
Choreographies in Coq

Lúıs Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti∗

Department of Mathematics and Computer Science, University of Southern Denmark
{lcf,fmontesi,peressotti}@imada.sdu.dk

Choreographic Programming is a paradigm for specifying concurrent systems based on
message-passing where communications are written in an Alice-to-Bob notation. Every pro-
gram (choreography) can then be mechanically translated into a distributed process-calculus
implementation that is guaranteed to be bisimilar to the original choreography. Thanks to this
methodology, such implementations are guaranteed never to suffer from mismatched commu-
nications. More generally, they cannot reach a deadlock state, since the original choreography
language does not allow deadlocks.

Example 1. The following choreography models a scenario where Alice (a) buys a book from a
seller (s) routing the payment through her bank (b).

a.title → s; s.price → a; s.price → b;

if b.ok then b → s[ok ]; b → a[ok ]; s.book → a

else b → s[ko]; b → a[ko]

First, Alice sends the title of the book to the seller, which then quotes the price to both Alice and
the bank. If the bank confirms the transaction, it sends an acknowledgement to both Alice and
the seller, and the latter proceeds to send the book. Otherwise, the bank sends a cancellation to
both parties.

The hallmark of Choreographic Programming is the EPP Theorem, which guarantees a
precise operational correspondence between a choreography and its generated implementation
(EndPoint Projection).

Example 2. The previous choreography can be projected into the following distributed protocol.

a . s!title; s?; b&{ok : s? | ko :}
b . s?; if ok then (s[ok ]; a[ok ]) else (s[ko]; a[ko])

s . a?; a!price; b!price; b&{ok : a!book | ko :}

The protocol for Alice is thus: send a title to the seller and wait for a reply; then wait for either
confirmation from the bank, in which case the seller will send the book, or cancellation, in which
case the protocol ends. The protocol for the seller is similar. In turn, the bank initially waits
for a message from the seller, and then decides whether to send confirmation or cancellation to
both the seller and Alice.

In the examples above, the participants exchange two kinds of messages: data messages
(e.g. a.title → s) or signals (e.g. b → s[ok ]), which are exclusively meant to dictate control
flow. The need for this distinction has to do with propagating local choices, in our example the
decision by the bank on whether to authorize payment or not.

The EPP Theorem guarantees that the choregraphy in Example 1 behaves exactly as the
three communicating processes in Example 2. However, the proof of this theorem even for

∗This work was partially supported by the Independent Research Fund Denmark, grant no. DFF-7014-00041.

1



Choreographies in Coq L. Cruz-Filipe, F. Montesi and M. Peressotti

simple choreography languages is complex, due to the high number of cases that need to be
considered and to the multitude of rules in the semantics of both choreography and process
languages. Such proofs are known to be prone to errors when designed and checked by humans:
a previous attempt to formalize a publication on a higher-order process calculus [3] turned up
a number of problems in the original proofs [4].

Choreographic Programming is closely related to Multiparty Session Types, a typing disci-
pline for concurrent programming that also guarantees desirable properties. The main difference
between these two approaches is methodological: Multiparty Session Types work bottom-up,
starting from an implementation and trying to find a type; Choreographic Programming works
top-down, starting from a choreography (which can be thought of as a type with additional
computational abilities and information on the data being communicated) and generating the
implementation. It has recently been discovered that a significant number of published results
in Multiparty Session Types were wrong, in the sense that not only did the published proofs
contain errors, but also the stated results did not hold [5, Chapter 8.1]. Here again, the problem
is the complexity of the proofs involved, both in terms of number of cases to be checked and
technical complexity of checking each individual case.

In order to establish solid foundations for Choreographic Programming, we propose to for-
malize the core choreography calculus from [1] using the Coq theorem prover. This calculus
was proposed originally as a minimal calculus that already embodies the characteristic features
of Choreographic Programming. As such, it provides a good benchmark both to evaluate the
feasibility of a full formalization of a model for Choreographic Programming and to verify its
correctness by certified means. Moreover, this calculus already includes the major challenges
that have to be dealt with in this theory, namely: finite sets and functions on finite sets; partial
functions; syntactic binders.

Furthermore, [1] also includes a proof that this choreography model is Turing-complete.
Formalizing this proof also requires formalizing Kleene’s theory of partial recursive functions [2],
which again deals with partiality and finite sets, but also poses some additional problems related
to induction over dependent types.

Currently our formalization covers the fragment of the choreography language that does not
include recursion (infinite behaviour). This fragment already requires treating finite sets and
functions (as the semantics of choreographies is defined by means of a function assigning each
process to the value it stores), as well as partial functions (even without recursion, projecting
a choreography to a process implementation is not always possible). Furthermore, in this
fragment we can already encode a subset of partial recursive functions. As such, this work is
already illustrative of the challenges encountered and the solutions that can be put in place.

References

[1] Lúıs Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. In Olga
Kouchnarenko and Ramin Khosravi, editors, FACS, volume 10231 of LNCS, pages 17–35. Springer,
2017.

[2] S.C. Kleene. Introduction to Metamathematics, volume 1. North-Holland Publishing Co., 1952.

[3] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and
decidability of higher-order process calculi. Inf. Comput., 209(2):198–226, 2011.

[4] Petar Maksimovic and Alan Schmitt. HOCore in Coq. In Christian Urban and Xingyuan Zhang,
editors, ITP, volume 9236 of LNCS, pages 278–293. Springer, 2015.

[5] Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. PACMPL,
3(POPL):30:1–30:29, 2019.

2


