
The Boolean Pythagorean Triples Problem in Coq *

Luís Cruz-Filipe1, Joao Marques-Silva2, and Peter Schneider-Kamp1

1 Department of Mathematics and Computer Science, University of Southern Denmark
{lcf,petersk}@imada.sdu.dk

2 LaSIGE, Faculty of Science, University of Lisbon, Portugal
jpms@ciencias.ulisboa.pt

The Boolean Pythagorean Triples problem asks the following question: is it possible to
partition the natural numbers into two sets such that no set contains a Pythagorean triple
(three numbers a, b and c with a2 +b2 = c2)? This question was answered in 2016, when Heule,
Kullmann and Marek [4] showed that it is already impossible to partition the set {1, . . . , 7825}
into two sets such that none of them contains a Pythagorean triple. This proof was done by
means of an encoding of this �nite version of the problem into propositional logic (already used
in [1]), which was then simpli�ed and solved using the cube-and-conquer method [5].

The strategy of the proof is summarized in Figure 1. The propositional formula obtained by
encoding the problem was �rst simpli�ed using blocked clause elimination and symmetry break-
ing. Afterwards, the problem was divided into one million cubes: a set of partial assignments
that cover the whole space of possible valuations. Then, it was shown that (1) the conjunction
of the simpli�ed formula with any cube is unsatis�able, and (2) the negation of the disjunction
of all the cubes is unsatis�able. As a consequence, the simpli�ed formula (and therefore also
the original formula) is unsatis�able.

This proof was formally veri�ed using Coq, as described in [2, 3]. In this extended abstract,
we summarize this process in a uni�ed way.

cube1 //

[2]

2

BPT //

[3]

$$

[3]

44
propositional

formula
// simpli�ed
formula

55

))

[3] //

...

cuben //

[2]

==2

[3]

 // 2

¬
∨

i cubei [2]
// 2

Figure 1: The original proof and the di�erent veri�cation steps. The dashed arrows denote the
steps in the original proof [4]: a �rst propositional formula was generated by a C program, and
subsequently simpli�ed, divided and solved by SAT solvers. The dotted arrows denote proofs of
unsatis�ability obtained by a SAT solver that were veri�ed by a certi�ed checker extracted from
a Coq formalization [2]. The solid arrows denote the contributions of [3]: the generation, in
Coq, of propositional formulas that are proved to represent the original mathematical problem,
directly and after simpli�cation; the formal speci�cation of the simple reasoning behind cube-
and-conquer; and the generation of the formulas that are given as input to cube-and-conquer.

*This work was partially supported by the Danish Council for Independent Research, Natural Sciences, grant

DFF-1323-00247.

The Boolean Pythagorean Triples Problem in Coq L. Cruz-Filipe, J. Marques-Silva, P. Schneider-Kamp

The �rst step was to formalize the Boolean Pythagorean Triples problem in Coq and relate
it to the propositional encoding. This amounted to stating the mathematical problem in Coq
and de�ning a family of propositional formulas (parametrized on a natural number n) directly
corresponding to the formulas used in [4] as the starting point. We formally proved that
unsatis�ability of any of these formulas implies that the given mathematical problem does not
have a solution.

The second step was to formalize the simpli�cation procedure. This is trivial, as the tech-
niques applied in [4] only remove clauses, trivially preserving satis�ability. However, the authors
of [4] make a stronger claim � namely, that their criterion for removing clauses also guarantees
preservation of unsatis�ability. The mathematical argument, which we formalized, is as follows:
let L be a list of triples and (a, b, c) ∈ L be a triple containing a number that does not occur
in any other triple in L. If there is a coloring C of the natural numbers such that no triple in
L \ {(a, b, c)} is monochromatic and e.g. a does not occur in any other triple in L, then we can
extend C by changing the color of a, if necessary.

The next step was to formalize soundess of cube-and-conquer [5]. The idea behind this
methodology is simple: instead of looking for a satisfying assignment for a particular formula,
consider its conjunctions with di�erent sets of literals (the cubes) such that every possible
assignment satis�es one of the possible cubes. For example, if ϕ is a formula on two variables
x and y, the cubes could be {x}, {x̄, y} and {x̄, ȳ}, and instead of ϕ we consider the three
formulas ϕ∧ x, ϕ∧ x̄∧ y and ϕ∧ x̄∧ ȳ. Furthermore, to ensure that every assignment satis�es
one of the cubes, we need to check that the formula x̄ ∧ (x ∨ ȳ) ∧ (x ∨ y) is unsatis�able. We
formalized this argument for the general case, given a formula and a list of cubes.

The last step was to check unsatis�ability of all the formulas generated by cube-and-conquer.
This was done by developing a general-purpose veri�er of unsatis�ability proofs based on reverse
unit propagation [2]. This veri�er, also formalized in Coq, checks that a given formula entails
the empty clause by following a list of steps given as oracle. This list of steps is produced from
a trace of an untrusted SAT solver, and is essentially a list of pairs (ψ, `) where ψ is a clause
to be added and ` is a list of indices of already known clauses that entail ψ by reverse unit
propagation. (For e�ciency, we also include deletion of clauses that are no longer relevant.)

Due to the huge size of the traces involved (over 200 TB), it is infeasible to perform the
whole veri�cation process inside Coq; thus, we use program extraction to obtain code that is
correct by construction, and we rely on metalevel reasoning to chain the di�erent steps in the
process. However, we reduce this dependency to checking that the same arguments are provided
to di�erent functions. In principle, given enough resources, the whole veri�cation could have
been done inside Coq.

References

[1] J. Cooper and R. Overstreet. Coloring so that no pythagorean triple is monochromatic. CoRR,
abs/1505.02222, 2015.

[2] L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. E�cient certi�ed resolution proof check-
ing. In TACAS, volume 10205 of LNCS, pages 118�135. Springer, 2017.

[3] L. Cruz-Filipe and P. Schneider-Kamp. Formally verifying the boolean pythagorean triples conjec-
ture. In LPAR 21. EasyChair, accepted for publication.

[4] M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples
problem via cube-and-conquer. In SAT, volume 9710 of LNCS, pages 228�245. Springer, 2016.

[5] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In HVC 2011, volume 7261 of LNCS, pages 50�65. Springer, 2012.

2

