i) would not be met). Again by (3) we can write the function computed
by this gate as one of

((
⊕
X)⊕ (

⊕
L′)⊕A)

∧
((
⊕
X)⊕ (

⊕
R′)⊕B)

((
⊕
X)⊕ (

⊕
L′)⊕A)

∧
((
⊕
L′)⊕ (

⊕
R′)⊕A⊕B ⊕ T)

((
⊕
L′)⊕ (

⊕
R′)⊕A⊕B ⊕ T)

∧
((
⊕
X)⊕ (

⊕
R′)⊕B)

and we can replace a by a gate whose inputs intersect on either X, L′

or R′, which means we can always ensure it to be the lexicographically
smallest of the three.

Since either X or L′ intersects the previous layer, it is also possible to
guarantee layering, if necessary by permuting the inputs. Likewise, the
resulting gate always satisfies condition (i).

Definition 9. The set Tk is the set of all well-layered and minimal topologies
using k AND gates.

Merging Lemmas 4 and 5, we obtain the following result.

Theorem 2. Every n-ary Boolean function computable by a circuit with k AND
gates is computable by a topology in Tk.

The iterative algorithm in Figure 3 computes a set of minimal, well-layered
topologies unique up to equivalence – in other words, representatives of the
elements of Tk/≡. It generates these topologies layer by layer, pruning those
equivalent to some other, in the spirit of [5]. In the last line of the (loop) in
Extend, the notation T · a denotes the list obtained by appending gate a to T .

Theorem 3. If T ∈ Tk, then T ≡ T ′ for some T ′ ∈ Generate(n).

Proof. A topology with k gates has at most k layers, and Generate loops
through all possible lengths of these layers.

7

Algorithm Generate

(input) k
(init) j := 1, T 1

k := {〈〈∅, ∅〉 | 1 ≤ i ≤ `〉 | 1 ≤ ` ≤ k}
(loop) for j = 2..k

T j
k = ∅

for T ∈ T j−1
k

if T has k gates

then T j
k := T j

k ∪ {T}
else T j

k := T j
k ∪ Extend(k, T)

(output) T k
k

Sub-algorithm Extend

(input) k, topology T with less than k gates
(init) Ext := ∅, Out = ∅, m := k − |T |, S1, . . . , S` := Layering(T)
(loop) for i = 1..m

for L,R ⊆ ℘({1, . . . , |T |})i
if ∀j (Lj ∩ S` 6= ∅

and Lj 6⊆ Rj

and (Rj 6= ∅)→ (Rj 6⊆ Lj)
and (Lj ∩Rj 6= ∅)→ [(Lj ∩Rj) < min(Lj \Rj , Rj \ Lj)])

then Ext := Ext ∪ {T · {〈Lj , Rj〉 | j = 1, . . . , i}}
(prune) for T ′ ∈ Ext

if T ′ 6≡ T ′′ for all T ′′ ∈ Out
then Out := Out ∪ {T ′}

(output) Out

Figure 3: Iterative algorithm Generate to compute Tk/≡.

In Extend, we loop over all possible combinations of outputs from previous
gates. The condition in the innermost loop excludes gates that lead to non-well-
layered or non-minimal topologies. The pruning step guarantees that the first
representative of each equivalence class of topologies is kept.

Therefore every minimal and well-layered topology is equivalent to an ele-
ment of Generate(k).

Table 2 shows the sizes of the sets Tk/ ≡, computed using two independent
implementations of Algorithm Generate.

k 1 2 3 4 5 6
|Tk/ ≡| 1 2 8 88 3,564 555,709

Table 2: Number of non-equivalent minimal well-layered topologies using k AND gates.

Replacing the estimated number of topologies on k AND gates given in
Equation (1) reduces the straightforward upper bound on the number of com-
putable functions on 7 inputs with 6 AND gates from 2140 to 555,709× 2110 >

8

219 × 2110 = 2129, which is still (just) larger than the number of 7-ary Boolean
functions. However, combining this result with Theorem 1 does produce a new
result, presented in the next section.

6. The result

Combining Theorems 1 and 2 we immediately obtain the following result.

Theorem 4. At most 3k × 22kn+n+k+1 × |Tk/ ≡| functions from Bn can be
computed by circuits with k AND gates.

Theorem 5. There is a Boolean function on 7 inputs with a multiplicative
complexity of 7 or higher.

Proof. By Table 2, there are 555,709 possible topologies for circuits with 6 AND
gates. Instantiating n = 7 and k = 6 in Theorem 4 and using this value, we
conclude that the number of 7-ary Boolean functions computable by circuits
with 6 gates is at most 555,709 × 36 × 298 < 220 × 210 × 298 = 2128 = |B7|.
Therefore, not all functions in B7 can be computable by these circuits.

7. Conclusion and Future Work

In this work we have shown that M(7) is at least 7, raising the previously
known lower bound by 1. The case of 7 inputs has consequently become the
smallest known case where M(n) > n− 1.

In the future, we are planning to determine M(6), which we conjecture to
be 5, by extensive computer experiments refining the approach of [4]. Also,
we plan to find an actual Boolean function on 7 inputs with a multiplicative
complexity of 7 or higher as a witness to our non-constructive proof.

References

[1] J. Boyar, R. Peralta, Tight bounds for the multiplicative complexity of sym-
metric functions, Theor. Comput. Sci. 396 (1–3) (2008) 223–246.

[2] M. Hirt, J. B. Nielsen, Upper bounds on the communication complexity
of optimally resilient cryptographic multiparty computation, in: B. K. Roy
(Ed.), ASIACRYPT 2005, Vol. 3788 of LNCS, Springer, 2005, pp. 79–99.

[3] J. Boyar, R. Peralta, D. Pochuev, On the multiplicative complexity of
boolean functions over the basis (∧, +, 1), Theor. Comput. Sci. 235 (1)
(2000) 43–57.

[4] M. S. Turan, R. Peralta, The multiplicative complexity of boolean functions
on four and five variables, in: T. Eisenbarth, E. Öztürk (Eds.), LightSec
2014, Vol. 8898 of LNCS, Springer, 2015, pp. 21–33.

[5] M. Codish, L. Cruz-Filipe, M. Frank, P. Schneider-Kamp, Twenty-five com-
parators is optimal when sorting nine inputs (and twenty-nine for ten), in:
ICTAI 2014, IEEE, 2014, pp. 186–193.

9

	1 Introduction
	2 Background
	3 Topology of a circuit
	4 Breaking symmetry on negations
	5 Breaking symmetry on topologies
	6 The result
	7 Conclusion and Future Work

