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Abstract. This paper shows an application of the theory of sorting net-
works to facilitate the synthesis of optimized general purpose sorting li-
braries. Standard sorting libraries are often based on combinations of the
classic Quicksort algorithm with insertion sort applied as the base case
for small fixed numbers of inputs. Unrolling the code for the base case by
ignoring loop conditions eliminates branching and results in code which is
equivalent to a sorting network. This enables the application of further
program transformations based on sorting network optimizations, and
eventually the synthesis of code from sorting networks. We show that
if considering the number of comparisons and swaps then theory pre-
dicts no real advantage of this approach. However, significant speed-ups
are obtained when taking advantage of instruction level parallelism and
non-branching conditional assignment instructions, both of which are
common in modern CPU architectures. We provide empirical evidence
that using code synthesized from efficient sorting networks as the base
case for Quicksort libraries results in significant real-world speed-ups.

1 Introduction

General-purpose sorting algorithms are based on comparing, and possibly ex-
changing, pairs of inputs. If the order of these comparisons is predetermined by
the number of inputs to sort and does not depend on their concrete values, then
the algorithm is said to be data-oblivious. Such algorithms are well suited for
e.g. parallel sorting or secure multi-party computations.

Sorting functions in state-of-the-art programming language libraries (such as
e.g. the GNU C Library) are typically based on a variant of Quicksort, where
the base cases of the recursion apply insertion sort. In other words, once the
subsequence to sort considered by Quicksort falls under a certain limit M, this
subsequence is sorted using insertion sort. The reasons for using such base cases
is that, both theoretically and empirically, insertion sort is faster than Quicksort
for sorting up to M elements when M is sufficiently small. Typical values of M
for resorting to a base case are 4 or 8 (e.g. the GNU C library uses 4).

Generalizing this construction, we can take any sorting algorithm based on
the divide-and-conquer approach (e.g. Quicksort, merge sort) and use another
sorting method once the number of elements to sort in one partition does not
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exceed a pre-defined limit M. The guiding idea here is that, by supplying opti-
mized code for sorting up to M inputs, the overall performance of the sorting
algorithm can be improved.

One obvious way to supply optimized code for sorting up to M inputs is
to provide a unique optimized implementaton of sorting m elements for each
m < M. This approach leads directly to the following problem: For a given
fized number M, how can we obtain an efficient way to sort M elements on a
modern CPU? Similar questions have been asked since the 50’s, though obviously
with a different notion of what consitutes a modern CPU. Sorting networks
are a classical model of comparison-based sorting that provide a framework for
addressing such questions. In a sorting network, n inputs are fed into networks
of n channels, which are connected pairwise by comparators. Each comparator
takes the two inputs from its two channels, compares them, and outputs them
sorted back to the same two channels. Consecutive comparators can be viewed
as a “parallel layer” if no two touch the same channel.

Sorting networks are data-oblivious algorithms, since the sequence of com-
parisons performed is independent of the actual input. For this reason, they are
typically viewed as hardware-oriented algorithms where data-obliviousness is a
requirement and a fixed number of inputs is given.

In recent years there has been significant progress in finding sorting networks
that are optimal for sorting particular numbers of inputs. There are two main
notions of optimality in common use: size optimality, where we want to minimize
the number of comparators used in the network; and depth optimality, where we
want to minimize the number of execution steps, taking into account that some
comparators can be executed in parallel. New results for size optimality are
reported in [2] and for depth optimality in [1, 5].

In this paper we examine how the theory of sorting networks can improve
the performance of general-purpose software sorting algorithms. We show that
replacing the insertion sort base case of a Quicksort implementation as found in
standard C libraries by optimized code synthesized from logical descriptions of
sorting networks leads to significant improvements in execution times.

The idea of using sorting networks to guide the sythesis of optimized code for
base cases of sorting algorithms may seem rather obvious, and, indeed, has been
the subject of related work. A straightforward attempt [10] of utilizing sorting
networks for base cases has not resulted in significant improvements, though.

In this paper we show that this is not unexpected, providing theoretical and
empirical insight into the reasons for these rather discouraging results. In a nut-
shell, we provide an average case analysis of the complexity w.r.t. measures such
as number of comparisons and number of swaps. From the complexity point of
view, code synthesized from sorting networks can be expected to perform slightly
worse than unrolled insertion sort. Fortunately, for small numbers (asymptotic)
complexity arguments are not always a good predictor of real-world performance.

Instead, the approach in [7] matches the advantages of sorting networks with
the vectorization instruction sets available in some modern CPU architectures.
They do obtain significant speedups by implementing parallel comparators as



vector operations, but require a complex heuristic algorithm to generate se-
quences of bit shuffling code that needs to be executed between comparators.

Our approach combines the best of both previous attempts by providing a
straightforward implementation of sorting networks that still takes advantage
of the features of modern CPU architectures. We obtain speedups comparable
to [7], while our requirements to the instruction set are satisfied by virtually
all modern CPUs including those without vector operations. The success of our
approach is based on two observations about sorting networks: (1) Sorting net-
works are data-oblivious and the order of comparisons is fully determined at
compile time, i.e., they are free of any control-flow branching. Comparators can
also be implemented without branching, and on modern CPU architectures even
efficiently so. (2) Sorting networks are inherently parallel, i.e., comparators at
the same level can be performed in parallel. Conveniently, this maps directly to
implicit instruction level parallelism (ILP) common in modern CPU architec-
tures. This feature allows to execute several instructions in parallel on a single
thread of a single core as long as they are working on disjoint sets of registers.

Avoiding branching and exploiting ILP are tasks also performed through
program transformations by the optimization stages of modern C compilers,
e.g., by unrolling loops and reordering instructions to minimize data-dependence
between neighbouring instructions. They are though both restricted by the data-
dependencies of the algorithms being compiled and, consequently, of only limited
use for data-dependent sorting algorithms like insertion sort.

Throughout the paper, for empirical evaluations we run all code on an Intel
Core i7 measuring runtime in CPU cycles using the time stamp counter register
using the RDTSC instruction. As a compiler for all benchmarks we used LLVM
6.1.0 with clang-602.0.49 as frontend on Max OS X 10.10.2. We also tried GCC
4.8.2 on Ubuntu with Linux kernel 3.13.0-36, yielding comparable results.

The rest of the paper is organized as follows. In the following section, we pro-
vide necessary background information and formal definitions for both sorting
algorithms and hardware features. In Section 3 we theoretically compare Quick-
sort and the best known sorting networks w.r.t. numbers of comparisons and
swaps. We aggressively unroll insertion sort until we obtain a sorting network
in Section 4. Then we show how to efficiently implement the comparators that
constitute sorting networks in Section 5. We empirically evaluate our contribu-
tion as a base case of Quicksort in Section 6 before concluding and giving an
outlook on future work in Section 7.

2 Background

2.1 Quicksort with Insertion Sort for Base Case

For decades Quicksort has been used in practice due to its efficiency in the
average case. Since its first publication by Hoare [8], many modifications were
suggested to improve it further. Examples are the clever choice of the pivot or
the use of a different sorting algorithm like, e.g., insertion sort, for small subprob-
lem sizes. Most such suggestions have in common that the empirically observed
efficiency can be explained on theoretical grounds by analyzing the expected
number of comparisons, swaps, and partitioning stages (see [13] for details).
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Fig. 1. Comparison of different sorting algorithms for small numbers of inputs

Figure 1 clarifies the motivation behind using insertion sort for the base case
of Quicksort. The figure compares the common spectrum of data-dependent sort-
ing algorithms for small numbers of inputs. The figure plots the number of inputs
to sort on the z-axis with respect to the number of cycles required to sort on
the y-axis (averaged over 100 million random executions). The upper curve in
the figure is derived from the standard Quicksort implementation in the C li-
brary (which is at some disadvantage as it requires a general compare function
as an argument). The rest of the curves derive from applying standard sorting
algorithms as detailed by Sedgewick [14] (the code was taken directly from the
web page http://algs4.cs.princeton.edu/home/ affiliated with the book). Inser-
tion sort is the clear winner.

2.2 Sorting Networks

A comparator network on n channels is a finite sequence C = c¢q,...,¢c; of
comparators, where each comparator ¢ is a pair (ig, j¢) with 1 < ip < jp < n.
The size of C is the number k£ of comparators it contains. Let D be any totally
ordered domain. Given an input & € D", the output of C' on x is the sequence
C(z) = ", where x’ is defined inductively as follows: £° = x, and x’ is obtained
from z‘~! by swapping the elements in positions i, and j, in case z;, < Ty
The set of outputs of C' is outputs(C') = {C(x) | « € D"}, and C is a sorting
network if this set only contains sorted sequences.

Comparators may act in parallel. A comparator network C has depth d if C is
the concatenation of Ly, ..., Ly, where each L; is a layer: a comparator network
with the property that no two of its comparators act on a common channel.

Figure 2 depicts a sorting network on 5 channels in the graphical notation
we will use throughout this paper. Comparators are depicted as vertical lines,
and layers are separated by a dashed line. The numbers illustrate how the input
10101 € {0,1}° propagates through the network. This network has 6 layers and
optimal size (9 comparators).
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Fig. 2. A sorting network on 5 channels operating on the input 10101.

Given n inputs, finding the minimal size s,, and depth ¢,, of a sorting network
is an extremely hard problem. The table below details the best currently known
bounds. The values for n < 8 are already listed in [9]; the values of tg and 1
were proven exact by Parberry [11], those of t11-t16 by Bundala and Zavodny [1],
and t17 was recently computed by Ehlers and Miiller [5] using results from [3, 4].
Regarding optimal size, there was no progress for fifty years, until the computer-
assisted proof that the known upper bounds for sg and s19 were tight [2].

nil 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
35 39 45 51 56 60 73
33 37 41 45 49 53 58
t,/0 1 3 3 55 6 6 7 7 8 8 9 9 9 9 10

Oblivious versions of classic sorting algorithms can also be implemented as
sorting networks, as described in [9]. Figure 3 (a) shows an oblivious version
of insertion-sort. Here vertical dashed lines highlight the 4 iterations of “inser-
tion” required to sort 5 elements. Figure 3 (b) shows the same network where
comparators are arranged according to their parallel layers. Bubble-sort can also
be implemented as a sorting network as illustrated in Figure 3 (c¢) where vertical
dashed lines illustrate the 4 iterations of the classic bubble-sort algorithm. Or-
dered according to layers, this network is also identical to the one in Figure 3 (b).

s,/0 1 3 5 9 1216 19 25 29

2.3 Modern CPU Architectures

Modern CPU architectures allow multiple instructions to be performed in par-
allel on a single thread. This phenomenon is called instruction-level parallelism
(ILP) and is built on three modern micro-architectural techniques®:

— superscalar instruction pipelines, i.e., pipelines with the ability to hold and
execute multiple instructions at the same time

3 For details on these features of modern microarchitectures see e.g. [15, 6].

Fig. 3. Insertion sort on 5 inputs viewed as a sorting network, with dashed lines sep-
arating iterations (a), and the corresponding parallelized version (b). Bubble-sort (c)
also reduces to the same sorting network when parallelized.



— dynamic out-of-order execution, i.e., dynamic reordering of instructions re-
specting data dependencies

— redundant execution units, i.e., multiple ALUs per core
Together, these features allow to execute instructions in an order such that data
dependencies are minimized and multiple redundant execution units can be used
at the same time. This is often termed implicit ILP, in contrast to the explicit
ILP found in vector operations.
Example. Consider the C expression (z+y)*(z+u). Assume the variables z, vy,
z, and u are loaded in registers eaz, ebz, ecz, and edz. Then the evaluation of
the above expression is compiled to three machine instructions: ADD eaz, ebz;
ADD ecz,edr; MUL eaz,ecz with the result being in ecz. Here, the first two
instructions are data-independent and can be executed in parallel, while the first
one depends on the results of those and is executed in another CPU cycle.

Conditional branching instructions are the most expensive instructions on
pipelined CPUs as they require flushing and refilling the pipeline. In order to
minimize their cost, modern CPU architectures employ dynamic branch predic-
tion. By keeping the pipeline filled with the instructions of the predicted branch,
the cost of branching is severely alleviated. Unfortunately, branch prediction can-
not be perfect, and when the wrong branch is predicted, the pipeline needs to
be flushed and refilled — an operation taking many CPU cycles.

In order to avoid branching instructions for “small” decisions, e.g., for decid-
ing whether to assign a value or not, modern CPU architectures feature condi-
tional instructions. Depending on the flags set by e.g. a comparison, an assign-
ment of a value of a register will either be performed or the instruction will be
ignored. In both cases, the pipeline is filled with the following instructions and
the cost of the operation is smaller than a possible branch prediction failure.
Example. Consider the C statement if (z == 42) z = 23; and assume that
the variable = is loaded in eaz. Without conditional move instructions, this is
compiled to code with a condtional branching instruction, e.qg. CMP eax,42; JNZ
after; MOV eaz, 23 where after is the address of the instruction following
the MOV instruction. Alternatively, using conditional instruction we obtain CMP
eax, 42; CMOVZ eaz, 23. This code saves one machine code instruction, but
most importantly it avoids the huge performance impact of a mispredicted branch.

3 Quicksort with Sorting Networks for Base Case

A general theme in this paper is to derive, from sorting networks, optimized
code to sort small numbers of inputs and then to apply this code as the base
case in a Quicksort algorithm. In this section we compare precise average case
results for the number of comparisons and swaps performed by a classic Quicksort
algorithm and by a modification that uses sorting networks on subproblems of
size at most 14. We choose 14 for this analysis, as it is the largest value n for
which we conveniently could measure the number of comparisons and swaps for
all n! permutations. We used the smallest (w.r.t. size) sorting networks known
(for up to 10 they are optimal) in order to obtain the most favorable comparison
numbers for sorting networks. To this end we assume the algorithm to act on
random permutations of size n each being the input with equal probability.
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Table 1. The average number of comparisons and swaps when executing optimal
sorting networks with at most M = 14 inputs.

Let C,, (resp. S, ) denote the expected number of comparisons (resp. swaps)
performed by classic Quicksort on (random) inputs of size n. Let furthermore C),
and S, denote the corresponding quantities for Quicksort using sorting networks
for inputs smaller than 15. It is standard to set up recurrence relations for those
quantities which typically obey a pattern such as:

T (ab) — a-n+b+ £ i, Tioa(a,b) + Ty j(a,b) if n> M,
n(a,b) = -
g(n) otherwise.

Here a and b have to be chosen properly to reflect the parameter’s (compar-
isons, swaps) behavior, M determines the maximum subproblem size for which
a different algorithm (insertion sort, sorting networks) is used and g accounts
for the costs of that algorithm. In order to analyze classic Quicksort as proposed
by Hoare, we have to choose a =1, b = —1 (resp. a = %, b= %) for comparisons
(resp. swaps), together with M = 0 and ¢g(0) = 0. For the analysis of our pro-
posed modification that uses sorting networks for subproblems of small sizes we
set M = 14 together with the values for g as given in Table 1. Using standard
algebraic manipulations it is possible to solve this recurrence explicitly to obtain
a formula for T, (a,b) in terms of n, M, a and b. Defining ¢, = a - n + b and

Vi, = t, — tp—1 one finds (see [12] for details) that:

Vit n+1
T, (a,b) = 2(n+1) Z k+k1+M+2(tM+1+TM+1(a,b))—tn for n > M.
M+2<k<n

Computing closed form expressions for ) -,/ or.<,, % for the different choices
of t,,, we finally get

Cp =2nln(n+ 1) — 2.84557n + o(n)
C, = 2nIn(n + 1) — 2.44869n + o(n)

1
Sy = 3" In(n 4 1) 4+ 0.359072n 4 o(n)

A 1
Sp = gnln(n + 1) + 0.524887n + o(n)

It is obvious that when increasing n, both parameters get worse by our modifi-
cation of classic Quicksort. Even for small n and optimal size sorting networks,
there is no advantage w.r.t. the numbers of comparisons or swaps. In conclusion,
we cannot hope to get a faster sorting algorithm by switching to sorting networks
for small subproblems — at least not on grounds of our theoretical investigations.
And by transitivity, replacing insertion sort by sorting networks in the base case
should result in an even worse behavior w.r.t. both parameters.



4 Unrolling the Base Case

In this section we show how to unroll an implementation of insertion sort, step
by step, until finally obtaining code which is equivalent to a sorting network.
We take the basic insertion sort code from Sedgewick [14] and for illustration
assume the fixed number of inputs is n = 5. We experimented also with optimized
variants, e.g., making use of sentinels to avoid the j>0 check, but did not find
any of them to be faster for small inputs given a modern C compiler.

#define SWAP(x,y) {int tmp = alx]; alx] = alyl; aly]l] = tmp;}
static inline void sort5(int *a, int n) {
n=5
for (int i = 1; i < n; i++)
for (int j = j >0 && aljl < alj-11; j--)
SWAP (j-1,

i;
i)

Applying partial evaluation and (outer) loop unrolling results in:

static inline void sort5_unrolled(int *a) {

for (int j = 1; j > 0 && aljl < alj-11; j--)
SWAP(j-1, j)

for (int j = 2; j > 0 && aljl < alj-11; j--)
SWAP (j-1, j)

for (int j = 3; j > 0 && aljl < alj-11; j--)
SWAP(j-1, j)

for (int j = 4; j > 0 && aljl < alj-11; j--)

SWAP (j-1, j)
}

The condition in the inner loop is data-dependent, hence no sound and complete
program transformation can be applied to unroll them. To address this, we move
the data-dependent part of the loop condition to the statement in the body of
the loop while always iterating the variable j down to 1.

static inline void sort5_oblivious(int x*xa) {

for (int j = 1; j > 0; j--)

if (aljl < alj-11) SWAP(j-1, j)
for (int j = 2; j > 0; j--)

if (alj] < alj-11) SWAP(j-1, j)
for (int j = 35 j > 0; j--)

if (alj] < alj-11) SWAP(j-1, j)
for (int j = 4; j > 0; j--)

if (alj] < alj-11) SWAP(j-1, j)

}

Now we can now apply (inner) loop unrolling and obtain:

static inline void sort5_oblivous_unrolled(int *a) {

if (al1] < a[0]) SWAP(O, 1)
if (al[2] < al[1]) SWAP(1, 2)
if (al1] < a[0]) SWAP(0, 1)
if (al3] < al[2]) SWAP(2, 3)
if (al2] < al1]) SWAP(1, 2)
if (al1] < al0]) SWAP(O, 1)
if (al4] < al3]) SWAP(3, 4)
if (al3] < al2]) SWAP(2, 3)
if (al[2] < al1]) SWAP(1, 2)
if (al1] < al0]) SwAP(O, 1)

}

All the statements in the body of sort5_oblivous_unrolled are now conditional
swaps. For readability, we move the condition into the macro. COMPs on the same
line indicate that they originate from the same iteration of insertion sort:

#define COMP(x,y) { if (aly] < alx]) SWAP(x,y) }

static inline void sort5_fig3a(int *a) {
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Fig. 4. Comparison of insertion sort with (unrolled) comparator based code for small
numbers of inputs

CoMP (0, 1)

COMP (1, 2) cOMP(O, 1)

COMP(2, 3) COMP(1, 2) COMP(0, 1)

COMP(3, 4) COMP(2, 3) COMP(1, 2) COMP(0, 1)
}
This sequence is equivalent to the sorting network in Figure 3 (a). Thus, we can
apply the reordering of comparators that resulted in Figure 3 (b) to obtain the
following implementation, where we reduce the number of layers from 10 to 7
(here COMPs on the same line indicate a layer in the sorting network):
#define COMP(x,y) { if (aly] < alx]) SWAP(x,y) }
static inline void sort5_fig3b(int *a) {

COMP (0, 1)

COMP (1, 2)

COMP (0, 1) COMP(2, 3)

COMP (1, 2) COMP(3, 4)

COMP (0, 1) COMP(2, 3)

COMP (1, 2)

coMP (0, 1)

Figure 4 presents a comparison of a standard insertion sort (code from [14])
with the several optimized versions. The figure plots the number of inputs to
sort on the z-axis with respect to the number of cycles required to sort on the
y-axis (averaged over 100 million random executions). The curve labeled “inser-
tion sort” portrays the same data as the corresponding curve in Figure 1. The
curve labeled “unrolled insertion sort” corresponds to the unrolled version of
insertion sort (in the style of function sort5_unrolled). The other three curves
correspond to code derived from different types of sorting networks: “insertion
sorting network” (in the syle of Figure 3 (a) and function sort5_fig3a), “com-
pressed insertion sorting network” (in the syle of Figure 3 (b) and function
sort5_fig3b), and “optimal sorting network” corresponding to the use of a best
(smallest) known sorting network.

The figure clarifies that standard sorting network optimizations such as re-
ordering of independent comparators [9] gives a slight performance boost. But



there is another clear take home messages: even going beyond standard program
transformations by breaking data-dependence and obtaining a sequence of condi-
tional swaps (i.e., a sorting network), we do not manage to make any significant
improvements of the performance of sorting implementations for small numbers
of inputs. Furthermore, even when using size optimal sorting networks, we see
no real benefit over compiler-optimized insertion sort. This is inline with the
theoretical results on average case complexity obtained in the previous section.

5 Implementing Sorting Networks Efficiently

The results in the previous two sections explained the rather discouraging re-
sults obtained when attempting to use sorting networks as the base case of a
divide-and-conquer sorting algorithm: they are simply not faster than e.g. using
insertion sort — at least when implemented naively. In this section we will show
how we can exploit two main properties of sorting networks together with fea-
tures of modern CPU architectures in order to obtain speed-ups of more than a
factor 3 compared to unrolled insertion sort.

First, note that sorting networks are data-oblivious and the order of compar-
isons is fully determined at compile time, i.e., the implementation is free of any
control-flow branching. Unfortunately, the naive implementation of each com-
parator involves branching when deciding whether to perform a swap. Which
path is taken depends entirely on the specific inputs to be sorted, such that

branch prediction necessarily does not perform very well.

Luckily, we can also implement a comparator without branching. To this end
we use a conditional assignment (defined by the macro COND below), which can
be compiled to a conditonal move (CMOV) instruction available on modern CPU
architectures. This approach proved to be very fruitful. For illustration, from the
optimal size sorting network for 5 inputs, portrayed as Figure 2, we synthesize
the following C function sort5_best where each row in the code corresponds to
a layer in the sorting network:

#define COND(c,x,y) { x = (c) 7y : x; }
#define COMP(x,y) { int ax = al[x]; COND(aly] < ax,alx],alyl); \
COND(aly] < ax,alyl,ax ); }

static inline void sort5_best (int *a) {
COMP (0, 1) COMP (3, 4)

COMP (2, 4)
COMP (2, 3) COMP(1, 4)
COMP (0, 3)
COMP (0, 2) COMP(1, 3)
COMP (1, 2)

}

The comparator macro that compares and conditionally swaps the values at
indices x and y works as follows:

1. Keep a copy of the value at index x.

2. Compare (once) the value at index y with the stored value from x.

3. If the value was greater, we copy the value at index y to index x. Otherwise,
we do nothing in this step.

4. If the value was greater, we write the old copied value from x to index y.
Otherwise, we do nothing in this step.



Correctness follows directly by case analysis: If the value at index y was not
greater than the value at index x, the two conditional assignments do not change
anything and all we did was an unnecessary copy of the valued at index x. If the
value at index y was greater than the value at index y, we essentially perform a
classic swap using ax as the temporary variable.

Given a sufficient optimization level (-02 and above), the above code is com-
piled by the LLVM (or GNU) C compiler to use two conditional move (CMOV)
instructions, resulting in a totally branching free code for sort5_best. As can
be expected, the other two instructions are a move (MOV) and a compare (CMP)
instruction. In other words, each comparator is implemented by exactly four
non-branching machine code instructions.

Alternatively, we could implement the comparator applying the folklore idea
of swapping values using XORs to eliminate one conditional assignment?:

#define COND(c,x,y) { x = (¢) 7y : x; }

#define COMP(x,y) { int ax = al[x]; COND(aly] < ax, alx], alyl); \
alyl "= ax " alx]; }

This alternative comparator performs a conditional swap as follows:

1. Keep a copy of the value at index x.

2. If the value at index y is greater than the value at index x, copy the value
at index y to index x.

3. Bitwise XOR the value at index y with the copied old and the new value at
index x.

Step 3 works because if the conditon holds, then ax and the value at index x
cancel out leaving the value at y unchanged, while the value at y and ax cancel
out otherwise, effectively assigning the original value from index x to index y.

We also implemented this variant and observed that it compiles down to five
instructions (MOV, CMP, CMOV, and two XORs). We benchmarked the two variants
and observed that they are indistinguishable in practice with differences well
within the margin of measurement error. Thus, we decided to continue with this
version, as the XOR instructions are more “basic” and can be expected to behave
better w.r.t. e.g. instruction level parallelism.

A third approach would be to define branching free minimum and maxiumum
operations ° and use them to assign the minimum to the upper channel and the
maximum to the lower channel of the comparator. We tested this approach,
but found that it did not compile to branching-free code. Even if it was, the
number of instructions involved would be rather large, alleviating any chance of
competing with the two previous variants.

The reader might wonder as to whether using a different SWAP macro could
similarly speed up the working of standard insertion sort. The answer here is
a clear no, as the standard swapping operation is implemented by only three
operations. Tricks like using XORs only increase the number of instructions to
be executed while not reducing the number of branching in the code. We, of

4 See https://graphics.stanford.edu/ seander /bithacks. html#SwappingValuesXOR
5 See https://graphics.stanford.edu/ seander/bithacks.html#IntegerMinOrMax
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Fig. 5. Comparing the number of branches, encountered and mispredicted, in optimized
sorting algorithms for small numbers of inputs
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Fig. 6. ILP on comparator networks of length 1000 with differing levels of parallelism

course, implemented and benchmarked several alternative SWAP macros, finding
only detrimental effects on measured performance.

Figure 5 compares three sorting algorithms for small numbers of inputs: (1)
the unrolled insertion sort (also plotted in Figure 4); (2) code derived from
a standard insertion sorting network (also plotted in Figure 4); (3) the same
insertion sorting network but with a non-branching version of the COMP macro.
We compare the number of branches encountered and mispredicted (averaged
over 100 million random executions). The figure illustrates that the number of
branches encountered (and mispredicted) is larger for both unrolled insertion sort
and a naive implementation of sorting networks. In contrast, for the branching
free implementation we see a nearly constant level of branches encountered and
mispredicted. In fact these branches originate from the surrounding test code
(filling an array with random numbers, computing random numbers, checking
that the result is acutally sorted).

Our second observation is that sorting networks are inherently parallel, i.e.,
comparators at the same level can be performed in parallel. In the remainder of
this section we show that this parallelism can be mapped directly to instruction
level parallelism (ILP) commonly encountered in modern CPU architectures.
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Fig. 7. Comparing sorting networks for small numbers of inputs: non branching sorting
networks are fastest

The ability to make use of ILP, i.e., to execute several instructions in parallel on
a single thread of a single core, has further performance potential.

In order to demonstrate this potential, we constructed artifical test cases
with varying levels of data dependency. Given a natural number m defining the
length of subsequences of parallel comparators in a comparator network of size
1000. We would expect that as m grows, we would see more use of ILP.

In Figure 6 the values for m are represented on the x-axis while the y-axis
(as usual) is the averaged number of CPU cycles. And indeed, we see signifi-
cant performance gains when going from m = 1 to m = 2 and m = 3. After
this, the performance stays unchanged. This has to be understood on the back-
ground of each comparator being compiled to 5 assembler instructions when
using optimization level -03. Then we obtain slightly below 2 CPU cycles pers
comparator.

Combining the gains from ILP with the absence of branching, we obtain large
speed-ups for small inputs when comparing to both insertion sort and naive im-
plementations of sorting networks. In Figure 7 we show the magnitude of the
improvements obtained. Once again we plot the number of inputs to sort on
the z-axis with respect to the number of cycles required to sort on the y-axis
(averaged over 100 million random executions). We consider the unrolled inser-
tion sort, the three sorting networks from Figure 4 (insertion sorting network,
compressed insertion sorting network, and optimal sorting network), and we con-
sider these same thre sorting networks using non-branching comparators (non-
branching insertion sorting network, non-branching compressed insertion sorting
network, and non-branching optimal sorting network). The figure illustrates that
using the best known (optimal) sorting networks, in their non-branching forms,
results in a more than 3 times speed-up.

6 Quicksort with Sorting Network Base Case

We now demonstrate that optimizing the code in the base case of a Quicksort
algorithm translates to real-world savings when applying the sorting function.
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Fig. 8. Quicksort: comparing insertion sort at the base case with non-branching optimal
sorting networks at the base case. Plotting base case size (x axis) and number of cycles
(averaged over one million random runs)

To this end, we used as base cases (1) the empirically best variant of inser-
tion sort unrolled by applying program transformations to the algorithm from
Sedgewick; and (2) the fastest non-branching code derived from optimal (size)
sorting networks.

In Figure 8 we describe the experiment when sorting lists of 10,000 elements
where the y-axis illustrates the number of cycles (averaged over one million
random runs). The x-axis details the limit at which Quicksort resorts to a base
case. For example, the value 8 indicates that we use a base case whenever the
algorithm is required to sort a sequence of length at most 8 elements. The value
2 corresponds to the case where the base case has no impact. To quantifying
the impact of the choice of base case we compare to the case for value 2 (on the
x-axis). For insertion sort we see a 2 — 12% reduction in runtime depending on
the limit, and for non-branching sorting networks we achieve instead 7 — 23%
reduction in runtime.

7 Conclusion

In this paper we showed both theoretically and empirically that using code de-
rived naively from sorting networks when sorting small numbers of inputs is
not advantageous compared to the use of standard data-dependent sorting algo-
rithms like e.g. insertion sort. Furthermore, we showed that program transfor-
mations are of only limited utility for improving insertion sort on small numbers
of inputs.

We show how to synthesize simple yet efficient implementations of sorting
networks and gave insight into the microarchitectural features that enable this
implementation. We demonstrated the significant speed ups obtained and pro-
vided evidence that they translate to the use of efficient sorting networks as a
base case in divide-and-conquer sorting algorithms such as e.g. Quicksort.



Regarding future work, we observe that using different types of sorting net-
works has a measurable impact on the efficiency of the synthesized C code.
While previous research on finding optimal sorting networks has focused on op-
timal depth or optimal size, we plan to identify the criteria that will lead to
optimality in our setting. What are the criteria that determine the real-world
efficiency of the synthesized code, and how do we find the optimal sorting net-
works to meet this criteria? We also plan to make an empirical comparison to
the vector operation-based approach of [7] and to benchmark our approach as
base case for other sorting algorithms such as merge sort.
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