
Communications in Choreographies, Revisited
Luís Cruz-Filipe

Dept. of Mathematics and Computer

Science, University of Southern

Denmark

lcf@imada.sdu.dk

Fabrizio Montesi

Dept. of Mathematics and Computer

Science, University of Southern

Denmark

fmontesi@imada.sdu.dk

Marco Peressotti

Dept. of Mathematics and Computer

Science, University of Southern

Denmark

peressotti@imada.sdu.dk

ABSTRACT
Choreographic Programming is a paradigm for developing correct-

by-construction concurrent programs, by writing high-level de-

scriptions of the desired communications and then synthesising

process implementations automatically. So far, choreographic pro-

gramming has been explored in the monadic setting: interaction
terms express point-to-point communications of a single value.

However, real-world systems often rely on interactions of polyadic
nature, where multiple values are communicated among two or

more parties, like multicast, scatter-gather, and atomic exchanges.

We introduce a new model for choreographic programming

equipped with a primitive for grouped interactions that subsumes

all the above scenarios. Intuitively, grouped interactions can be

thought of as being carried out as one single interaction. In practice,

they are implemented by processes that carry them out in a concur-

rent fashion. After formalising the intuitive semantics of grouped

interactions, we prove that choreographic programs and their im-

plementations are correct and deadlock-free by construction.

CCS CONCEPTS
• Theory of computation → Distributed computing models;
Process calculi; • Software and its engineering→ Concurrent
programming languages; Concurrent programming structures;

KEYWORDS
Choreography; Concurrency; Communication patterns

ACM Reference Format:
Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2018. Communica-

tions in Choreographies, Revisited. In Proceedings of ACM SAC Conference
(SAC’18). ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/xx.

xxx/xxx_x

1 INTRODUCTION
Choreographic Programming [15] is an emerging paradigm for pro-

gramming communications in concurrent and distributed systems.

The key idea is that programs are choreographies, which define the

communications that we wish to take place from a global view-

point, using structures inspired by the “Alice-and-Bob” notation for

security protocols [17]. Then, an EndPoint Projection (EPP) synthes-

ises a correct-by-construction implementation in process models

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC’18, April 9-13, 2018, Pau,France
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00

https://doi.org/xx.xxx/xxx_x

(e.g. process calculi), guaranteeing important properties such as

progress and operational correspondence [1, 2]. The applicabil-

ity of the paradigm has been demonstrated in different settings,

including service-oriented programming [1, 9], adaptable distrib-

uted software [8], cyber-physical systems [13, 14], and software

verification [5].

Processes in choreographic programs typically interact via point-

to-point message passing. This is expressed by language terms

like p.e -> q.y, which reads “process p evaluates expression e
locally and sends the result to process q, which stores the re-

ceived value in its local variable y”. However, there are applica-

tion scenarios that require more advanced primitives. We mention

two representative such scenarios. First, choreographic languages

for cyber-physical systems offer primitives for scatter/gather com-

munications (broadcast/reduce in their terminology) [13, 14]. In-

tuitively, this means generalising p.e -> q.y to having many re-

ceivers (scatter, p.e -> q1.x1 . . . qn .xn) or many senders (gather,

q1.e1 . . . qn .en -> p. f). Second, choreographic languages for paral-
lel computing and/or asynchronous communications support the

idea of exchange [5]. For example, the term (p.x -> q.y, q.x -> p.y)
in [5] denotes the parallel exchange between processes p and q of

their respective values locally stored in variable x . These scenarios
illustrate the need for choreographic languages with more express-

ive primitives that capture multiple communications. However, the

extensions proposed so far differ in their syntax and semantics, and

none of them comes with an EndPoint Projection procedure. Hence,

it is still unclear how the correctness-by-construction guarantee

of choreographic programming can be extended to this kind of

primitives.

In this paper, we tackle this issue by extending choreographic

programming with language constructs for grouping sets of com-

munications into complex group interactions, calledmulticoms. Our
construct is unifying, in the sense that it captures both the scat-

ter/gather and exchange patterns, as we exemplify here. (It actually

is even more powerful, as we point out later.) Consider the follow-

ing code snippet, a simple program that crawls stores searching for

the best offer for a given item using the scatter/gather pattern:

{
p.(item, auth(p,s)) -> s.t

�� s ∈ S
}
;1 {

s.priceof(t) -> p.xs
�� s ∈ S

}
2

In the first line, the search service p queries each store s in the

collection S (being sets, multicoms lend themselves to set compre-

hensions). At first sight, this is essentially a multicast as in previous

works, but observe that messages from the same sender are not

necessarily the same: as shown by this example p attaches with

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

SAC’18, April 9-13, 2018, Pau,France L. Cruz-Filipe, F. Montesi, M. Peressotti

information to authenticate itself to each receiver. (Hence our prim-

itive is more expressive.) In the second line, responses are collected

(and possibly aggregated) by p. Each step of the interaction between
p and any given store s is causally dependent, whereas interactions

with distinct stores are not (request-response interactions with

different stores can proceed independently). So, for the first time

in choreographies, our multicom captures both scatter and gather

with a single primitive, but it is not limited to those patterns.

Consider now a scenario where two search services, say p1 and
p2, run the search code above independently and then share their

respective offers with each other (one can imagine this to be part

of a purchase protocol where the service with the best offer then

proceeds to buying the item). This exchange can be succinctly

expressed as the following multicom.{
p1.myoffer -> p2.x
p2.myoffer -> p1.x

}
3

Programming with multicoms is easy, as we illustrated. Multi-

com dynamics should also be straightforward: intuitively, to the

programmer’s eyes, they are interactions among arbitrary groups

of processes that are carried out as one. However, this is not quite

what happens in reality, since we know that each communication in

a multicom may proceed independently from the others whenever

possible. To bridge this gap, we formalise both a simple semantics

for choreographies with multicom—where statements are run se-

quentially and multicoms atomically—and a more realistic concur-

rent semantics—where all independent communications may be

executed in any possible order. Then, we show that the concurrent

semantics is a refinement of the simple one. This allows for results

to be transferred between the two semantics. In particular, for the

first time, it enables us to extend the correct-by-construction meth-

odology of choreographic programming to this kind of structures.

Namely, we define and prove correct an EndPoint Projection from

choreographies to a concurrent process calculus.

2 CHOREOGRAPHY MODEL
Typically, there are two kinds of interaction primitives in choreo-

graphic programs: (value) communications and (interface) selec-
tions [6]. We shall maintain this distinction for groups of interac-

tions, since each kind serves different mechanics, and also to avoid

unnecessary technicalities. Concretely, we extend choreographies

with constructs for grouping communications and for grouping se-

lections called multicoms and multisels, respectively. In this section,

we formalise their semantics and relevant properties.

2.1 Syntax
Terms describing choreographic programs (or choreographies, for

short) are generated by the following grammar:

C F H ;C | Φ;C | if p.e thenC1 elseC2 | defX =C2 inC1 | X | 0

H F {η0, . . . , ηn } η F p.e -> q.y

ΦF {ϕ0, . . . , ϕn } ϕ F p -> q[ℓ]

A choreography describes the behaviour of a (fixed) set of processes

(denoted by p, q, etc.) running concurrently. Each process has a

private memory made of named cells (denoted by x , y, etc.). We

assume that each process has a dedicated full-duplex channel to

communicate with each other process (e.g. a TCP/IP channel)—in

other words, we assume an underlying full-duplex channel for each

pair of processes.

Terms H ;C and Φ;C are (grouped) interactions and read “the

system may execute H (resp. Φ) and proceed as C”. An interaction

group is either a (finite) setH of value communications (η-terms like

p.e -> q.y) or a (finite) set Φ of interface selections (ϕ-terms like p ->
q[ℓ]). In p.e -> q.y, p sends its local evaluation of expression e to q,
which stores the received value at y. The language of expressions
is intentionally not fixed, for generality—we just assume that their

evaluation always terminates, possibly through a timeout. In p ->
q[ℓ], p communicates label ℓ (which is a constant) to q. If you
like, labels are abstractions of operations, as in service-oriented

computing, or methods, as in object-oriented computing. So in

p -> q[ℓ], p requires q to proceed with the behaviour labelled

by ℓ. In the remainder, we make the standard assumption that

choreographies do not contain self-interactions (e.g. p -> p[ℓ]).
Recall from the introduction that interactions grouped into multi-

coms and multisels should be thought as happening as one or, more

precisely, concurrently. This intuition is reflected in the fact that

multicoms and multisels are sets. As a consequence, interfering

interactions cannot be grouped. The following is an example of a

problematic multicom with interfering interactions:

p.x -> q.x
p.y -> q.y
r.x -> q.y
q.y -> s.x

In the first two communications, q receives two values from p on

the (distinct) variables x and y. However, the two operations are

incompatible: each process can carry out actions inside multicoms

in any order, but q cannot know which message will arrive first on

its channel with p unless an order is agreed on (it is not in this case).

In the implementation of this choreography, it may thus happen

that q incorrectly stores in its local variable y the value of x at

p. The second and third communications are also incompatible: q
stores the content of the received messages in the same variable y,
and hence the order in which messages are delivered to q cannot

be ignored (even though the senders are distinct). Finally, the third

and fourth communications are interfering, too, because the value

sent by q in the fourth interaction may depend on whether the third

interaction takes place before or after it, so we cannot interpret

the result of the two interactions independently from the order in

which they are executed.

These observations are formalised by the following syntactic

conditions on H terms.

Definition 2.1. A set of communications H is a (well-formed)
multicom if:

(1) if {p.e -> q.y, r.e ′ -> q.y′} ⊆ H , then y , y′ and p , r;
(2) if {p.e -> q.y, q.e ′ -> r.y′} ⊆ H , then y < e ′.

Note that even if our model allowed for multiple separate chan-

nels between two processes, we would still need a requirement like

Communications in Choreographies, Revisited SAC’18, April 9-13, 2018, Pau,France

p , r in the first condition—i.e. we would require inequality of

channel names, rather than process names.

Similar observations hold for multisels, as illustrated by the

following snippet with interfering selections:
p -> q[ℓ]
r -> q[ℓ′]
q -> s[ℓ]

Here, process q must concurrently select from an interface at s and
await for p and r to select an interface each.

Definition 2.2. A set of selections Φ is a (well-formed) multisel
provided that: if {p -> q[ℓ], r -> s[ℓ′]} ⊆ Φ, then q < {r, s}.

In the remainder, we assume that all multicoms and multisels

are well-formed. Also, we often abuse notation by writing η;C and

ϕ;C instead of {η};C and {ϕ};C , respectively.
The remaining choreographic primitives are standard. In a condi-

tional if p.e thenC1 elseC2, the guard e is evaluated in the context

of p and then the choreography proceeds executing either branch

accordingly—expressions are implicitly assumed to support Boolean

values or some equivalent mechanism. Definitions and invocations

of recursive procedures are standard. The term 0 is the terminated

choreography. As common practice, we assume that all procedure

invocations refer to defined procedures, and omit 0 whenever clear
from the surrounding terms.

2.2 Sequential semantics
We now give a semantics to choreographies, which formalises

their intuitive dynamics. The semantics is the smallest relation

→ between pairs (C,σ) where

• C is a choreography term as defined in Section 2.1;

• σ is a function describing thememory of processes (i.e. taking
processes and their variable names to values);

that is closed under the rules in Figure 1. Before we discuss each

rule observe that:

• reduction rules consume the outermost interaction (note

that the outermost term may be a recursive definition);

• interactions are consumed in a single step;

• multicoms are reduced in a single step as if all their interac-

tions were carried out by the involved processes simultan-

eously.

In this sense, this semantics is called sequential or big-step.

For compactness, the presentation relies on the structural precon-

gruence ≼ via the standard mechanism of rule ⌊C|Str⌉; the relation

is defined as the smallest relation on choreographic programs closed

under rules ⌊C|Unfold⌉, ⌊C|DefNil⌉ and ⌊C|MEmpty⌉ (discussed

below). Herein, C ≡ C ′
is a shorthand for C ≼ C ′

and C ′ ≼ C .
The semantics of interactions is defined by rules ⌊C|MCom⌉

and ⌊C|MSel⌉. The expression of each communication p.e -> q.y
in the multicom H is evaluated in the sender context (e ↓σ (p) v)
and the resulting value (v) is used in the reductum to update the re-

ceiver memory, independently. Selections have no effect on process

memory. In both cases, the set of communications is required to

be non-empty, in order to avoid reductions that do not correspond

to any action. The cases H = ∅ or Φ = ∅ are instead dealt with

by structural precongruence (rule ⌊C|MEmpty⌉). The semantics of

conditionals is modelled by rule ⌊C|If⌉, where the guard is eval-

uated in the context of the process p performing the choice, and

then the program reduces to the corresponding branch. Recursive

definitions are implicitly expanded by structural precongruence, as

described by rule ⌊C|Unfold⌉: here, C1[X] indicates that the term

X occurs inC1, and on the term on the righthandside it is replaced by

the body of the recursive definition. Rule ⌊C|Ctx⌉ is standard and

necessary to reduce the outermost interaction. Rule ⌊C|DefNil⌉

collects recursive definitions from terminated programs, i.e. any C
s.t. C ≼ 0.

Remark 2.3. Label selections do not alter the state of any pro-

cess, since they simply model the choice of a possible behaviour

offered by the receiver. We will use this information to synthesise

appropriate interfaces for our processes in Section 3.3. This is a

standard method in choreographic programming, but we mention

it here for the unfamiliar reader.

For example, consider the following choreography.

if p.e then
p -> q[l];p.x -> q.y

else
p -> q[r];q.y -> p.x

Here, pmakes a local choice and depending on the result selects the

appropriate behaviour at q. In the first case, represented by label l,

q is expected to receive a value from p. In the second case, repres-

ented by label r, q is expected to send a value to p. Without label

selections, q would not know how to act, since only p would know

which branch has been selected in the choreographic conditional.

In Section 3.3, we detail how to synthesise appropriate interfaces

for processes such as q in this example.

Choreographic programs never get stuck: they are either suc-

cessfully terminated or able to reduce.

Theorem 2.4. For C a choreography, either
(1) C ≼ 0; or,
(2) for every σ there are C ′ and σ ′ such that C,σ → C ′,σ ′.

The sequential semantics of choreographic programs enjoys local

confluence, which intuitively states that, whenever a computation

can proceed in more than one way, it is always possible to reach a

common configuration. Formally:

Theorem 2.5. For every span of computations C0,σ0 → C1,σ1
and C0,σ0 → C2,σ2 there are C3 and σ3 such that C1,σ1 →

∗ C3,σ3
andC2,σ2 →

∗ C3,σ3, where→∗ is the transitive and reflexive closure
of→.

2.3 Concurrent semantics
This section refines the sequential semantics of choreographic pro-

grams, redefining the semantics of grouped interactions to allow

primitive interactions to proceed independently whenever possible.

When necessary, we distinguish reductions (→) and structural pre-

congruence (≼) defining the sequential semantics (Section 2.2) and

concurrent semantics (Section 2.3) adding subscripts s and c , re-
spectively.

SAC’18, April 9-13, 2018, Pau,France L. Cruz-Filipe, F. Montesi, M. Peressotti

H , ∅ H = {pi .ei -> qi .yi | i ∈ I } ei ↓σ (pi) vi

H ;C,σ → C,σ [qi .yi 7→ ui]
⌊C|MCom⌉

Φ , ∅

Φ;C,σ → C,σ
⌊C|MSel⌉

i = 1 if e ↓σ (p) true, i = 2 otherwise

if p.e thenC1 elseC2,σ → Ci ,σ
⌊C|If⌉

C1 ≼ C2 C2,σ → C ′
2
,σ ′ C ′

2
≼ C ′

1

C1,σ → C ′
1
,σ ′

⌊C|Str⌉

C1,σ → C ′
1
,σ ′

defX =C2 inC1,σ → defX =C2 inC ′
1
,σ ′

⌊C|Ctx⌉

defX =C2 inC1[X] ≼ defX =C2 inC1[C2]
⌊C|Unfold⌉

defX =C in 0 ≼ 0
⌊C|DefNil⌉

{};C ≼ C
⌊C|MEmpty⌉

Figure 1: Sequential semantics of choreographic programs.

e ↓σ (pi) v

p.e -> q.y;C,σ → C,σ [q.y 7→ v]
⌊C|Com⌉

p -> q[ℓ];C,σ → C,σ
⌊C|Sel⌉

H0 = H1 ⊎ H2

H0 ≡ H1;H2

⌊C|MCom-MCom⌉
Φ0 = Φ1 ⊎ Φ2

Φ0 ≡ Φ1;Φ2

⌊C|MSel-MSel⌉
tn(Φ) ∩ pn(H) = ∅

H ;Φ ≡ Φ;H
⌊C|MCom-MSel⌉

xi < e for all qi .ei -> p.xi ∈ H

if p.e then (H ;C1) else (H ;C2) ≡ H ; if p.e thenC1 elseC2

⌊C|MCom-If⌉
q -> p[ℓ] < Φ

if p.e then (Φ;C1) else (Φ;C2) ≡ Φ; if p.e thenC1 elseC2

⌊C|MSel-If⌉

defX =C2 in (H ;C1) ≡ H ;defX =C2 inC1

⌊C|MCom-Rec⌉

defX =C2 in (Φ;C1) ≡ Φ;defX =C2 inC1

⌊C|MSel-Rec⌉

if p.e1 then (if q.e2 thenC1

1
elseC1

2
) else (if q.e2 thenC2

1
elseC2

2
) ≡ if q.e2 then (if p.e1 thenC1

1
elseC2

1
) else (if p.e1 thenC1

2
elseC2

2
)

⌊C|If-If⌉

Figure 2: Concurrent semantics of choreographic programs—new rules.

The semantics is defined by the rules in Figure 2 together with

all rules in Figure 1 except for rules ⌊C|MCom⌉ and ⌊C|MSel⌉.

Rules ⌊C|Com⌉ and ⌊C|Sel⌉ describe the semantics of prim-

itive interactions between two processes as a specialisation of

rules ⌊C|MCom⌉ and ⌊C|MSel⌉ to {η};C and {ϕ};C , respectively.
Rules ⌊C|MCom-MCom⌉ and ⌊C|MSel-MSel⌉ state that groups of

interactions can be merged and split at runtime—as long as they are

well-formed. Merging may not always be possible, since merging

interactions from distinct groups may violate well-formedness. (In

other words, not all interactions can be rescheduled and performed

concurrently due to causal dependencies.) In the opposite direction,

it is always possible to split groups, and hence freely schedule their

interactions.

In rule ⌊C|MCom-MSel⌉, tn(Φ) and pn(H) are the sets of process

names that occur as selection targets {q | p -> q[ℓ] ∈ Φ} and that

occur in a communication {p, q | p.e -> q.y ∈ H }, respectively. The

rule states that value communications and interface selection can

be freely scheduled as long as selection targets are not involved in

any other communication. Rules ⌊C|MCom-If⌉ and ⌊C|MSel-If⌉

state that conditionals and interactions can be swapped as long as

the process evaluating the guard is neither the target of an interface

selection nor receives a value in a variable that is used by the guard.

The remaining rules are straightforward.

Example 2.6. Consider the following program:

{
p.e0 -> s0.y0
p.e1 -> s1.y1

}
;
{

s0.e ′
0
-> p.x0

s1.e ′
1
-> p.x1

}
Assuming that e ′i depends on yi , this program is a minimal ex-

ample of the same scatter-gather pattern described in Section 1. By

immediate applications of rule ⌊C|MCom-MCom⌉, the program is

structurally equivalent to e.g.:

{
p.e0 -> s0.y0

}
;
{

p.e1 -> s1.y1
s0.e ′

0
-> p.x0

}
;
{

s1.e ′
1
-> p.x1

}
{

p.e0 -> s0.y0
}
;
{

s0.e ′
0
-> p.x0

}
;
{

p.e1 -> s1.y1
}
;{

s1.e ′
1
-> p.x1

}
In fact, all these programs yield the very same set of executions:

every possible linearisation of the partial order:

p.e0 -> s0.y0

s0.e ′
0
-> p.x0

p.e1 -> s1.y1

s1.e ′
1
-> p.x1

�

Communications in Choreographies, Revisited SAC’18, April 9-13, 2018, Pau,France

Observe that every (well-formed) multicom is equivalent to any

sequence of its interactions:

{η1, . . . , ηn } ≡ η1; . . . ;ηn .

Therefore, the semantics of multicoms as per rules ⌊C|MCom⌉

and ⌊C|Com⌉ are classified as big- and small-step—likewise for

→s and→c . The two are related since the former subsumes the lat-

ter (once multicoms are “sequentialised”) and, conversely, the latter

subsumes the former once reductions described by rule ⌊C|Com⌉

are transitively aggregated. The same holds for multisels. We can

generalise these observations into a formal relation between our

two semantics.

Lemma 2.7. For any choreography C0 and state σ0:
(1) if C0,σ0 →s C1,σ1, then C0,σ0 →

+
c C1,σ1;

(2) if C0,σ0 →c C1,σ1, then there are C2 and σ2 s.t. C1,σ1 →∗
c

C2,σ2 and C0,σ0 →
+
s C2,σ2;

where (−)+ is the transitive closure operator.

The notion of operational correspondence used in Lemma 2.7 is

slightly stronger than that studied for process calculi [10]. The latter

is commonly used to compare reduction semantics and organise

them as refinements and abstractions, but does not preserve and

reflect progress. Instead, Lemma 2.7 immediately allows us to infer

progress for →c .

Theorem 2.8. For C a choreography, either
(1) C ≼c 0; or,
(2) for every σ there are C ′ and σ ′ such that C,σ →c C

′,σ ′.

Another consequence of Lemma 2.7 is that the concurrent se-

mantics inherits confluence from the sequential one.

Theorem 2.9. For every span of computations C0,σ0 →c C1,σ1
andC0,σ0 →c C2,σ2 there areC3 and σ3 such thatC1,σ1 →

∗
c C3,σ3

and C2,σ2 →
∗
c C3,σ3.

3 PROCESS MODEL
In this section, we show that our choreography model supports

the correctness-by-construction approach of choreographic pro-

gramming. We first introduce our process calculus for modelling

concurrent processes, and then define an EndPoint Projection (EPP)

that synthesises correct process code from choreographies.

3.1 Syntax
Terms describing process networks are generated by the grammar

below.

N F p ◃ B | 0 | N1 | N2

B F {θ1, . . . , θn };B |
{

qi ⊕ ℓi
}
i ∈I ;B | p & {ℓi : Bi }i ∈I |

| if e thenB1 elseB2 | defX =B2 inB1 | X | 0

θ F q!⟨e⟩ | q?x

Networks, ranged over by N , are either the inactive network 0, pro-
cesses p ◃ B, where p is the name of the process and B its behaviour,

or parallel compositions. A term {θ1, . . . , θn };B represents a be-

haviour where multiple sends and receives (θ -terms) are executed

concurrently (and thus can be scheduled freely), before proceed-

ing with the continuation B. In particular, q!⟨e⟩ describes a send

operation where the process evaluates (locally) the expression e
and sends the outcome to q. Symmetrically, a term p?y represents

a receive operation, where the executing process receives a value

from p and stores it in y. A term {qi ⊕ ℓi }i ∈I ;B concurrently sends

many label selections (each ℓi is sent to the respective process qi)
before proceeding with B. The dual operation is the branching term

p & {ℓi : Bi }i ∈I , where we await to receive from p the selection of

one of the labels ℓi and then perform the corresponding behaviour

Bi . In a conditional if e thenB1 elseB2, the process evaluates the
guard e locally and chooses between the continuations B1 and B2
accordingly. The remaining terms are standard. We implicitly al-

low for exchange in the subterms {θ1, . . . , θn }, {qi ⊕ ℓi }i ∈I , and
{ℓi : Bi }i ∈I—order does not matter.

3.2 Semantics
The semantics for process networks is given in Figure 3. The key

differencewith respect to the semantics for choreographic programs

is that execution is now distributed: processes progress concurrently

and synchronise only when they interact. Network semantics is

presented in terms of a relation between pairs of networks and

memory configurations N ,σ → N ′,σ ′
.

Communication semantics is defined by rule ⌊P|Com⌉, which

synchronises an output action of a process (p in the rule) with an

input action at the intended receiver (q in the rule). Specifically, if

there are a “send-to-q” term (q!⟨e⟩) in p’s group of currently enabled
actions and a “receive-from-p” term (p?y) in q’s group of currently

enabled actions, then p can send the evaluation of e to q, and the

latter updates its local state accordingly (σ [q.y 7→ v]). Similarly,

rule ⌊P|Sel⌉ synchronises a process that wishes to select a branch

with the process that offers it. Semantics of conditionals is defined

by rule ⌊P|If⌉ and is entirely local: the process p performing the

choice evaluates the guard e and executes either branch accordingly.
The remaining rules are standard (cf. [6]).

3.3 EndPoint Projection
Given a choreographic program C , we can translate the behaviour

of each process p defined in C into our process model. We write

JCKp for this translation, which is defined by structural recursion by
the rules in Figure 4. All rules follow the intuition of projecting, for

each choreography term, the local action performed by the given

process.

Building on JCKp, we define the EndPoint Projection of a choreo-

graphy (EPP) as the parallel composition of the behaviours obtained

projecting each process separately.

Definition 3.1. The EndPoint Projection (EPP) JCK of a choreo-

graphy C is the parallel composition:

JCK ,
∏

p∈pn(C)

p ◃ JCKp.

The key new rules for EPP introduced in this work are the ones

for projecting multicoms and multisels.

A multicom term is projected to a group of concurrent send and

receive operations, depending on the role interpreted by the given

process in each interaction. We illustrate this construction in the

following example, where we display the choreography that we are

projecting on the left and its EPP on the right.

SAC’18, April 9-13, 2018, Pau,France L. Cruz-Filipe, F. Montesi, M. Peressotti

e ↓σ (p) v Θ = {q!⟨e⟩, θ1, . . . , θn } Θ′ =
{
p?x , θ ′

1
, . . . , θ ′m

}
p ◃ Θ;B | q ◃ Θ′;B′,σ → p ◃ {θ1, . . . , θn };B | q ◃

{
θ ′
1
, . . . , θ ′m

}
;B′,σ [q.y 7→ v]

⌊P|Com⌉

д ∈ I ∩ J

p ◃ {qi ⊕ ℓi }i ∈I ;B | qд ◃ p & {ℓj : Bj }j ∈J ,σ → p ◃ {qi ⊕ ℓi }i ∈I\{д } ;B | qд ◃ Bд ,σ
⌊P|Sel⌉

i = 1 if e ↓σ (p) true, i = 2 otherwise

p ◃ if e thenB1 elseB2,σ → Bi ,σ
⌊P|If⌉

p ◃ B1 | N ,σ → p ◃ B′
1
| N ′,σ ′

p ◃ defX =B2 inB1 | N ,σ → p ◃ defX =B2 inB′
1
| N ′,σ ′

⌊P|Ctx⌉
N ,σ → N ′,σ ′

N | M,σ → N ′ | M,σ ′
⌊P|Par⌉

N ≼ M M → M ′ M ′ ≼ N ′

N → N ′
⌊P|Str⌉

p ◃ 0 ≼ 0
⌊P|ProcNil⌉

0 | N ≼ N
⌊P|ParNil⌉

defX =B in 0 ≼ 0
⌊P|DefNil⌉

defX =B2 inB1[X] ≼ defX =B2 inB1[B2]
⌊P|Unfold⌉

{};B ≼ B
⌊P|MEmpty⌉

Figure 3: Process semantics.

J0Kr , 0 JH ;CKr ,
{

q!⟨e⟩
p?y

���� r.e -> q.y ∈ H
p.e -> r.y ∈ H

}
;JCKr JΦ;CKr ,

{
p &

{
ℓ: JCKr

}
if p -> r[ℓ] ∈ Φ

{q ⊕ ℓ | r -> q[ℓ] ∈ Φ};JCKr otherwise

Jif p.e thenC1 elseC2Kr ,

{
if e then JC1Kr else JC2Kr if p = r

JC1Kr ⊔ JC2Kr otherwise

r
defX

#»p =C2 inC1

z

r
,

{
defX = JC2Kr in JC1Kr if r ∈ #»p

JC1Kr otherwise

r
X

#»p
z

r
,

{
X if r ∈ #»p

0 otherwise

Figure 4: Behaviour projection.

{
p.x -> q.y
q.x -> p.y

}
;{

r.z -> p.x
} p ◃ {q!⟨x⟩, q?y}; {r?x}

q ◃ {p!⟨x⟩, p?y}

r ◃ {p!⟨z⟩}

Multiple selections are handled likewise: a multisel is projected

either to a group of selections or to a branch, depending on the

role of the given process (recall that if a multisel is well-formed,

then processes cannot occur as selection objects and subjects at the

same time).

All remaining rules for EPP are (up to minor differences) stand-

ard [6]. The rules for projecting recursive definitions and calls

assume that procedure names have been annotated with the pro-

cess names appearing inside the body of the procedure, in order to

avoid projecting unnecessary procedure code (cf. [1]).
The rule for projecting a conditional is more involved. The (par-

tial) merging operator⊔ from [1] is used tomerge the behaviour of a

process that does not knowwhich branch has been chosen yet:B⊔B′

is isomorphic to B and B′
up to branching, where the branches of B

or B′
with distinct labels are also included. As an example, consider

the following choreography and the projection of its processes.

if p.e then p -> q[l];

p.x -> q.x

else p -> q[r];

q.y -> p.y

p ◃ if e then q ⊕ l;q!⟨x⟩

else q ⊕ r;q?y

q ◃ p & {l: p?x , r: p!⟨y⟩}

Here, merging allows the projection of q to account for the different
possible behaviours based on the label received from p.

If the choreography did not include a selection from p to q,
then q would not know which choice p had made in evaluating its

condition (cf. Remark 2.3). This aspect is typical of choreography

models [1, 2, 4, 8, 11, 18]. More specifically, while the originating

choreography executes correctly, its projection needs processes that

behave differently in the branches of a conditional to be informed

through a selection (either directly or indirectly, by receiving a

selection from a previously notified process).

Observe thatmerging is partial and thus there are choreographies

whose processes cannot be projected. These are not corner cases

but actual programming errors that may appear even in simple

programs like the following one:

if p.e then p.e ′ -> q.x else 0

In this case, the behaviour of process q cannot be projected because
q does not know whether it should wait for a message from p or

not. In general, projections are undefined whenever choices oper-

ated locally are not correctly propagated to all involved processes;

explicit selections are thus instrumental to catching such errors at

projection time, i.e. statically. Since merging is partial, JCKp may be

undefined, and consequently JCK is also partial. In the remainder,

we say that a choreography C is projectable if JCK is defined.

Example 3.2. The projection of the choreographic program dis-

cussed in Section 1 is the parallel composition of:

Communications in Choreographies, Revisited SAC’18, April 9-13, 2018, Pau,France

p ◃
{

s!⟨(item, auth(p,s))⟩
�� s ∈ S

}
;{

s?xs
�� s ∈ S

}∏
s∈S

s ◃ p?t ;p!⟨priceof(t)⟩

3.4 Properties
We end our technical discussion by showing that our framework

supports the hallmark correctness-by-construction property of cho-

reographic programming. Formally, this is achieved by proving that

a choreography and its EPP are in an operational correspondence

(they mimic each other); as a corollary, we obtain that the EPP of a

choreography is deadlock-free.

In our setting, proving an operational correspondence result for

EPP is more interesting than in previous work on choreographic

programming, because we have two semantics for choreographies

(the sequential relation→s and the concurrent relation→c). Ideally,

we would like to get an operational correspondence result for each

choreographic semantics. A naive way of proceeding would be to

prove the result twice, once for →s and once for →c . But since we

know that→s and→c are related (Lemma 2.7), we can do better.

First, we prove the following lemma. We again write→+ for one

or more applications of →.

Lemma 3.3. If C is projectable, then:
(1) if C,σ →s C ′,σ ′ then, there is N such that JC ′K @ N and

JCK,σ →+ N ,σ ′;
(2) if JCK,σ → N ,σ ′ then, there is C ′ such that JC ′K @ N and

JCK,σ →c JC ′K,σ ′.

Above, the pruning relation @ (from [1, 2]) drops branches intro-

duced by the merging operator ⊔ when they are no longer needed

to follow the originating choreography. Pruning is completely or-

thogonal to our development, so we refer to [1] for a detailed ex-

planation.

The choice of→s and→c , respectively, for the two directions in

Lemma 3.3 is strategic. Namely, for the first direction, considering

→s is easier because it is a simpler semantics, and it is then straight-

forward to show that the EPP of the choreography can implement,

for example, a multicom by executing all its projected process ac-

tions. Conversely, for the second direction, using→c is convenient

because it allows us to execute exactly the single move performed

by the projected network (this may require e.g. cherry-picking a

single interaction in a multicom, or using out-of-order execution

for the choreography).

By combining Lemma 3.3 with Lemma 2.7, we get operational

correspondences for both →s and→c .

Theorem 3.4. If C is projectable, then:
(1) if C,σ →s C ′,σ ′ then, there is N such that JC ′K @ N and

JCK,σ →+ N ,σ ′;
(2) if JCK,σ → N ,σ ′ then, there are N ′, C ′, and σ ′′ such that

JC ′K @ N ′, C,σ →+s C ′,σ ′′, and N ,σ ′ →∗ N ′,σ ′′.

Theorem 3.5. If C is projectable, then:
(1) if C,σ →c C ′,σ ′ then, there are N , C ′′, and σ ′′ such that

JC ′′K @ N , C ′,σ ′ →∗
c C

′′,σ ′′, and JCK,σ →+ N ,σ ′′;

(2) if JCK,σ → N ,σ ′ then, there is C ′ such that JC ′K @ N and
JCK,σ →c JC ′K,σ ′.

As a corollary of the operational correspondences that we de-

veloped and the progress property of choreographies we get that

projected networks are deadlock-free.

Corollary 3.6. Let N = JCK for some C . Either

(1) N ≼ 0 (N has terminated), or
(2) for any σ there exist N ′ and σ ′ such that N ,σ → N ′,σ ′ (N

can always reduce).

4 RELATEDWORK AND CONCLUSIONS
Scatter/gather primitives for choreographic programs were intro-

duced in [14], in order to use choreographies for modelling cyber-

physical systems. The primitive of asynchronous exchange, where

two processes exchange a value at the same time, was introduced

in [5]. Neither of these works discussed how such primitives may

be supported in the paradigm of Choreographic Programming [15],

in order to generate correct-by-construction implementations. Fur-

thermore, these primitives are not general, in the sense that one

construct cannot be used to obtain the same effect as the other. In

this work, we have addressed both issues, by introducing unifying

primitives (our multicoms/multisels) that can capture both patterns

and defining an EndPoint Projection that generates correct process

terms in a calculus of concurrent processes.

Some previous works on choreographic programming includes a

parallel composition operator for choreographic terms (C | C ′
), for

example [1]. Implementing our multicom/multisel using parallel

composition requires the possibility to join the two terms C and

C ′
after they have finished execution, and then to proceed with a

continuation. These are not supported in [1]. Instead, both a par-

allel composition operator and a general sequential composition

operator (C;C ′
) are present in [8], which would in theory allow

for encoding our grouped interactions. However, the combination

of these two operators can cause EPP to generate interfering com-

munication actions between the parallel branches, and between

the parallel branches and the continuation. A correct EPP in [8] is

then obtained by adding (i) distinct auxiliary communication chan-

nels for communications and (ii) hidden communications for the

propagation of information about internal choices at participants.

Our approach is more efficient, because (i) we simply assume one re-

usable duplex channel for each pair of processes (used by all commu-

nications between them) and (ii) our well-formedness condition for

multisels combined with merging guarantees that all participants

agree without the need for hidden communications. Furthermore,

the model in [8] does not consider our well-formedness conditions

for multicoms and may thus lead to confusing data races. For ex-

ample, the (equivalent of the) exchange {p.x -> q.x , q.x -> p.x}
is allowed (notice that x is used both for receiving and sending),

which in a synchronous system would never yield the expected

exchange, but rather a copy of x from p to q or vice versa (since one
of the two interactions must be fully performed before the other

can).

Most works on choreographic programming fall into two cat-

egories: those that use a sequential semantics (like [1, 3, 8, 12]),

and those that allow for out-of-order concurrent execution (like

SAC’18, April 9-13, 2018, Pau,France L. Cruz-Filipe, F. Montesi, M. Peressotti

[2, 6, 14, 16]). So far, adopting the first view meant requiring the

programmer to write all concurrent behaviour manually, which

could be error-prone (cf. the complex verification techniques for de-

tecting some mistakes in [1]). And, adopting the second view meant

sacrificing the straightforward semantic interpretation of choreo-

graphies. Our development bridges this gap and offers a third view:

programmers can use the sequential semantics of choreographies to

reason about communication behaviour—in a language where con-

currency does not need to be manually specified, because we simply

abstract from it—and then stand on the shoulders of our results

for the concurrent semantics (by operational correspondence) to

know that safety is preserved in concurrent implementations. This

result has an important practical implication: it is feasible to build

a debugger for choreographies that uses the sequential semantics,

since all results will be equivalent anyway—this would help pro-

grammers, since they would have to debug many fewer possible

executions. But we do not need to give up the efficiency and realism

of the concurrent semantics for runtime process implementations.

In [7], an operational correspondence result is presented in the

setting of asynchronous communications for the calculus of core

choreographies [6]; specifically, the authors show that programmers

can interpret core choreographies as using synchronous commu-

nications, and that there is a safe way of obtaining more efficient

asynchronous implementations without needing manual interven-

tion. We conjecture that our development may be combined with

that in [7], to obtain an asynchronous semantics for grouped inter-

actions. We leave this combination to future work.

The congruence rules for swapping independent choreographic

interactions were first introduced in [2]; we have extended them to

deal with groups of interactions (multicoms/multisels). Our terms

for recursion and conditionals in choreographies are standard,

from [1, 6]. Likewise, the terms for recursion, conditionals, and

parallel composition of networks in our process model are bor-

rowed from [6].

ACKNOWLEDGMENTS
This work was partially supported by the Open Data Framework

project at the University of Southern Denmark, and by the Inde-

pendent Research Fund Denmark, Natural Sciences, grant DFF-

7014-00041.

REFERENCES
[1] Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured

Communication-Centered Programming for Web Services. ACM Trans. Program.
Lang. Syst. 34, 2 (2012), 8.

[2] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multi-

party asynchronous global programming. In POPL, R. Giacobazzi and R. Cousot

(Eds.). ACM, 263–274.

[3] Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. 2017. Choreo-

graphies, logically. Distributed Computing (2017). https://doi.org/10.1007/

s00446-017-0295-1

[4] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca

Padovani. 2016. Global progress for dynamically interleaved multiparty ses-

sions. Mathematical Structures in Computer Science 26, 2 (2016), 238–302.

https://doi.org/10.1017/S0960129514000188

[5] Luís Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi. 2017. The Paths to Choreo-

graphy Extraction. In FoSSaCS (LNCS), Javier Esparza and Andrzej S. Murawski

(Eds.), Vol. 10203. Springer, 424–440.

[6] Luís Cruz-Filipe and Fabrizio Montesi. 2016. A Core Model for Choreographic

Programming. In FACS (LNCS), Olga Kouchnarenko and Ramtin Khosravi (Eds.),

Vol. 10231. Springer, 17–35. https://doi.org/10.1007/978-3-319-57666-4_3

[7] Luís Cruz-Filipe and Fabrizio Montesi. 2017. On Asynchrony and Choreographies.

In Proceedings of ICE 2017. Accepted for publication.

[8] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and

Jacopo Mauro. 2017. Dynamic Choreographies: Theory And Implementation.

Logical Methods in Computer Science 13, 2 (2017).
[9] Chor development team. 2013. Chor Programming Language. (2013). http:

//www.chor-lang.org/.

[10] Daniele Gorla. 2010. Towards a unified approach to encodability and separation

results for process calculi. Inf. Comput. 208, 9 (2010), 1031–1053.
[11] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchron-

ous Session Types. J. ACM 63, 1 (2016), 9. https://doi.org/10.1145/2827695

[12] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008.

Bridging the Gap between Interaction- and Process-Oriented Choreographies. In

SEFM, A. Cerone and S. Gruner (Eds.). IEEE, 323–332.

[13] Hugo A. López and Kai Heussen. 2017. Choreographing cyber-physical distrib-

uted control systems for the energy sector. In SAC. ACM, 437–443.

[14] Hugo A. López, Flemming Nielson, and Hanne Riis Nielson. 2016. Enforcing

Availability in Failure-Aware Communicating Systems. In FORTE (Lecture Notes
in Computer Science), Vol. 9688. Springer, 195–211.

[15] Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University

of Copenhagen. http://fabriziomontesi.com/files/choreographic_programming.

pdf

[16] Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional Choreographies. In

CONCUR (LNCS), Vol. 8052. Springer, 425–439.
[17] R.M. Needham and M.D. Schroeder. 1978. Using encryption for authentication

in large networks of computers. Commun. ACM 21, 12 (Dec. 1978), 993–999.

https://doi.org/10.1145/359657.359659

[18] Z. Qiu, X. Zhao, C. Cai, and H. Yang. 2007. Towards the theoretical foundation of

choreography. In WWW. ACM, 973–982.

https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-319-57666-4_3
http://www.chor-lang.org/
http://www.chor-lang.org/
https://doi.org/10.1145/2827695
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1145/359657.359659

	Abstract
	1 Introduction
	2 Choreography Model
	2.1 Syntax
	2.2 Sequential semantics
	2.3 Concurrent semantics

	3 Process model
	3.1 Syntax
	3.2 Semantics
	3.3 EndPoint Projection
	3.4 Properties

	4 Related work and Conclusions
	Acknowledgments
	References

