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Abstract The Boolean Pythagorean Triples problem asks: does there exist a binary

coloring of the natural numbers such that every Pythagorean triple contains an element

of each color? This problem was �rst solved in 2016, when Heule, Kullmann and Marek

encoded a �nite restriction of this problem as a propositional formula and showed its

unsatis�ability. In this work we formalize their development in the theorem prover Coq.

We state the Boolean Pythagorean Triples problem in Coq, de�ne its encoding as a

propositional formula and establish the relation between solutions to the problem and

satisfying assignments to the formula. We verify Heule et al.'s proof by showing that

the symmetry breaks they introduced to simplify the propositional formula are sound,

and by implementing a correct-by-construction checker for proofs of unsatis�ability

based on reverse unit propagation.
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1 Introduction

The Boolean Pythagorean Triples problem asks the following question: is it possible to

partition the natural numbers into two sets such that no set contains a Pythagorean

triple (three numbers a, b and c with a2 + b2 = c2)? This problem is a particular

instance of an important family of problems in Ramsey theory on the integers [22]:

given an equation and an integer k, is there a coloring of the natural numbers using

k colors such that there are no monochromatic solutions to the equation? If every k-

coloring of the natural numbers admits a monochromatic solution, the equation is said

to be partition regular. Several classical results in Ramsey theory establish partition

regularity of particular equations, e.g. Schur's theorem, van der Waerden's theorem

and Rado's theorem.

Partition regularity of the Pythagorean equation for k = 2 was �nally established

in 2016, when Heule, Kullmann and Marek [17] showed that it is already impossible

to partition the set {1, . . . , 7825} into two sets such that none of them contains all

elements of a Pythagorean triple. This proof was done by means of an encoding of this

�nite version of the problem into propositional logic (already used in [5]), which was

then simpli�ed and solved using the cube-and-conquer method [18].

More precisely, these authors considered the propositional formula∧
1 ≤ a < b < c ≤ 7825

a2 + b2 = c2

(xa ∨ xb ∨ xc) ∧ (xa ∨ xb ∨ xc) (1)

where each xi is a propositional variable and · denotes logical negation. This formula ex-
haustively lists the sorted Pythagorean triples contained in {1, . . . , 7825}3 and requires

that each triple contain at least one variable assigned to true and another assigned to

false. A valuation satisfying the formula directly corresponds to a 2-coloring of the

natural numbers up to 7825 without monochromatic Pythagorean triples.

The strategy of the proof is summarized in Figure 1. The propositional formula (1)

was �rst simpli�ed using blocked clause elimination and symmetry breaking. After-

wards, the problem was divided into one million cubes: a set of partial assignments

that cover the whole space of possible valuations. Then, it was shown that (1) the con-

junction of the simpli�ed formula with any cube is unsatis�able, and (2) the negation

of the disjunction of all the cubes is unsatis�able. As a consequence, the simpli�ed

formula (and therefore also the original formula) is unsatis�able, which implies that

the Boolean Pythagorean Triples problem has no solution.

Heule, Kullmann and Marek's proof relies heavily on SAT solvers that establish

unsatis�ability of large propositional formulas. However, trusting that a formula is

unsatis�able simply because of the result of a SAT solver is not completely satisfactory,

as there is no formal guarantee that the SAT solver is correct. For this reason, the same

authors also produced a trace of their unsatis�ability proofs that they veri�ed using

an independently written checker, thereby checking their results independently. This

improves con�dence on the result, but it still requires trusting that the checker is

correctly implemented (albeit a much weaker requirement).

The purpose of this work is to formalize Heule, Kullmann and Marek's proof that

the Boolean Pythagorean Triples problem does not have a solution. To motivate the

need for such a veri�cation, we point out the steps in their original proof that depend

on either informal arguments or trusting a computer program.
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Fig. 1 The original proof and the di�erent veri�cation steps. The solid arrows denote the
steps in the original proof [17]: a �rst propositional formula was generated by a C program, and
subsequently simpli�ed, divided and solved by SAT solvers. The dashed arrows denote steps
that are directly formalized in Coq: the generation of propositional formulas that are proved
to represent the original mathematical problem, directly and after simpli�cation (Section 3);
and the formal speci�cation of the simple reasoning behind cube-and-conquer, as well as the
generation of the formulas obtained by this methodology (Section 4). The dotted arrows denote
steps that are veri�ed by a certi�ed checker extracted from a Coq formalization, namely the
proofs of unsatis�ability of all the necessary propositional formulas (Section 5).

� The relationship between formula (1) and the Boolean Pythagorean Triples prob-

lem is stated informally, with an intuitive argument that it su�ces to consider a

�nite approximation of the problem and that the propositional encoding of this

approximation is correct.

� The actual instance of formula (1) that was used was generated using a C program

whose soundness was never discussed.

� Although the simpli�cation steps and the proofs of unsatis�ability were veri�ed by

an independent checker, this checker has in turn not been proven correct.

� Soundness of the cube-and-conquer methodology has not been proven formally.

� Applying cube-and-conquer requires manipulating formulas too large to process by

hand, which have to be combined using e.g. command-line tools.

We do not claim that any of these issues presents a �aw in the original proof:

the argument for encoding a �nite subset of the problem (presented above) is simple;

the connection between formula (1) and the original problem is simple to understand;

the C program that generates the formula is simple enough to check for correctness

manually; the likelihood that the handwritten checker accepts wrong traces is small;1

soundness of cube-and-conquer is intuitively clear; and the �le manipulation required

in the last step consists only of copy and concatenation operations.

Still, a case for a fully formal proof of the Boolean Pythagorean Triples should

avoid these pitfalls. In this paper, we undertake such an e�ort, formalizing the whole

development in Figure 1 in the theorem prover Coq.

Contribution. We address all the issues discussed above, namely by:

� formalizing the Boolean Pythagorean Triples problem in Coq and showing that any

solution yields a solution for all its �nite approximations;

1 This would require both the SAT solver and the checker to be �awed in a similar way,
which is unlikely given that they were developed independently.
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� generating formula (1) in Coq and showing that its satis�ability is equivalent to

solvability of a particular �nite instance of the Boolean Pythagorean Triples prob-

lem;

� formalizing the process of simplifying formula (1) in Coq, using a mathematical

interpretation of the symmetry breaks applied;

� formalizing and extracting a correct-by-construction checker that is able to verify

proofs of unsatis�ability based on reverse unit propagation (which su�ces for all

the formulas we need to consider);

� formalizing soundness of the cube-and-conquer methodology, extracting a correct-

by-construction program that generates a set of formulas whose unsatis�ability

implies unsatis�ability of formula (1).

We point out that the two last steps are generic and not in any way tailored to

our particular goal of addressing the Boolean Pythagorean Triples problem. In other

words, we obtain a general-purpose checker for proofs of unsatis�ability of propositional

formulas based on reverse unit propagation, and a general-purpose tool for dividing a

formula according to the cube-and-conquer methodology, given a set of cubes.

Heule et al.'s original development produced traces allowing all their proofs of

unsatis�ability to be reproduced independently. These traces total around 200 TB of

data, which led to their proof being described as �the largest mathematical proof ever�.

Our veri�cation requires enriching their traces, making them approximately twice as

large (in an uncompressed text format), and fully processing them, making it probably

the largest formal veri�cation at the time of writing. For comparison, recent large-scale

formalizations relying on proof witnesses generated independently were able to process

a few tens of GB of data [8,20].

We report experiments run on the Abacus 2.0 supercomputer of the DeIC National

HPC Centre at the University of Southern Denmark. The nodes used were equipped

with 64 GB RAM and 12 CPU cores (Intel(R) Xeon(R) CPU E5-2680 v3) able to run

24 threads in parallel.

Structure. Section 2 introduces the reader to the necessary background for reading this

work: a contextualization of the Boolean Pythagorean Triples problem; an overview of

the relevant SAT-solving techniques, in particular of reverse unit propagation and the

cube-and-conquer method; and a bird's-eye view of the Coq theorem prover and its

language.

Section 3 describes the formalization of the Boolean Pythagorean Triples prob-

lem in Coq and its encoding as a family of propositional formulas, together with a

proof that unsatis�ability of any of these formulas implies that there is no solution to

the Boolean Pythagorean Triples problem. We also discuss the symmetry breaks used

in [17], implement them in Coq, and show their soundness.

In order to apply the divide-and-conquer methodology in the proof from [17], in

Section 4 we formalize the algorithm behind the cube-and-conquer strategy [18] and

show its soundness.

Section 5 focuses on the problem of e�ciently validating proofs of unsatis�ability

produced by an untrusted SAT solver. We formalize an algorithm for verifying reverse

unit propagation in Coq, establish its soundness, and apply program extraction to

obtain a certi�ed checker that can verify a restricted class of proofs of unsatis�ability

that su�ces for our problem. Chaining the development in these three sections, we

establish that there is no solution to the Boolean Pythagorean Triples problem using

certi�ed techniques.
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We conclude in Section 6.

Publication history. These results were previously published in conference proceedings:

the soundness of the encoding of the problem in SAT, of the symmetry breaks, and of

the division strategy (cube-and-conquer) were described in [10], while verifying proofs

of unsatis�ability based on reverse unit propagation in the general case was the topic

of [9].

2 Background

2.1 The Coq theorem prover

Our formalization is developed using the interactive proof assistant Coq [2]. Coq is one

successful member of a family of theorem provers based on dependent type theory: by

means of a propositions-as-types interpretation, logic formulas are viewed as types, and

the user interactively builds terms inhabiting those types. The same correspondence

allows these terms to be viewed as proofs of the original proposition. The advantage

of this family of theorem provers is that it is easy to check proofs automatically, once

they have been built: type checking in these languages is decidable, and implementable

by a small kernel that is simple enough to be formally checked for correctness. The

remaining interface does not need to be trusted: if an error in the program allows for

a wrong proof-term to be produced, the type checker will detect it. This property is

usually described as saying that these theorem provers have a small proof kernel. (See

e.g. [32] for an overview of the major theorem provers currently in use.)

The type theory underlying Coq is the Calculus of Constructions [6], a dependent

type theory with inductive and co-inductive types. We highlight some of the features

of the Calculus of Constructions that are most relevant to our work.

The logic corresponding to the Calculus of Constructions is intuitionistic (i.e., the

principle of excluded middle ϕ ∨ ¬ϕ and the rule of double negation ϕ↔ ¬¬ϕ do not

hold in general). As a consequence, it is possible to implement a realizability inter-

pretation in terms of program extraction [24], a mechanism by means of which proof

terms are converted to programs in a suitable functional programming language (in

our case, OCaml) whose correctness is guaranteed by their original type. Furthermore,

the Calculus of Constructions includes a special type Prop whose elements are com-

putationally irrelevant: they are used to express properties of data, and data cannot

depend on them. Program extraction eliminates all terms whose type lives in Prop,

thereby signi�cantly reducing the size of the programs generated.

Although the general principle of excluded middle is not valid intuitionistically,

there are a number of predicates for which it is possible to prove that they either

hold or do not hold. Such predicates are called decidable; decidable predicates play an

important role in our formalization, as they are extracted to programs that allow us

to do case analysis on a given property. The Coq syntax for expressing that we can

decide between A and B is {A}+{B}. For example, the formula ∀ (m n:nat),{n=m}+{n 6= m}

expresses that equality of two natural numbers is decidable, and it is extracted to a

function that, given two numbers, returns left if they are equal and right if they are

not. The actual proofs of (in)equality are not computed, as they have type Prop, but

the soundness of program extraction guarantees that the semantics of this function is

as described.
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2.2 SAT solving in a nutshell

A propositional formula over a set of propositional variables is either one of these vari-

ables, a negation of a propositional formula, or the conjunction or disjunction of two

propositional formulas. Propositional variables and their negations are referred to as

literals. The dual literal ¯̀of a literal ` is de�ned as x̄ = ¬x and ¬x = x. An assignment

or valuation is a mapping from propositional variables to the set of Boolean values

{true, false}; assignments are extended homomorphically to propositional formulas, in-

terpreting Boolean operations as usual. A satisfying assignment of a formula F is an

assignment I such that I(F ) = true, which we denote as I |= F ; in this case, we also

say that I is a model of F . A formula F is satis�able if it has a model, and unsatis�able

otherwise. A formula F entails a formula G, written F |= G, if all models I of F are

also models of G.

The Boolean satis�ability problem, commonly abbreviated to SAT, asks whether a

given propositional formula is satis�able. This problem is known to be decidable and

NP-complete [4]. The process of determining the answer to this problem is described

as SAT solving, and programs that solve this problem are known as SAT solvers.

For the purpose of applying SAT solving algorithms, propositional formulas are

written down in or converted to conjunctive normal form (CNF), i.e., a conjunction of

disjunctions of literals. Formulas in CNF are interchangebly represented by sets of sets

of literals, where the inner sets of literals, often referred to as clauses, are interpreted

as disjunctions. The empty clause is usually denoted as �.

Solving SAT. The classical algorithm for SAT solving is propositional resolution. In this

process, from clauses containing dual literals we are allowed to derive their resolvent

clause, de�ned as their disjunction without the dual literals. Formally, given two clauses

C ∨ `, C′ ∨ ¬` ∈ F , their resolvent is C ∨ C′. We de�ne the resolution relation →R on

CNFs as F →R F ′ if there are clauses C and C′ and a literal ` such that C∨`, C′∨¬` ∈
F and F ′ = F ∧ (C ∨ C′). Resolvents are entailed by the two resolved clauses, and

consequently F →R F ′ implies that F |= F ′.
Most state-of-the-art SAT solvers are based on a con�ict-driven clause-learning [29]

variant of the DPLL algorithm [13], consisting of a dexterous combination of branching

on variables, unit propagation, back-jumping, and clause learning, which we now brie�y

describe in su�cient detail to facilitate our proof checking.

The most basic step is branching on the value of a propositional variable, where the

solver attempts to build a satisfying assignment for the formula by assigning one of the

two possible truth values for the variable. This decision might have to be reconsidered

later, as described below.

The next step is to use unit propagation to simplify the formula under the as-

sumptions that were made. Unit propagation is performed by exhaustively applying

a restricted form of propositional resolution, where one clause consists of exactly one

literal. (Such clauses are called unit clauses.) We obtain the unit propagation relation

→U from →R by restricting C′ to be the empty clause �. The relation →U is con�u-

ent and strongly normalizing, and we can thus de�ne unit propagation on a set F as

normalizing F w.r.t. →U , i.e., as F ↓U .
If F ↓U contains the empty clause �, then F implies a contradiction, and thus

F is unsatis�able. In this case, previous branching decisions have to be reconsidered.

This is achieved by constructing a backjump clause B that is entailed by F , and using

this to determine which decisions to backtrack. By construction, the backjump clause
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B satis�es F |= B, so the SAT solving algorithm can continue on F ∧ B, i.e., it has

learned the clause B. If there are no branching decisions to reconsider, clause B is the

empty clause � and the original CNF is unsatis�able.

Checking the result. In practice, SAT solvers are extremely complex pieces software,

typically implemented in low-level code using sophisticated low-level data structures

to maximize e�ciency. Thus, the assumption that the result of a SAT solver is correct

is often deemed rather strong, motivating the need to check the result independently.

If the result is positive, the SAT solver returns a satisfying assignment for the input

formula, and it is trivial to check that this answer is correct.

Checking a negative answer derived from unit propagation is non-trivial, though:

the only proof witnesses available are the clauses learned when encountering con�icts.

Checking the proof then amounts to verifying that each learned B was indeed entailed

by the corresponding formula F . This can be shown using a proof by contradiction

strategy known as reverse unit propagation. Assume that there is a model I of F such

that I 6|= B. Since B is a disjunctive clause, ¬B is equivalent to a set of unit clauses, and

I |= ¬B. If the empty clause � is reached by performing exhaustive unit propagation

on F ∧¬B, i.e., if � ∈ (F ∧¬B) ↓U , then we have shown that F ∧¬B is unsatis�able

and, consequently, I |= B, which contradicts the assumption that B is not entailed by

F .

Although reverse unit propagation is not able to prove all valid entailments in

propositional logic, it is strong enough to derive all the clauses that can be learned

during con�ict-driven clause-learning, making it thus a very useful tool when verifying

the results provided by a SAT solver. A �rst generic format for representing such proofs

was proposed in [16]. In this work, we use a Coq representation of the GRIT format

[9], inspired by [12], which is described in Section 5.3. More expressive formats have

very recently been proposed [7,21], extending GRIT beyond the features needed for

this work.

Cube-and-conquer. This methodology, introduced in [18], applies the principle of divide-

and-conquer to SAT solving. The underlying idea is simple: instead of looking for a

satisfying assignment for a particular formula, consider its conjunctions with di�erent

sets of literals (the cubes). The set of all cubes must be such that every possible as-

signment satis�es (at least) one cube. For example, let ϕ be a formula on two variables

x and y, and consider the cubes {x}, {x̄, y} and {x̄, ȳ}. Instead of trying to satisfy

ϕ, we consider the three formulas ϕ ∧ x, ϕ ∧ x̄ ∧ y and ϕ ∧ x̄ ∧ ȳ. If one of these is

satis�able, then we proved that ϕ is satis�able; if all are unsatis�able, then to establish

unsatis�ability of ϕ we also need to check that the formula x̄ ∧ (x ∨ ȳ) ∧ (x ∨ y) is

unsatis�able.

Lemma 1 (Soundness of cube-and-conquer) Let ϕ be a CNF and C = {ci}ni=1

be a set of sets of literals such that
∨n

i=1 (
∧

ci) is a tautology. Then ϕ is satis�able i�

there exists 1 ≤ i ≤ n such that ϕ ∧
∧

ci is satis�able.

The proof of this lemma is omitted, as its formalization in Coq is described later

on (namely, it is lemma CubeAndConquer_lemma on page 18).

In the cube-and-conquer methodology, the biggest challenge is �nding the �right�

set of cubes � namely, a set that makes the resulting (un)satis�ability proofs easy, but

that does not generate too many subproblems. This process typically requires state-

of-the art techniques, with complex heuristics and look-ahead strategies [25]. When
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checking proofs, however, this complex step is avoided � the cubes are given as part of

the input.

3 Formalizing a Propositional Encoding

In this section, we describe the formalization of the Boolean Pythagorean Triples prob-

lem in Coq and its encoding as a family of propositional formulas parameterized on a

natural number n. We �rst develop this encoding in the simplest possible way, and then

apply two symmetry breaks that make it smaller. The encoding is proved correct before

and after the symmetry breaks, in the sense that the propositional formulas obtained

are satis�able for all n if and only if the Boolean Pythagorean Triples problem has a

solution. This process corresponds to the two leftmost dashed arrows in Figure 1.

This development depends on an encoding of propositional logic in Coq, which is

the topic of the �rst subsection. We explain the relevant aspects of the Coq syntax in

the presentation.

3.1 Propositional logic and satis�ability

We formalize a simple theory of propositional logic tailored to the �nal objective of this

work: verifying a proof of unsatis�ability of a particular formula, produced by a SAT

solver. This impacts our formalization in two ways: �rst, we only capture the fragment

of conjunctive normal forms, which is the fragment that SAT solvers act upon; second,

some of our design choices re�ect common practice in SAT solving � namely, using

positive integers for atomic formulas and assigning numbers to clauses.

We identify propositional variables with Coq's binary natural numbers (type positive),

and de�ne a literal to be a signed variable.

Inductive Literal : Type :=
| pos : positive → Literal

| neg : positive → Literal.

The type of literals thus obtained is isomorphic to that of integers (excluding zero).

From literals we build clauses and CNFs: a clause is a set of literals, and a CNF is

a list of clauses.

Definition Clause := list Literal.

Definition CNF := list Clause.

Valuations are simply functions from positive numbers to Booleans. Satisfaction

is de�ned for Literals, Clauses and CNFs in the expected way. All these functions are

de�ned by pattern matching (performed by the Coq construct match). In L_satisfies,

the literal argument is matched to either pos x or neg x (where pos and neg are the

constructors of the inductive type Literal); valuation v satis�es literal pos x if (v x)

is true, and it satis�es literal neg x if (v x) is false.2 Satisfaction of either Clauses

(C_satisfies) or CNFs (satisfies) are de�ned recursively on these terms, which are lists

with constructors nil and cons (inlined as :: ).

2 The constants true and false, inhabiting the type bool, are distinguished in Coq from
the singleton type True and the empty type False, which are logical propositions inhabiting
the sort Prop.
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Definition Valuation := positive → bool.

Fixpoint L_satisfies (v:Valuation) (l:Literal) : Prop :=
match l with

| pos x ⇒ if (v x) then True else False

| neg x ⇒ if (v x) then False else True

end.

Fixpoint C_satisfies (v:Valuation) (c:Clause) : Prop :=
match c with

| nil ⇒ False

| l :: c' ⇒ (L_satisfies v l) ∨ (C_satisfies v c')
end.

Fixpoint satisfies (v:Valuation) (c:CNF) : Prop :=
match c with

| nil ⇒ True

| cl :: c' ⇒ (C_satisfies v cl) ∧ (satisfies v c')
end.

We de�ne two important notions related to satisfaction: unsatis�ability (of a CNF)

and entailment (of a Clause from a CNF). Negation is written in Coq as ~ (where ~A is

an abbreviation of the type A → False of functions from A to the empty type).

Definition unsat (c:CNF) : Prop := ∀ v:Valuation, ~(satisfies v c).

Definition entails (c:CNF) (c':Clause) : Prop :=
∀ v:Valuation, satisfies v c → C_satisfies v c'.

We then prove the intuitive semantics of satisfaction: a clause is satis�ed if and

only if one of its literals is satis�ed, and a CNF is satis�ed if and only if all its clauses

are satis�ed. It is convenient to express these equivalences as implications, as the cor-

responding results are then more easily applicable in Coq. In particular, we avoid the

need for existential quanti�cation in lemma exist_C_satisfies below.

Lemma C_satisfies_exist : ∀ (v:Valuation) (cl:Clause),
C_satisfies v cl → ∃ l, In l cl ∧ L_satisfies v l.

Lemma exist_C_satisfies : ∀ (v:Valuation) (cl:Clause) (l:Literal),
In l cl → L_satisfies v l → C_satisfies v cl.

Lemma satisfies_for_all : ∀ (v:Valuation) (c:CNF), satisfies v c →
∀ (cl:Clause), In cl c → C_satisfies v cl.

Lemma for_all_satisfies : ∀ (v:Valuation) (c:CNF),
(∀ (cl:Clause), In cl c → C_satisfies v cl) → satisfies v c.

Other useful properties that we prove include: the empty clause is unsatis�able; a

subset of a satis�able CNF is satis�able; and a CNF that entails the empty clause is

unsatis�able.

Lemma C_unsat_empty : C_unsat nil.

Lemma unsat_subset : ∀ (c c': CNF), (∀ cl, In cl c → In cl c') → unsat c → unsat c'.

Lemma CNF_empty : ∀ (c:CNF), entails c nil → unsat c.
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3.2 The Boolean Pythagorean Triples problem in Coq

In this work, we use the binary representation of natural numbers as implemented by

the Coq type positive. We de�ne a (binary) coloring to be a function from positive to

the type bool of Booleans. In other words, the two colors we use are true and false; this

simpli�es our subsequent development, as these are also the truth values that we use

for propositional formulas. Indeed, the type coloring is equal (in Coq's type theory)

to the type Valuation.

Definition coloring := positive → bool.

We identify Pythagorean triples by means of a predicate over triples of natural

numbers, de�ned in the natural way.3 This de�nition uses the overloading feature of

arithmetical operators in Coq. The token %positive tells the Coq parser that the

preceding expression should be interpreted over the type positive.

Definition pythagorean (a b c:positive) := (a*a + b*b = c*c)%positive.

Given three natural numbers, we can always decide whether they form a Pythagorean

triple, since equality on the natural numbers is decidable. Decidability is a key ingre-

dient to our work: a term of type {A}+{B}, where A and B are propositions, proves that

one of A and B always holds, and that we can compute which one. A proof of this term is

an algorithm to decide which of A and B is true, and Coq's extraction mechanism allows

us to transform this proof into a functional program that implements this algorithm.

Lemma pythagorean_dec : ∀ (a b c:positive), {pythagorean a b c} + {~pythagorean a b c}.

Coq also allows an if-then-else syntax to de�ne functions by case analysis on de-

cidable predicates (motivated by the fact that we are typically interested in the case

where B is ~A). We use this feature later in this development.

The formula (1) ranges only over sorted Pythagorean triples. In order to show that

this is enough, we need some simple properties of Pythagorean triples that we prove

at this stage: if (a, b, c) is a Pythagorean triple, then a < c, b < c, a 6= b, and (b, a, c)
is also a Pythagorean triple.

Lemma pythagorean_lt_1 : ∀ a b c, pythagorean a b c → (a < c)%positive.

Lemma pythagorean_lt_2 : ∀ a b c, pythagorean a b c → (b < c)%positive.

Lemma pythagorean_neq : ∀ a b c, pythagorean a b c → a 6= b.

Lemma pythagorean_comm : ∀ a b c, pythagorean a b c → pythagorean b a c.

Finally, we formalize partition regularity (for k = 2) of the Pythagorean equa-

tion. We say that a coloring has the Pythagorean property (pythagorean_prop) if every

Pythagorean triple contains two elements of di�erent colors.

Definition pythagorean_prop (C:coloring) :=
∀ (a b c:positive), pythagorean a b c → (C a 6= C b) ∨ (C a 6= C c) ∨ (C b 6= C c).

3 Expressing this property as a predicate, rather than as a record type, simpli�es our devel-
opment.



Formally Verifying the Solution to the Boolean Pythagorean Triples Problem 11

3.3 The direct encoding

The next step is to construct a family of propositional formulas, parameterized on a

natural number n, of which formula (1) is the particular case with n = 7826. To obtain
these formulas, we �rst de�ne a function that takes a unary natural number (of type

nat) as argument and returns a list of all sorted Pythagorean triples with elements in

{1, . . . , n}3 by double iteration. (The usage of unary numbers as recursive arguments

simpli�es recursive de�nitions.)

We implement the double recursion by means of two auxiliary functions. Function

inner_cycle assumes n and b (the bound) to be �xed, and iterates through m. At each

step, it computes the integer square root sqrt of n*n+mN*mN (where mN is obtained by

converting m to a binary integer, using the mapping Pos.of_nat), checks whether these

three values form a Pythagorean triple (using the predicate pythagorean_dec), and adds

the triple (mN,n,sqrt) to the result if sqrt<b. The result is a list of all Pythagorean triples

where the �rst element is always less than or equal to m, the second element is always

n, and the third element is smaller than b. Since this function will be called with the

same values for n and m, the triples we obtain are always ordered ascendingly.

Definition target_list := list (list positive).

Fixpoint inner_cycle (n:positive) (m:nat) (b:positive) : target_list :=
match m with

| 0 ⇒ nil

| S m' ⇒ let mN := Pos.of_nat m in let sqrt := (Pos.sqrt (n*n+mN*mN)) in
if (sqrt<?b)%positive

then if (pythagorean_dec n mN sqrt)
then (mN:: n:: sqrt::nil) :: inner_cycle n m' b

else (inner_cycle n m' b)
else (inner_cycle n m' b)

end.

The second loop is implemented in function outer_cycle, which recurs on n, calling

inner_cycle with n as �rst and second argument and passing b unchanged. The result is

a list containing all Pythagorean triples where: the �rst two elements are smaller than

or equal to n, the third element is smaller than b, and the elements are in ascending

order. List concatenation is written inline in Coq as ++ .

Fixpoint outer_cycle (n:nat) (b:positive) : target_list :=
match n with

| 0 ⇒ nil

| S m ⇒ (inner_cycle (Pos.of_nat n) n b) ++ (outer_cycle m b)
end.

Finally, by instantiating b with n, we obtain the list of all ordered Pythagorean

triples whose elements are all smaller than n.

Definition BPT_list (n:nat) := outer_cycle n (Pos.of_nat n).

We could have de�ned BPT_list di�erently, for example using an accumulator. Our

implementation has the advantage of having a very simple recursive structure that

makes it very easy to reason about.

The next step is to transform the list of triples generated into propositional formu-

las, i.e. into elements of the type CNF.

We start by mapping BPT_list into a list of Clause by generating two Clauses from

each triple (one with positive literals, another with negative literals, obtained by map-
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ping the appropriate constructors of type Literal to each tuple). For n = 7826, this
list contains exactly the clauses in formula (1).

Fixpoint target_formula (t:target_list) : CNF :=
match t with

| nil ⇒ nil

| tuple::t' ⇒ (map pos tuple) :: (map neg tuple) :: (target_formula t')
end.

Definition BPT_formula (n:nat) := target_formula (BPT_list n).

This formula corresponds, in our formalization, to a generalization of formula (1),

where the bound 7825 has been replaced by n− 1. We now formally show that every

solution to the Boolean Pythagorean Triples problem is also a valuation that makes

all formulas in this family true. Since the types coloring and Valuation are actually

the same in our formalization, we can prove that each adequate coloring is a satisfy-

ing valuation. In other words, if C is a coloring of the natural numbers such that no

Pythagorean triple is monochromatic, then (BPT_formula n) is satis�able for each n.

Lemma BPT_formula_sat : ∀ (C:coloring), pythagorean_prop C →
∀ (n:nat), satisfies C (BPT_formula n).

The proof of this result is in several steps. First we prove that every triple in

BPT_list n contains two (distinct) elements a and b such that C a 6= C b. This is estab-

lished by induction over the de�nition of BPT_list n. From this property, a simple induc-

tion over the de�nition of target_formula establishes that every clause in BPT_formula n

is satis�ed by C.

The converse result also holds: if there is a coloring C that satis�es (BPT_formula n)

for every n, then C establishes partition regularity of the Pythagorean equation for

k = 2.

Lemma BPT_formula_sat' : ∀ (C:coloring), (∀ n, satisfies C (BPT_formula n)) →
pythagorean_prop C.

The proof of this result starts by showing that, if (a, b, c) is a Pythagorean triple, then

(BPT_formula n) contains either the two clauses (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc) or the
two clauses (xb∨xa∨xc) and (xb∨xa∨xc) for any n > c. (In the interest of legibility,

we write these clauses in mathematical notation, rather than the corresponding Coq

terms.)

In particular, if for some value of n the corresponding formula is unsatis�able,

then the Boolean Pythagorean Triples problem does not have a solution. Dually, if

this formula is satis�able, then there is a coloring of the natural numbers such that

all Pythagorean triples not containing numbers larger than n are monochromatic. The

predicate pyth_lim_prop is a restricted version of pythagorean_prop, ranging only over

numbers smaller than its �rst argument (in this case, TheN).

Parameter TheN : nat.

Definition The_CNF := BPT_formula TheN.

Theorem Pythagorean_Theorem : unsat The_CNF → ∀ (C:coloring), ~pythagorean_prop C.

Theorem Pythagorean_dual_Theorem : ∀ C, satisfies C The_CNF → pyth_lim_prop TheN C.

In order to generate formula (1), we need to instantiate TheN in The_CNF to 7826.
This can be done inside Coq (as long as it is invoked with adequate command line pa-

rameters to allow for the necessary resources); however, as we discuss below, later steps
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require applying the program extraction mechanism of Coq [24] to obtain a correct-by-

construction OCaml program that is run independently. Therefore, we instead declare

this variable as a Parameter. Technically, Parameters are axioms, which can introduce

inconsistencies in the formalization; however, since the type of TheN is nat (which is

known to be inhabited), this particular parameter declaration preserves soundness. On

the formalization level, we are quantifying universally over the natural numbers; on

the computational level, we are delegating the instantiation of TheN to the extraction

step.

As an experiment, we extracted The_CNF, set TheN, evaluated the corresponding

expression in OCaml, and veri�ed that we obtained formula (1). The representation is

not exactly the same as that used in [17]: on the one hand, the variable those authors

match to natural number n is xn+10,000, rather than xn; on the other hand, the indices

assigned to the individual clauses are di�erent. Otherwise, the two formulas coincide.

By instantiating TheN to 7825 instead, we obtain a smaller formula that is satis�able.

Our extracted program can in principle verify this, if given an adequate valuation as

argument. Such a valuation can however only be computed by existing SAT solvers for

a simpli�ed version of this formula (see [17]).

3.4 The simpli�cation process

The second step in the work described in [17] was simplifying formula (1) in order

to make the SAT solving process simpler. Their simpli�cation consisted of two steps:

blocked claused elimination and symmetry breaking.

Blocked clause elimination [19] is a powerful technique that detects clauses in a CNF

that can be removed, producing equisatis�able formulas. Preservation of satis�ability

is straightforward, since a valuation satisfying a CNF always satis�es all of its subsets;

and this property actually su�ces to show that the Boolean Pythagorean Problems

has no solution. However, [17] discusses a stronger result: there is actually a coloring of

the �rst 7824 natural numbers that includes no monochromatic Pythagorean triples.

Verifying this claim with our formalization requires showing that these simpli�cation

techniques also preserve unsatis�ability.

There is another reason for formalizing the simpli�cation process in more detail:

there is a simple mathematical argument that precisely describes what blocked clause

elimination is doing in this particular situation.4

Lemma 2 Let L be a set of Pythagorean triples and (a, b, c) ∈ L be such that a does

not occur in any other triple in L. If there is a binary coloring of the natural numbers

such that no element of L \ {(a, b, c)} is monochromatic, then there is also a binary

coloring such that no element of L is monochromatic.

Proof Let C be a binary coloring of the natural numbers such that no element of

L \ {(a, b, c)} is monochromatic. If (a, b, c) is not monochromatic under C, then C is

the desired coloring. Otherwise, let C′ be the coloring obtained from C by changing

the color of a. Since a does not occur in any other triple in L, C′ also does not make

any element of L \ {(a, b, c)} monochromatic, and by construction it does not make

(a, b, c) monochromatic; thus, C′ is the desired coloring.

4 This simple argument was communicated informally by Marijn Heule. To the best of our
knowledge, it has not been published elsewhere.
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Of course, the result still holds if b or c, rather than a, do not occur in any other

triple in L. Furthermore, it is not relevant that L is a list of triples: we can formalize

a more general property.

Lemma 3 Let t be a list of tuples of natural numbers, a be a number that does not

occur in any element of t, ` be a tuple containing a and at least one other element,

and C be a binary coloring such that no element of t is monochromatic under C. Then

there exists a binary coloring C′ such that t ∪ {`} is monochromatic under C′.

In our development, t is simply an element of the type target_list de�ned earlier. We

omit a mathematical proof of this lemma, as we now proceed to formalize it in Coq.

To write Lemma 3, we need to be able to count how many times a number occurs in

the elements of a list of tuples. Rather than de�ning a general counting predicate, we

inductively de�ne two relations no_occurrence and one_occurrence for the two particular

cases we need to consider. Having these specialized predicates, once again, simpli�es

our development.

Fixpoint no_occurrence (p:positive) (t:target_list) :=
match t with

| nil ⇒ True

| (l:: t' ) ⇒ ~In p l ∧ no_occurrence p t'

end.

Lemma no_occurrence_char : ∀ (p:positive) (t:target_list),
no_occurrence p t ↔ ∀ l, In l t → ~In p l.

Fixpoint one_occurrence (p:positive) (t:target_list) :=
match t with

| nil ⇒ False

| (l:: t' ) ⇒ (In p l ∧ no_occurrence p t') ∨ (~In p l ∧ one_occurrence p t')
end.

Lemma one_occurrence_find : ∀ (p:positive) (t:target_list), one_occurrence p t →
∃ (l:list positive), In p l ∧ In l t ∧ (∀ l', In l' t → l 6= l' → ~In p l').

The two characterization lemmas included restate the recursive de�nitions as global

properties of the list t: no_occurrence p t holds if and only if p does not occur in any

element of t, and one_occurrence p t holds if and only if p occurs in exactly one element

of t. From one_occurence_find we can also prove that, if the particular tuple containing

p is removed, then p does not occur in the result.

We de�ne another predicate colorful characterizing colorings that do not make

any element of a target_list monochromatic. We can now formally state Lemma 3 as

lemma colorful_add below.

Definition colorful (C:coloring) (t:target_list) := ∀ (tuple:list positive),
In tuple t → ∃ (a b:positive), In a tuple ∧ In b tuple ∧ C a 6= C b.

Lemma colorful_add : ∀ (t:target_list) (a:positive), no_occurrence a t →
∀ (C:coloring), colorful C t → ∀ (b:positive), a 6= b →
∀ (l:list positive), In a l → In b l → ∃ (C':coloring), colorful C' (l::t).

The proof of this lemma follows the informal proof above. We do case analysis on

the possible values of (C a) and (C b). If they are distinct, then C is the desired coloring;

otherwise, we �ip the value of (C a) in C' , and use the fact that a does not occur in any

other tuple to show that C' is colorful with respect to (l:: t).
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In order to simplify formula (1), we iterate this argument starting from the set

of all ordered Pythagorean triples in {1, . . . , 7825}3. This allows removal of 2136 of

the original 9472 triples. We formalize this in a robust way: given a list of numbers

and a target_list, we iteratively consider each number in turn. If it occurs in exactly

one tuple in the list, we remove that tuple and continue; otherwise, we leave the list

unchanged and continue. This guarantees that Lemma 3 always applies to the �nal

result, when we start from a list of Pythagorean triples. Recall that the if-then-else

notation in Coq allows us to de�ne functions by analysing which branch of a decidable

disjunction holds. We use this notation in these de�nitions, making choices based on

whether a list l contains an element p (In_dec Pos.eq_dec p l, where Pos.eq_dec is a term

used for deciding equality of elements of type positive) or whether one_occurrence p t

holds (which is decidable according to one_occurrence_dec).

Fixpoint remove_number (p:positive) (t:target_list) :=
match t with

| nil ⇒ nil

| l:: t' ⇒ if (In_dec Pos.eq_dec p l) then remove_number p t'

else l:: remove_number p t'

end.

Fixpoint simplify (t:target_list) (l:list positive) :=
match l with

| nil ⇒ t

| p:: l' ⇒ if (one_occurrence_dec p t) then simplify (remove_number p t) l'
else simplify t l'

end.

Definition ok_list (t:target_list) := ∀ (tuple:list positive),
In tuple t → ∃ a b c, tuple = (a::b:: c:: nil) ∧ pythagorean a b c.

Lemma colorful_simplify : ∀ (t:target_list), ok_list t →
∀ (l:list positive) (C:coloring), colorful C (simplify t l) →
∃ (C' : coloring), colorful C' t.

Lemma colorful_simplify is proved by induction using lemma colorful_add.

Finally, we apply this construction to the family of formulas BPT_formula con-

structed earlier, obtaining a family of simpli�ed formulas depending not only on the

original parameter n, but also on the list of numbers to be used for removal of tuples.

Definition simplified_BPT_formula (n:nat) (l:list positive) :=
target_formula (simplify (BPT_list n) l).

Parameter The_List : list positive.

Definition The_Simple_CNF := simplified_BPT_formula TheN The_List.

As before, adding The_List as a Parameter does not compromise the soundness of

our development, since list positive is trivially inhabited. There are two reasons for

including it, rather than de�ning the iteration procedure from [17]: �rst, it simpli�es the

formalization, eliminating the need to formalize that procedure and prove its soundness;

second, it signi�cantly reduces computation time, since we do not need to analyze the

formula in order to �nd out which element to remove next. The actual instance of

The_List is later obtained from the trace of the original simpli�cation proof in [17].

Specializing the results on the simpli�cation procedure to these de�nitions, we

prove that simpli�cation preserves unsatis�ability. The converse implication is straight-

forward, since every clause in the simpli�ed formula is present in the original one. Using
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this result, we can state and prove variants of Pythagorean_Theorem and Pythagorean_dual_Theorem

for this simpli�ed formula. The latter theorem is now existentially quanti�ed, as we

have no guarantee that the valuation satisfying The_Simple_CNF coincides with the ad-

equate coloring of the relevant subset of natural numbers.

Theorem simplification_ok : unsat The_CNF ↔ unsat The_Simple_CNF.

Theorem Pythagorean_Theorem' :
unsat The_Simple_CNF → ∀ (C:coloring), ~pythagorean_prop C.

Theorem Pythagorean_dual_Theorem' : ∀ C, satisfies C The_Simple_CNF →
∃ C' , pyth_lim_prop TheN C'.

The second step in the simpli�cation phase in [17] was assigning a particular color

to a single number. This is very simple to formalize in Coq. We �rst show that we can

�x the color of a particular number k � if a binary coloring of the natural numbers

exists that does not make any Pythagorean triple monochromatic, then there must be

one that assigns the chosen color to k: either the original one, or the one obtained by

�ipping the color assigned to every number. Using this result, we show that adding any

(single) unit clause to the simpli�ed formula obtained above does not break any of the

properties proved earlier.

Lemma fix_one_color : ∀ (C:coloring), pythagorean_prop C →
∀ (n:positive) (b:bool), ∃ C' , pythagorean_prop C' ∧ C' n = b.

Parameter TheBreak : positive.

Definition The_Asymmetric_CNF : CNF :=
(pos TheBreak :: nil) :: simplified_BPT_formula TheN The_List.

Theorem symbreak_ok : unsat The_CNF ↔ unsat The_Asymmetric_CNF.

Theorem Pythagorean_Theorem'' :
unsat The_Asymmetric_CNF → ∀ (C:coloring), ~pythagorean_prop C.

Theorem Pythagorean_dual_Theorem'' : ∀ C, satisfies C The_Asymmetric_CNF →
∃ C' , pyth_lim_prop TheN C'.

To compute this formula, we again use program extraction to obtain a correct-by-

construction OCaml program. As mentioned earlier, we obtain the list of numbers that

guide the triple elimination process from the trace of the original simpli�cation proof

in [17], using an untrusted program. (Recall that the fact that this list is correct is

immaterial to the soundness of the �nal result � although we want it to be correct in

order to be able to reuse subsequent results from [17].) The value of TheBreak also needs

to be instantiated to 2520.5 The formula generated by our certi�ed program and the

CNF produced in [17] di�er only in the identi�ers assigned to each clause. Generating

this formula takes approximately 35 minutes, with a peak memory consumption of

15.8 MB. The high computation time is due to the fact that the generation algorithm

is optimized for the correctness proof, rather than for execution: these 35 minutes are

dwarfed by the time required by later computation steps.

By instantiating the value of TheN to 7825 and simplifying the resulting satis�able

formula, we obtain a formula that is equivalent to the satis�able CNF in [17]. To

verify that this CNF is satis�able using our development, we need two ingredients: a

5 This value was originally chosen because 2520 is the number that occurs most often in the
triples after simpli�cation, hence the potential for simpli�cation was highest.
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procedure that, given a valuation and a CNF, decides whether the valuation satis�es

the CNF, and a valuation that satis�es that CNF.

For the �rst point, we prove the following lemma in Coq, stating that it is decidable

whether a valuation satis�es a CNF.

Lemma satisfies_dec : ∀ v c, {satisfies v c} + {~satisfies v c}.

Applying program extraction yields a program that implements the straightforward

algorithm for checking satisfaction of a CNF: for each clause, check its literals in order

until one is satis�ed by the valuation, and then move to the next clause. If some clause

does not contain any satis�ed literal, immediately return false, otherwise return true

when there are no more clauses.

For the second point, we read the valuation found in [17] using untrusted OCaml

code and pass it to the OCaml function satisfies_dec extracted from the formalization.

The call returns with Left after less than 1 second, indicating that the valuation indeed

satis�es the simpli�ed CNF for n = 7825. Soundness of program extraction and lemma

Pythagorean_dual_Theorem'' imply that there is a coloring of the natural numbers such

that no Pythagorean triple containing only numbers less than or equal to 7824 is

monochromatic.

4 Formalizing Cube-and-Conquer

To show that formula (1) derived above is unsatis�able for n = 7826, the authors

of [17] resorted to the cube-and-conquer methodology. In this section, we specify this

methodology in Coq using our types of propositions, prove its soundness, and extract

certi�ed code that, given a propositional formula ϕ and a list of cubes, generates all

the formulas that must be proved unsatis�able to establish unsatis�ability of ϕ. This

corresponds to the arrows to and from the boxed area in Figure 1.

We de�ne a type Cube as a list of literals. Note that, while Cube and Clause are

de�ned as the same type, literals in a cube are meant to be interpreted conjunctively.

Thus, to add a cube to a CNF, we add all of its elements as individual clauses to the

CNF.

Definition Cube := list Literal.

Fixpoint Cubed_CNF (F:CNF) (C:Cube) : CNF :=
match C with

| nil ⇒ F

| l :: c ⇒ (l :: nil) :: (Cubed_CNF F c)
end.

In order to apply the cube-and-conquer methodology, we need to have a set of

cubes that is complete, i.e. any valuation satis�es at least one cube. This condition is

equivalent to stating that the disjunction of the negations of all cubes is unsatis�able.

We construct this formula directly, by negating all the literals in each Cube and adding

each resulting Clause to an empty CNF. The function negate implements negation on

literals.

Definition negate (l:Literal) : Literal :=
match l with

| pos n ⇒ neg n

| neg n ⇒ pos n

end.
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Definition neg_cube (C:Cube) : Clause := map negate C.

Definition noCube (C:list Cube) : CNF := map neg_cube C.

Soundness of cube-and-conquer is then very simple to state and prove: given a list

of cubes and a formula Formula, if all the CNFs generated by the above functions are

unsatis�able, then so is Formula.

Lemma CubeAndConquer_lemma : ∀ (Formula:CNF) (Cubes:list Cube),
(∀ (c:Cube), In c Cubes → unsat (Cubed_CNF Formula c)) →
unsat (noCube Cubes) → unsat Formula.

Next, we can apply cube-and-conquer to The_Asymmetric_CNF and generate the for-

mulas whose unsatis�ability we need to check. Again we extract the relevant functions

(Cubed_CNF and noCube) to OCaml, relying on the soundness of program extraction.

We build the list of cubes in OCaml using untrusted code to process the �les

generated in [17]. The resulting list is passed as argument to noCube, and we check that

the result coincides with the formula one used in the proof of unsatis�ability in [17] by

using another function extracted from our development � namely, that from the lemma

stating that equality of CNFs is decidable.6 This step required 88.67s of CPU time and a

peak memory consumption of 3.16 GB. Using exactly the same code to build the list of

cubes, we can also reconstruct the one million formulas described in [17] independently

(by iterating all cubes from the list and calling Cubed_CNF).

The only part in this process that is not formally veri�ed is the chaining of argu-

ments at the meta-level: we have reduced the problem of establishing unsatis�ability

of The_Asymmetric_Formula to that of establishing unsatis�ability of 1,000,001 formulas,

invoking lemma CubeAndConquer_lemma. However, the premise of CubeAndConquer_lemma

quanti�es over all cubes in the list. We need to trust that our implementation does test

all these cubes, since we do not iterate over the list using extracted code. Although in

principle this could be done formally, the time requirements make it unpractical: as we

discuss in the next section, verifying all the unsatis�ability proofs is time-consuming

and is only feasible if done in parallel. Still, each parallel computation starts by inde-

pendently generating The_Asymmetric_Formula and then using it to generate a particular

Cubed_CNF, which is then checked to be unsatis�able.

5 Formalizing Unsatis�ability Proofs

The results in the previous section allow us to reduce the veri�cation of non-existence

of a solution to the Boolean Pythagorean Triples problem to that of checking unsat-

is�ability of 1,000,001 independent propositional formulas, originally established by

an untrusted SAT solver that produced traces of its proofs. In this section, we show

how we can rewrite these traces into lists of proof witnesses that allow us to repro-

duce the SAT solver's reasoning process in a certi�ed checker formalized in Coq. This

corresponds to the dotted arrows in Figure 1.

All the formal results on unsatis�ability so far were established using Coq. Di�er-

ently, the results in this section rely also on the soundness of Coq's program extraction

feature [24] (similarly to the veri�cation of satis�ability of formula (1) with n = 7825
at the end of Section 3.4). Currently, this dependency seems impossible to overcome, as

6 This is a sanity check, but it is nice that we can perform it using certi�ed code.
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the speed-up that is obtained by program extraction is essential to make these checks

feasible. Hopefully, the CertiCoq project [1] will soon produce a certi�ed compiler for

Coq, which will increase the trustworthiness of program extraction.

5.1 The veri�cation algorithm

All the unsatis�ability proofs we rely on can be veri�ed using only reverse unit propa-

gation. In order to check that this process is correct, we need to implement this process

e�ciently. Following ideas that are standard in theorem proving [3,11,15,23,30,31], we

use an oracle that gives us additional information we can use to modify the algorithm

behind reverse unit propagation, thereby improving its computational complexity. (Es-

sentially, we provide references to the clauses that are used in this algorithm, in order

to bypass the expensive process of �nding them; we explain this in detail in � 5.3.)

The process of verifying that F |= B by reverse unit propagation consists of it-

erating unit propagation on F ∧ ¬B until the empty clause is derived. An equivalent

dual formulation relies on keeping a set of literals D corresponding to the negated unit

clauses derived in this process, initally starting with the literals in B. Removing these

literals from a clause C corresponds to performing unit propagation using the clauses

from D as unit clauses. If C \D is a unit clause, i.e., a single literal `, we add ¯̀ to D. If

repeated application of set di�erence and addition of negated unit clauses to D results

in C \ D = � for some C ∈ F , we have shown that F |= B. Obviously, we reach �
using this approach if, and only if, � ∈ F ↓U , due to con�uence of →U .

This dual formulation allows for e�ciently checking entailment of learned clauses

when the sequence of clauses used is known. Assume that we are given B together with

a set {C1, . . . , Cn}〉 of the clauses we should use at each step. Then we can compute the

�nite sequence D1, . . . , Dn where D1 = ¬B and Di+1 = Di ∪ (Ci \Di) for 1 < i < n.

Lemma 4 (Soundness) If Ci \ Di is a unit clause for all 1 ≤ i < n and Dn = �,

then F |= B.

We omit the proof of this lemma, as it is formalized in Coq (lemma propagate_true on

page 23).

Verifying unsatis�ability of a CNF now becomes an iterative process, where we start

with an input CNF and iteratively add clauses justi�ed by reverse unit propagation as

suggested by an oracle. In order to be e�cient, we keep a working set of clauses, which

is initially empty; the oracle also allows us to add any clause from the input CNF to

the working set and to delete clauses that are no longer needed.

5.2 Data structures for implementation

The algorithm above intensively repeats the same operations � computing set di�er-

ences of two clauses and �nding a clause in a CNF. (Observe that the clauses Ci in

the premise of Lemma 4 must be in F : if they are provided by an untrusted oracle,

then we need to be able to check that they indeed occur in F .) In order to implement

it e�ciently, we need to be able to execute these operations with as few resources as

possible. To this end, we implement alternative representations of clauses and CNFs,

which are not visible to the �nal user.
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The �rst type we de�ne is a new type TreeCNF, which implements CNFs as binary

search trees of Clauses. We use this type to speed up the process of looking up clauses

in the original CNF (which is extracted to a linked list) from linear to logarithmic

complexity in the size of the CNF.

Definition TreeCNF := BinaryTree Clause.

The type TreeCNF uses the dependent type BinaryTree (described in [8]), which

implements generic binary trees over any type that is equipped with a comparison

operator. In particular, this type includes operations that work as expected if their

arguments are binary search trees.

As we explain below, we use this datatype to store the input CNF, which we need

to search intensively during veri�cation. Transforming a CNF into a TreeCNF is done by

function make_TCNF shown below: it iteratively adds each Clause to an initially empty

TreeCNF using TCNF_add, which specializes the general function for adequately adding

an element to a binary search tree by including information about how to compare

two Clauses. Among other properties of this function, we show formally that it always

returns a valid binary search tree. Soundness of program extraction guarantees that

this property holds during execution of the extracted code.

Fixpoint make_TCNF (c:CNF) : TreeCNF :=
match c with

| nil ⇒ nought

| cl :: c' ⇒ TCNF_add cl (make_TCNF c')
end.

Lemma make_TCNF_wf : ∀ c, TCNF_wf (make_TCNF c).

Function make_TCNF does not attempt to balance the search tree constructed. In practice,

the fact that the tree is not balanced is not a major issue, since the order of the clauses

in the CNFs we consider yields trees with an acceptable depth.7

Finally, we de�ne the reverse mapping from TreeCNF to CNF, which does a pre-order

traversal of the tree and adds each element visited to an initially empty list of clauses.

This function is declared as a coercion,8 so that all notions previously de�ned for CNFs

(e.g. unsatis�ability) automatically apply to TreeCNFs.

Fixpoint TCNF_to_CNF (c:TreeCNF) : CNF :=
match c with

| nought ⇒ nil

| node cl c1 c2 ⇒ (cl :: TCNF_to_CNF c1) ++ TCNF_to_CNF c2

end.

Coercion TCNF_to_CNF : TreeCNF � CNF.

In order to compute set di�erences between clauses, we provide a similar alternative

type for these objects.

Definition SetClause := BinaryTree Literal.

7 Practical measurements show that these depths are at most approximately 150, for CNFs
containing just under 15,000 clauses. Although this is much higher than for a perfectly balanced
tree, it su�ces for practical purposes, and allows us to avoid formalizing a balancing algorithm.
See [8] for a similar discussion.
8 Declaring a function of type A→ B as a coercion means that Coq applies it automati-

cally whenever it expects a term of type B and one of type A is given. In order to guarantee
termination, no composition of coercions may map a type to itself.
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Again, we can build a SetClause from any Clause by adding its elements to an empty

tree, one by one, using the appropriate operation on binary trees, so that the result

is a binary search tree. The converse conversion, which again implements a pre-order

traversal of the tree, is declared as a coercion, so that all notions we de�ne for Clauses

can again be transparently applied to SetClauses.

Fixpoint Clause_to_SetClause (cl:Clause) : SetClause :=
match cl with

| nil ⇒ nought

| l :: cl' ⇒ SC_add l (Clause_to_SetClause cl')
end.

Lemma C_to_SC_wf : ∀ (cl:Clause), SC_wf (Clause_to_SetClause cl).

Fixpoint SetClause_to_Clause (cl:SetClause) : Clause :=
match cl with

| nought ⇒ nil

| node l cl' cl'' ⇒ l :: (SetClause_to_Clause cl') ++ (SetClause_to_Clause cl'')
end.

Coercion SetClause_to_Clause : SetClause � Clause.

Finally, we provide yet another implementation of CNFs, where we are allowed to

address clauses by a pre-de�ned index.

Definition ICNF := Map {cl:SetClause | SC_wf cl}.

The type ICNF (for Indexed CNF) implements CNFs as Patricia trees of SetClauses

that are binary search trees. Each element in the tree is paired with a natural num-

ber (the index) whose binary representation determines the path from the root to that

element. The type Map is de�ned in Coq's standard library, while condition SC_wf cl ab-

breviates the property that cl respects the well-formedness condition of binary search

trees (see [8]). Note that these proofs of well-formedness carry no computational mean-

ing, and are ignored by program extraction (see Section 5).

The type ICNF is used to store the working set used during veri�cation. Unlike the

type BinaryTree, the type Map supports e�cient deletion, which is instrumental to keep

the working set small. Furthermore, accessing a clause by index is faster, since we avoid

comparisons with the clauses at each node on the path we follow.

We can convert any ICNF to a CNF by ignoring the indices assigned to the clauses,

converting each SetClause to a Clause, and adding them one by one to an empty tree.

The result is a well-formed TreeCNF. We omit the de�nition of this function ICNF_to_CNF,

as it requires understanding the underlying type Map; it is again de�ned as a coercion.

5.3 The formalized checker

We recall the possible actions we need in order to verify a proof of unsatis�ability:

delete a clause from the working set; add a clause from the input CNF to the working

set; and add a clause to the working set that is entailed by it, and such that this

entailment can be veri�ed by reverse unit propagation. We formalize these actions as

a type Action with three constructors, corresponding to the three possible operations.

Inductive Action : Type :=
| D : list ad → Action

| O : ad → Clause → Action

| R : ad → Clause → list ad → Action.
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Since we are using OCaml as the extraction language and the proofs we want to

check are typically too large to �t in memory, we need to make the oracle lazy. We

do this by de�ning a Coq type of lazy lists, de�ned in the same way as lists (with

constructors lnil and lcons), but where the second argument of lcons is guarded by an

identity function. On extraction, these functions are mapped to the adequate OCaml

constructs implementing laziness.9

Definition LazyT := id (A:=Type).

Inductive lazy_list (A:Type) :=
lnil : lazy_list A

| lcons : A → LazyT (lazy_list A) → lazy_list A.

Definition Oracle := LazyT (lazy_list Action).

The core of our development is the propagation step, which is implemented as a

function propagate. We �rst describe this function informally. This function takes three

arguments: the working set −→c , a clause c (initially, the clause that we want to add),

and a list
−→
i of indices of clauses. We iteratively go through the list of indices, returning

false if this list �nishes before we obtained the empty clause. We extract the clause

with the current index (i0) from −→c , which we denote −→c (i0), and compute the set

di�erence between it and the argument clause. If this results in the empty clause, we

return true; otherwise, we check that there is only one element ` in this set (returning

false otherwise) and recur after extending the current clause with ¯̀.

Algorithm 1 Function propagate

1: function propagate(−→c , c,
−→
i )

2: if
−→
i = ∅ then return false

3: else if −→c (i0) \ c = ∅ then return true

4: else if −→c (i0) \ c = {`} then return propagate(−→c , {¯̀} ∪ c,
−→
i )

5: else return false

6: end if
7: end function

For completeness we include the corresponding Coq de�nition, implemented as

function propagate. Clause c is represented as a set (i.e. with type SetClause). Extracting

the clause with the current index from cs is done by function get_ICNF, and computing

set di�erences by SC_diff. All tests are done by elimination over applications of lemma

SetClause_eq_node_nought, which states that we can decide whether a binary tree is

empty or not, and in the latter case returns the element in the root node and its two

descendants: the �rst test checks whether the set di�erence computed is the empty

clause; in the negative case we obtain the element in the root (l) and the two subtrees

(c' and c' ' ; there is a spurious proof term that is ignored). If either c' or c' ' di�ers

from the empty tree we return false (line 5 of the above algorithm), otherwise the

function recurs as in line 4 of the above algorithm.

Fixpoint propagate (cs: ICNF) (c: SetClause) (is:list ad) : bool :=

9 In principle, this approach could break soundness of extraction; we are using the fact
that these constructs behave as identities. Targeting a lazy language like Haskell would not
require this workaround; however, our experiments showed that using OCaml instead of Haskell
reduced computation times to around one-fourth.
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match is with

| nil ⇒ false

| (i:: is) ⇒ match SetClause_eq_node_nought (SC_diff (get_ICNF cs i) c) with
| inright _ ⇒ true

| inleft H ⇒ let (l,Hl) := H in let (c',Hc) := Hl in

match SetClause_eq_node_nought c' with

| inleft _ ⇒ false

| inright _ ⇒ let (c'',_) := Hc in

match SetClause_eq_node_nought c'' with

| inleft _ ⇒ false

| inright _ ⇒ propagate cs (SC_add (negate l) c) is
end end end end.

For convenience, soundness of this function is split into several lemmas. If the inner

set di�erence returns �, then the argument clause is entailed by the working set; if it

returns a singleton, then we can show that the working set entails the argument clause

by checking that it entails the extended clause we construct. Iterating the latter result

allows us to conclude that, if (propagate cs c is) returns true, then cs entails c. These

lemmas are all stated in terms of TreeCNFs, as this is the format in which we will store

the input CNF. (Technically, we add the true clause x1 ∨ x1 to cs: this is necessary

because this clause is returned if we search for an index that does not correspond to

a clause in the working set. This default case is needed because Coq does not allow

functions to be partially de�ned.)

Lemma propagate_empty : ∀ (cs:TreeCNF) (c c':SetClause),
SC_diff c c' = nought → entails (TCNF_add c cs) c'.

Lemma propagate_singleton : ∀ (cs:TreeCNF) (c c':SetClause), ∀ (l:Literal),
entails cs (SetClause_to_Clause (SC_add (negate l) c')) →
SC_diff c c' = (node l nought nought) → entails (TCNF_add c cs) c'.

Lemma propagate_true : ∀ (cs:TreeCNF) (c:SetClause),
entails (TreeCNF_add true_SC cs) c → entails cs c.

Lemma propagate_true formalizes the informal Lemma 4 above.

Using propagate, we now de�ne a function refute that processes an arbitrary oracle.

Again we begin by presenting the underlying algorithm informally. Recall that an oracle

is a list of actions; we denote by hd and tl the usual head and tail functions on lists.

Starting with the empty working set (a set of clauses accessible by index), this

function sequentially applies each action indicated by the oracle; if the oracle ends, the

result is false (the empty clause was not derived). In the case of a deletion, all clauses

with indices in the given set are removed from the working set. Action O is processed

by �rst checking that the clause given occurs in the original CNF; if this is not the

case, the refutation fails. New clauses are added by checking that they follow by reverse

unit propagation using procedure propagate; if the new clause is the empty clause, then

refute returns true, otherwise the new clause is added and the algorithm recurs.

The Coq de�nition of refute follows this structure closely, but is complicated by the

need for some explicit type convertions and to ensure laziness. Function refute receives

an argument of type CNF, converts it to a TreeCNF, initializes the working set, and calls

the auxiliary function refute_work. This function in turn does case analysis on each

action to perform the corresponding operation on the working set. The function force,

de�ned as the identity, is used to force evaluation of its argument in the extracted lazy

implementation. The proof term make_TCNF_wf c, stating that the TreeCNF constructed

initially is a well-formed binary search tree, is necessary to prove its soundness, but it
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Algorithm 2 Function refute

1: function refute(c,−→o )
2: return refute_work(∅, c,−→o )
3: end function
4:
5: function refute_work(w, c,−→o )
6: if −→o = ∅ then return false

7: else if hd(−→o ) = (D
−→
i ) then

8: return refute_work(w \ {ϕi | i ∈
−→
i }, c, tl(−→o ))

9: else if hd(−→o ) = (O i cl) then
10: if cl ∈ c then return refute_work(w ∪ {i 7→ cl}, c, tl(−→o ))
11: else return false

12: end if
13: else if hd(−→o ) = (R i ∅ −→i ) then return propagate(w, ∅,−→i )
14: else if hd(−→o ) = (R i cl

−→
i ) then

15: return propagate(w, cl,
−→
i )∧refute_work(w ∪ {i 7→ cl}, c, tl(−→o ))

16: end if
17: end function

is removed by program extraction and therefore never constructed. For readibility, we

abbreviate some other unextracted proof terms in the code below to an underscore.

Definition refute (c:CNF) (o:Oracle) : Answer :=
refute_work empty_ICNF (make_TCNF c) (make_TCNF_wf c) o.

Function refute_work (w:ICNF) (c:TreeCNF) (Hc:TCNF_wf c) (o:Oracle)
{measure Oracle_size o} : Answer :=
match (force o) with
| lnil ⇒ false

| lcons (D nil) o' ⇒ refute_work w c Hc o'

| lcons (D (i:: is)) o' ⇒ refute_work (del_ICNF i w) c Hc (lazy (lcons (D is) o'))
| lcons (O i cl) o' ⇒ if (BT_in_dec _ _ _ __ cl c Hc)

then (refute_work (add_ICNF i cl _ w) c Hc o') else false

| lcons (R i nil is) o' ⇒ propagate w nought is

| lcons (R i cl is) o' ⇒ andb (propagate w cl is)
(refute_work (add_ICNF i cl _ w) c Hc o')

end.

Soundness of refute_work and refute is established in the following result: if refute c o

returns true, then c is unsatis�able. Since o is universally quanti�ed, the result holds

even if the oracle gives incorrect data. (Namely, because either the incorrect data can

be ignored, or refute outputs false.)

Theorem refute_correct : ∀ (c:CNF) (o:Oracle), refute c o = true → unsat c.

5.4 Verifying the Boolean Pythagorean Triples conjecture

To �nish our proof, we need to verify that the 1,000,001 formulas generated at the end

of the previous section (the one million cubes and the negation of their disjunction)

are unsatis�able. This requires preparing 1,000,001 oracles in the appropriate format,

which are then given as argument to the code extracted from the formalization (function

refute above) by means of a handwritten interface. In order to produce the oracles,

we reconstituted the original unsatis�ability proofs from [17] using the incremental

SAT solver iGlucose within 508 CPU days and ran it through the drat-trim version
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Fig. 2 Left: Cactus plot comparing the runtime of the incremental SAT solver (iGlucose),
an uncerti�ed checker (drat-trim), the pre-processing of the proofs with the drat-trim version
from [9] (pre-process), and the certi�ed extracted checker (Coq-checker) on 20,000 cubes (2%).
Right: Scatter plot comparing the runtime of an uncerti�ed checker (drat-trim) and of the
certi�ed extracted checker including pre-processing (pre-process+Coq-checker).
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Fig. 3 Scatter plots comparing the runtime of an uncerti�ed C implementation using the same
oracle information (C-checker) and of the extracted certi�ed checker (Coq-checker) without
(left) and with (right) pre-processing on 20,000 cubes (2%).

from [9], which required an additional 871 CPU days. The result of this process is an

oracle in the format described earlier. Thus, the total untrusted generation of proofs

took 1,379 CPU days. Verifying the 1,000,001 individual proofs with the certi�ed

extracted checker took 2,608 CPU days, i.e., approximately twice as long.

To make an empirical evaluation of the performance of the extracted certi�ed

checker and compare it to uncerti�ed alternatives, we instrumented the extracted code

to capture detailed timing data for the individual cubes and reran on 20,000 cubes, i.e.,

on 2% of the total cubes. Figure 2 includes on its left a cactus plots showing that the

runtimes of the SAT solver, of drat-trim as an uncerti�ed checker, of the pre-processing

with the drat-trim version from [9], and the extracted certi�ed checker lie within one

order of magnitude from each.10 On the right, a scatter plot compares the runtime

of drat-trim as an uncerti�ed checker with the tool chain consisting of the modi�ed

drat-trim and the extracted certi�ed checker, showing that the runtimes for virtually

all cubes are within one order of magnitude, and that for the computationally more

demanding cubes the overhead is only around 100%.

To assess the overhead introduced by certi�cation, we ran an uncerti�ed checker

implemented in C on the same oracle data generated by the modi�ed drat-trim version

10 The modi�ed version of drat-trim from [9] is slightly slower than the original, due to the
need to generate more detailed proofs.
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for the same 20,000 cubes. Figure 3 compares the runtimes of these two implemen-

tations of the same algorithm, showing on the left that the uncerti�ed C checker is

approximately two orders of magnitude faster. This comparison is meaningless in the

big picture, though, as neither can be run without the pre-processing step generating

the oracle data. When including that step, the scatter plot on the right shows that the

overall overhead is strictly less than one order of magnitude. Note that the overhead

introduced appears to be independent of how computationally demanding the cubes

are. We veri�ed that the reason for this is an (empirically) linear relationship between

the sizes of the oracles and the runtimes of both the uncerti�ed and the extracted

certi�ed checker; this relationship can also be deduced by analysing Algorithm 5.3.

The extracted checker is nearly pure. Aside from lazy lists, which were discussed

earlier, we also extracted the Coq type positive, used for variable and clause identi�ers,

to OCaml's native integers, and the comparator function on this type to a straight-

forward implementation of comparison of two integers. This customary optimization

reduces not only the memory footprint of the veri�ed checker, but also its runtime (as

lookups in ICNFs require comparison of keys). It is routine to check that these functions

are correct.

As such, we claim that our formalization provides a more trustworthy proof of

the Boolean Pythagorean Triples problem. Besides a formal proof of the soundness

of the encoding and of the cube-and-conquer methodology, all propositional formulas

are generated by trusted code and directly shown unsatis�able by a certi�ed checker,

without the need to store them in the �le system and combine them through ad-

hoc scripts. Our dependence on the soundness of Coq is limited, since we only use a

restricted subset of the language that has widely been considered correct and stable for

over a decade. By contrast, the authors of [17] rely on the soundness of drat-trim for

checking unsatis�ability of propositional formulas. Although drat-trim consists of only

around 1,000 lines of C-code, its correctness is by no means given: both [7] and [21]

report instances of wrong proofs of unsatis�ability that were accepted by drat-trim,

while [27] and [28] raise more general concerns regarding its semantics.

Chronologically, this work was done in the reverse order to the presentation. This

means that the veri�cation of the unsatis�ability proofs described in [17] was done

starting from the CNFs provided by those authors, rather than from the ones generated

by our encoding. As such, we performed an additional veri�cation step, checking that

the CNFs we generate are equivalent (as sets of sets) to those used in the validation of

the unsatis�ability proofs. This step was also done by correct-by-construction extracted

code, whose soundness was proved in Coq; we omit its description, as any independent

veri�cation of our results can follow the order we described.

The Coq development consists of 85 de�nitions and 121 lemmas/theorems, amount-

ing to 1,946 lines with a total �le size of 55.6 kB. The relative sizes of each part of the

development is given in Table 1. This development reuses the implementation of Patri-

cia trees from the Coq standard library, as well as the implementation of binary trees

from the development described in [8]. Most proofs follow the mathematical proofs or

informal arguments described in previous work [5,17,18], and did not pose signi�cant

challenges. Soundness of the new algorithm for e�ciently verifying reverse unit propa-

gation, described in Section 5, was also simple to prove in Coq. This is not surprising,

since most results describe properties of propositional logic; the complexity of SAT

solving derives mostly from the complexity of the algorithms required to solve the SAT

problem e�ciently, which is an aspect orthogonal to our development.

The whole formalization is available at http://imada.sdu.dk/~petersk/bpt/.
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topic de�nitions lemmas lines size (kB)

propositional logic and CNFs (� 3.1) 21 29 340 9.89
formalizing the BPT problem (� 3.2�3.4) 26 42 648 18.49
cube-and-conquer (� 4) 4 4 73 1.75
unsatis�ability checker (� 5) 32 42 855 25.56

Table 1 Size of the Coq formalization

6 Conclusions

We described a formal veri�cation of the proof of inexistence of a binary coloring of the

natural numbers such that no Pythagorean triple is monochromatic, thus con�rming

partition regularity for k = 2 of the Pythagorean equation, established by Heule et

al. in 2016 [17].

Our formalization consists of: stating the problem in Coq; de�ning the propositional

encoding from [5] and proving that it is correct; reproducing the mathematical argu-

ment behind the simpli�cation of the formula thus obtained and proving its soundness;

formalizing the methodology of cube-and-conquer in Coq and proving its correctness;

and formalizing the process of verifying unsatis�ability proofs for propositional formu-

las based on reverse unit propagation.

From our development we extract correct-by-construction OCaml code that takes

input from the development in [17] and veri�es that the proof constructed by those

authors indeed establishes the inexistence of a solution to the Boolean Pythagorean

Triples problem. While theoretically the whole veri�cation could be done inside Coq,

the time and memory requirements for such a task make it unfeasible. Using program

extraction allows us to complete the task in around 13 CPU years, with very little

compromise on the level of con�dence guaranteed by the theorem prover.

While we focused exclusively on the Boolean Pythagorean Triples problem, our for-

malization includes two general-purpose components that can be used independently:

the framework for dividing a propositional formula into cubes (given the list of cubes

generated independently); and the unsatis�ability checker, which can be used to verify

unsatis�ability of other propositional formulas. As a consequence, we provide a pow-

erful framework in which we can, in principle, rigorously verify proofs of other open

conjectures in Mathematics that are obtained via an encoding into SAT. Future such

applications will only need to formalize the problem and its propositional encoding,

and can afterwards apply our tools to verify results produced by SAT solvers running

on the generated formulas.
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