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Abstract. Multi-context systems (MCSs) are an important framework
for heterogeneous combinations of systems within the Semantic Web. In
this paper, we propose generic constructions to achieve specific forms of
interaction in a principled way, and systematize some useful techniques to
work with ontologies within an MCS. All these mechanisms are presented
in the form of general-purpose design patterns. Their study also suggests
new ways in which this framework can be further extended.

1 Introduction

In parallel with the proliferation of different reasoning systems, larger and larger
bodies of knowledge are being built in several fields, each with its expressiveness
and efficiency, that can benefit enormously from adequate frameworks allowing
to reason with information coming from different sources. Integrating several
knowledge sources in a modular and flexible way is nowadays a growing need,
and there has been significant growth in the research and development of this
kind of heterogenous systems. As such, best practices should be devised as early
as possible to guide the design and implementation of these systems, as has been
done for other frameworks [2, 20, 33].

A particular class of such heterogeneous combinations is that of non-monotonic
multi-context systems (MCSs) [3], which consist of several independent systems
(the “contexts”) interacting through Datalog-style “bridge rules”, controlling
how information flows by means of knowledge that is added to a context when-
ever some information can be inferred from other contexts. MCSs have been
a topic of active research in recent years, with effort being put in addressing
specific problems of this framework, and several variants of MCSs have been
proposed to deal with particular situations. Of particular interest are relational
multi-context systems [16], where each context is allowed to have a first-order
sublanguage freely generated from a given set of predicate symbols and constants.
Relational MCSs generalize MCSs, rather than restricting them, since one can
take the first-order sublanguage to be empty. However, they allow bridge rules
with actual first-order variables, instead of seeing such rules simply as meta-level
notation for the (potentially very large) set of all their closed instances. This is
useful namely when there is information flow between logic-based systems, as



a single rule can “transport” all instances of a predicate from one context to
another.

Most of the examples of MCSs presented so far were designed to illustrate
the potential of such systems and their variants, but to our knowledge there
has not been much effort in the development of general systematic techniques
to write MCSs. This is the main achievement of this paper: we propose generic
mechanisms, in the form of general-purpose design patterns, that achieve specific
forms of interaction between contexts within an MCS in a principled way – e.g.
extending a context by means of a definition in the language of another context,
giving closed-world semantics for particular predicates in a context with open-
world semantics, or reasoning within the merge of two contexts while keeping
them separate. The study of these design patterns not only facilitates the de-
velopment of future MCSs, but also suggests new ways in which their language
can be extended. Our departure point was the study of design patterns for multi
dl-programs [10] – a generalization of dl-programs [13] with multiple description
logic knowledge bases –, which can be seen as a subclass of MCSs by means of
a systematic translation [9]. The present study is however much more general
than the combination of the work in those two publications.

The paper is organized as follows. Section 2 summarizes previous research
relevant to this work. Section 3 recalls the formal definition of relational MCS and
introduces an elementary communication pattern for MCSs. Section 4 discusses
more general interaction patterns, and Section 5 explores particular applications
to MCSs using ontologies. Section 6 discusses future directions for this work.

2 Related work

An emblematic example of best practices in program development are software
design patterns, introduced in the mid-nineties by the Gang of Four, whose
work [18] paved the way for important advances in software quality; presently,
many valuable experienced designers’ “best practices” are not only published
but effectively used by the software development community. From very basic,
abstract, patterns that can be used as building blocks of several more complex
ones, to business-specific patterns and frameworks, dozens of design patterns
have been proposed [15, 17, 25], establishing a “common language” between de-
velopment teams that substantially enriches their communication, and hence the
whole design process.

Although most of the work around design patterns has been focused in the
object-oriented paradigm, several of these patterns are fundamental enough to be
independent of the modeling and programming paradigms used. Thus, effort has
also been made in adapting some of these best practices to other paradigms and
in finding new paradigm-specific patterns [2, 20, 33]. In this line, we contributed
to the study of best practices in the field of systems that can access several knowl-
edge bases by identifying several patterns for Mdl-programs [10] – a powerful
and expressive formalism to join description logics with rules, connecting a logic



program with description logic knowledge bases by means of special dl-atoms
that allow information flow [9], generalizing the original dl-programs [13].

Multi-context systems [3] (MCSs) are more general than Mdl-programs and
were originally designed to bring together characteristics of both heterogeneous
monotonic [21, 27] and homogeneous non-monotonic systems [6, 31], capitalizing
on both worlds. They are heterogeneous non-monotonic systems whose compo-
nents (called contexts) are knowledge bases that can be expressed in different
logics (e.g., a theory in classical logic, a description logic knowledge base, a set
of modal or temporal logic formulas, or a non-monotonic formalism such as a
logic program under answer set semantics, or a set of default logic rules). Unlike
Mdl-programs, the communication between the components is not centralized,
but rather distributed among them via sets of (non-monotonic) bridge rules.

Since they were originally proposed, several variations of MCSs have been
studied that add to their potential fields of application. Examples are managed
MCS [4], whose bridge rules allow arbitrary operations (e.g. deletion or revision
operators) on context knowledge bases to be freely defined; relational MCSs [16],
which introduce variables and aggregate expressions in bridge rules, extending
the semantics of MCSs accordingly; or dynamic MCSs [11], designed to cope
with situations where knowledge sources and their contents may change over
time and are not known a priori. We will work within relational MCSs (defined
formally in the next section), and discuss a possible generalization of dynamic
MCSs at the end of Section 4.

There are other formalisms to combine different reasoning systems. Hex-
programs [14], which generalize dl-programs along a different direction, are
higher-order logic programs with external atoms, and they are also heteroge-
neous since these external atoms may pose queries to systems using different
languages. A homogenous approach to combining systems is exemplified by hy-
brid MKNF knowledge bases [29], which however are not modular. (Partial)
translations between these formalisms are an important tool to compare their
expressive power and to allow transfer of technology from one formalism into an-
other. Thus, hybrid MKNF knowledge bases can be translated into MCSs [22],
providing a way for agents to reason with the former without the need for special-
ized Hybrid MKNF reasoners. In turn, MCSs and Hex-programs are essentially
incomparable [14]. Mdl-programs are trivially embedded in Hex-programs [14],
and they can be faithfully translated in a not-so-trivial fashion into MCSs [4, 9].

Yet another way of combining reasoning systems is ontology mediation, which
intends to facilitate the interoperability of different ontologies, namely by allow-
ing exchange of instance data through the identification of alignments or the
merging of overlapping ontologies. An alignment between two distinct ontolo-
gies establishes relationships between pairs of entities, one from each ontology.
These relationships are then made concrete in the form of ontology mappings,
with some tools [7, 12] resorting to “bridge axioms” or even an ontology of generic
bridges [26] whose instances constitute concrete bridges defining mappings be-
tween the original ontologies. Alignments are also sometimes used as a first
step towards defining a single ontology that is a merged version of the origi-



nal ontologies. However, merging ontologies raises the problem of solving the
inconsistencies or incoherences that might arise, which are difficult problems for
which several distinct theoretic approaches have been proposed [8], and much
effort has been put on the development of tools to assist with ontology merging,
see e.g. [24].

Ontology alignment patterns [32] help designers to identify alignments by
looking at common patterns of ontology mismatches. Both these and the defini-
tion of an ontology of generic mappings are complementary to the construction
in Section 5, which translates a previously identified alignment into MCS bridge
rules that interconnect two contexts and show how to emulate partial ontology
merging within an MCS, given an alignment. The patterns in that section focus
on communication and interaction between the ontologies, seen as components
of an MCS, and not on their construction and architecture; as such, they are a
complement of, rather than an alternative to, ontology design patterns [19].

3 Information flow in relational multi-context systems

We begin this section with a quick summary of the notion of relational multi-
context system [16].

A relational logic L is a quadruple 〈KBL,BSL,ACCL, ΣL〉, where KBL is
the set of well-formed logic bases of L, BSL is a set of possible belief sets,
ACCL : KBL → 2BSL is a function assigning to each knowledge base a set of
acceptable sets of beliefs, and ΣL is a signature consisting of sets PKB

L and PBS
L

of predicate names (with associated arity) and a universe UL of object constants,
such that UL ∩ (PKB

L ∪ PBS
L ) = ∅. The first-order signature ΣL generates a

sublanguage of L, in the sense that p(c1, . . . , ck) must be an element of some
knowledge base (resp. belief set), if p ∈ PKB

L (resp. p ∈ PBS
L ) has arity k and

c1, . . . , ck ∈ UL. These elements are called relational ground elements, while the
remaining elements of knowledge bases or belief sets are called ordinary.1

Let I be a finite set of indices, {Li}i∈I be a set of relational logics, and V be
a set of (first-order) variables distinct from predicate and constant names in any
Li. A relational element of Li has the form p(t1, . . . , tk) where p ∈ PKB

Li
∪ PBS

Li

has arity k and each tj is a term from V ∪ ULi
, for 1 ≤ j ≤ k. A relational

k-bridge rule over {Li}i∈I and V is a rule of the form

(k : s)← (c1 : p1), . . . , (cq : pq), not(cq+1 : pq+1), . . . , not(cm : pm) (1)

such that k, ci ∈ I, s is an ordinary or a relational knowledge base element of
Lk and p1, . . . , pm are ordinary or relational beliefs of Lci

.
A relational multi-context system is a collection M = {Ci}i∈I of contexts

Ci = 〈Li, kbi, bri, Di〉, where Li is a relational logic, kbi ∈ KBL is a knowledge
base, bri is a set of relational i-bridge rules, and Di is a set of import domains
Di,j , with j ∈ I, such that Di,j ⊆ Uj . Unless otherwise stated, Di,j is always

1 This notion generalizes that of logic in a general multi-context system, where all
elements are ordinary: just take P KB

L = P BS
L = UL = ∅.



assumed to be the finite domain consisting of the object constants appearing in
kbj or in the head of a relational bridge rule in brj .

The semantics of relational MCSs is defined in terms of ground instances of
bridge rules: the instances obtained from each rule r ∈ bri by uniform substi-
tution of each variable X in r by a constant in

⋂
Di,j , with j ranging over the

indices of the contexts to which queries containing X are made in r. A belief
state for M is a collection S = {Si}i∈I where Si ∈ BSi for each i ∈ I. The
bridge rule (1) is applicable w.r.t. belief state S if pi ∈ Sci

for 1 ≤ i ≤ q and
pi 6∈ Sci for q < i ≤ m. The set of the heads of all applicable bridge rules of
context Ci w.r.t. S is denoted by appi(S). An equilibrium is a belief state S such
that Si ∈ ACCi(kbi∪appi(S)). Particular types of equilibria (minimal, grounded,
well-founded) that were originally defined for multi-context systems [3] transfer
to relational MCSs, but we will not discuss them here.

From this point onwards we will only consider relational MCSs, and omit the
adjective “relational” for brevity. The discussion below takes place within the
setting of an MCS M = {Ci}i∈I unless otherwise stated.

The basic communication structure of MCSs can be embodied in a very
simple design pattern. Although not very interesting in itself, it is useful as
a building block for more elaborate patterns, and we can state and prove its
soundness.

Pattern Observer.

Problem. There is a predicate name p ∈ PKB
i whose semantics should in-

clude all instances of predicate names pj ∈ PKB
ϕ(j), with 1 ≤ j ≤ ` and

ϕ(j) ∈ I, of the same arity.
Solution. Add the bridge rules (i : p(X)) ← (ϕ(j) : pj(X)) to bri, with

X = X1, . . . , Xk and 1 ≤ j ≤ `.

Proposition 1. Let M = {Ci}i∈I be an MCS such that kb ⊆ ACCi(kb) for
every kb ∈ KBi, and let p ∈ PKB

i be defined from pj ∈ PKB
ϕ(j) for j = 1, . . . , ` by

application of Observer. Let S = {Si}i∈I be an equilibrium for M . For each j,
if pj(t) ∈ Sϕ(j) for some t, then p(t) ∈ Si.

Proof. By definition of equilibrium, if pj(t) ∈ Sϕ(j) then p(t) ∈ appi(S) and the
thesis follows from the definition of equilibrium and the hypothesis on ACCi. ut

4 Extending expressiveness of contexts

An MCS’s information flow capabilities can be applied to extend the language
of one context using syntactic means available in another. As a simple example,
suppose that we want to define the transitive closure of a binary relation in a
context that has no primitives for this. At the semantic level, this can be achieved
for named individuals by means of an auxiliary context that can define transitive
closures.



We introduce two patterns to deal with this situation; although the first one
is a particular case of the second, it is important enough to discuss it on its own.

Pattern Fixpoint definition.

Problem. In context Ci we want to define a predicate p from other predicates
by means of a logic program.

Solution. Create a new logic programming context Cθ, i.e. a context such
that ACCθ(kb) contains only the minimal model of kb over the constants
in Ui, and take Di,θ = Dθ,i = Di,i.
Apply Observer to import from Ci to Cθ all instances of the predicates
necessary to define p.
Take kbθ to be the definition of p.
Apply Observer to export p from Cθ to Ci.

Proposition 2. Let predicate p be defined in context Cθ by application of Fix-
point definition and S = {Sj}j∈I be an equilibrium of the corresponding MCS.
Define I to be the restriction of Si to the Herbrand base of kbθ (with constants
in Ui). Then Sθ ⊆ I.

Proof. By soundness of Observer, appθ(S) coincides with I except on atoms
built from predicate symbol p. By definition of equilibrium, Sθ = ACCθ(kbθ ∪
appθ(S)). But since kbθ only contains the definition of p, Sθ is exactly appθ(S)
together with some atoms of the form p(t). By soundness of Observer all these
atoms are in I. ut

In particular, this pattern allows us to view deductive databases as multi-
context systems – context Ci is the database, context Cθ is the view, and the
bridge rules connect them.

In general, it can happen that I contains more information about p; this can
be avoided by applying Observer to both p and ¬p in the last step, but this
can easily lead to inconsistency if Ci proves some p(t) that is not derived by Cθ.

There is an important aspect of this construction: it only works at the level
of the instances – we are not able to reason abstractly about properties of the
defined concepts. In particular, individuals outside the import domain are never
“carried over” by bridge rules. This is a necessary evil – otherwise, one would
easily get undecidability of reasoning in the resulting MCS.

Example 1. Let C1 be a context for a decidable fragment of first-order logic
where there are binary predicates R, Rt and S, ACC1(kb) is the set of logical
consequences of kb, and kb1 contains the axiom ∀x, y(Rt(x, y) → S(x, y)) to-
gether with some instances of R (but none of Rt). The goal is to have Rt be the
transitive closure of R, but this is not first-order definable.

Application of Fixpoint definition defines a logic programming context C2,
where kb2 defines Rt as the transitive closure of R in the usual way, and contains



no other rules. Then we add the bridge rules

(2 : R(X,Y ))← (1 : R(X,Y ))
(1 : Rt(X,Y ))← (2 : Rt(X,Y ))

to the resulting MCS. In this way, in every equilibrium {S1, S2} of {C1, C2}
the semantics of Rt in S1 will coincide with the transitive closure of R in S1 on
named individuals.

However, S1 does not necessarily satisfy ∀x, y(R(x, y)→ S(x, y)): it can hap-
pen that R(c1, c2) holds for individuals c1 and c2 that are not interpretations of
constants in C1’s (syntactic) domain, and the semantics of the bridge rules can
not guarantee that Rt(c1, c2), and hence S(c1, c2), holds.

Despite this apparent limitation, this construction works very nicely if C1

does not allow individuals outside the import domain. This is namely the case
if C1 is a relational or deductive database, or another logic program.

As a generalization of this mechanism, we consider the more encompassing
problem of defining a predicate in one context by means of a construct that is
only available in other contexts. Typical examples of contexts that could benefit
from such additional expressiveness include: description logic contexts, where
the available concept/role constructors are restricted to guarantee decidability
and complexity bounds on reasoning; relational databases, where no definitional
mechanisms exist; or impredicative definitions in first-order contexts. We can
achieve this by means of a similar construction: export the instances of the
predicates required for the definition into a context that possesses the required
ability, write the definition in that context, and import the instances of the
defined predicate back into the original context.

Pattern External definition.

Problem. In context Ci, we want to define a predicate p by means of a
construct that is only available in context Cj .

Solution. Extend Di,j and Dj,i with Dj,j .
Apply Observer to import all instances of the necessary predicates [and
their (default) negations] from Ci to Cj .
Define p in kbj .
Apply Observer to export p [and ¬p] from Cj to Ci.

There is some freedom regarding whether negations of predicates should be
observed; this will depend on the particular application. The soundness of the
pattern is proven similarly to the previous case.

Proposition 3. Let predicate p be defined in context Ci by application of Ex-
ternal definition and S be an equilibrium of the corresponding MCS. Define
I and J to be the restrictions of Si to the language of Cj and of Sj to the lan-
guage of Ci, respectively. Then p(t) ∈ I whenever p(t) ∈ J , with the converse
implication holding if all negations are also being observed.



Both patterns presented in this section fit well with terminological knowledge
bases, where concepts are defined in terms of other concepts whose definitions
(or instances) may be provided by an external entity.

Another important concern when designing systems is that of querying a con-
text or group of contexts subject to variation minimizing the necessary changes
to the contexts querying them. This variation can happen either because that
context’s contents are expected to change often, or because one does not want
to know explicitly which context is being queried when writing bridge rules. (A
concrete example will be presented in the next section.) This encapsulation can
be achieved by means of the following pattern.

Pattern Group encapsulation.

Problem. There are contexts C1, . . . , Ck that should be encapsulated, in the
sense that other contexts do not include direct queries of the form (i : p)
in the bodies of their bridge rules, for i = 1, . . . , k.

Solution. Define functions σi : Σi → ΣI and create a new interface context
CI with UI =

⋃k
i=1 Ui, KBI =

{⋃k
i=1 σi(kbi) | kbi ∈ KBi

}
, kbI = ∅,

BSI = KBI , ACCI(kb) = {kb}, and DI,i = Ui for i = 1, . . . , k.
For every relational symbol p ∈ Σi, apply Observer to make σi(p) in
CI an observer of p.
In every other context, instead of writing (i : p) in the body of a bridge
rule, write (I : σi(p)).

By not requiring σ to be an injection, this pattern generalizes Observer.

Proposition 4. Let M be an MCS where there is an interface context CI defined
by application of Group encapsulation. Define M ′ by removing CI from M
and replacing every bridge rule r with all rules obtained from r by replacing each
query (I : q) with a query (i : p) for which σi(p) = q. Then:

1. If S is an equilibrium of M , then SI =
⋃k
i=1{σi(p)(t) | p(t) ∈ Si}.

2. S is an equilibrium of M iff S \ SI is an equilibrium of M ′.

Proof.

1. The converse inclusion follows by soundness of Observer; the direct inclu-
sion is a consequence of the definition of ACCI and kbI .

2. Consequence of the soundness of Observer.

This pattern can be made more general by also considering queries of the
form not(i : p), but we will not discuss this general case here.

Removing the restriction kbI = ∅ we obtain a more powerful design pattern
where the interface context is allowed to implement algorithms to decide which
contexts to query on what. A more interesting possibility would be to allow a
limited form of second-order bridge rules, so that other contexts can query CI
and use the result to know which context to query on which relational symbol.



This kind of approach has been tackled in [22], but the second-order notation
therein is interpreted as an abbreviation for all its closed instances – thus solving
the presentation problem, but not the practical one. On the other hand, higher-
order variables in bridge rules are considered in the schematic contexts of [11],
but within a more general setting where they are used as placeholders for contexts
that are not known a priori and may change over time.

Our tentative proposal would be to allow higher-order variables in bridge
rules, these variables being allowed to serve as predicate names or context iden-
tifiers (formally numbers, but in practice these could be URLs), with a require-
ment that their first occurrence in the body of a rule must be positive and in
an argument position. This would allow the implementation of indirection-style
techniques, with interface contexts serving as mediators indicating what queries
to pose to which contexts.

Pattern Indirection.

Problem. We want to protect an MCS from variations in bridge rules that
include atoms where both the context being queried and the predicate
in the query may change with time.

Solution. Create an interface context CI that implements the algorithm
for deciding which contexts should be queried and what the predicate
names in actual queries should be.
In every bridge rule with expectable variations, include a query to CI
whose answer provides all required information, and use the result from
that query in the subsequent literals in the body of the rule.

The proposal of having higher-order variables in bridge rules as first-class
citizens would allow us to have the best of both worlds: the number of actual
rules would be kept small, and the configuration algorithm of [11] can be seen
as a particular implementation of the interface context. We will return to this
issue at the end of the next section.

5 Applications to ontology manipulation

In this section we develop specific mechanisms to deal with MCSs that contain
ontologies as contexts. Due to their open-world semantics, this kind of knowledge
bases brings specific challenges. In this work, we consider an ontology to be a
particular knowledge base whose underlying logic is a description logic.

Definition 1. An ontology O expressed in a description logic L induces the con-
text Ctx(O) = 〈L,O, ∅, UL〉, with L = 〈KBL,BSL,ACCL, ΣL〉 defined as follows.

– KBL is the set of all well-formed knowledge bases of L.
– BSL is the set of all sets of literals in the language of L.
– ACCL(kb) is the singleton set containing the set of kb’s known consequences

(positive and negative).
– ΣL is the first-order signature underlying L.



The belief sets (the elements of BSL) do not need to be categorical: they
may contain neither C(a) nor ¬C(a) for a particular concept C and individual
a. This is what gives description logic knowledge bases their typical open-world
semantics. For this reason, the only element of ACCL(kb) may not be a model of
kb. This is in contrast with [3], where ACCL(kb) contains all (first-order) models
of kb. We will return to this issue in Example 2 below.

Default reasoning. In the framework of dl-programs, it has been shown [13] that
default rules can be implemented in a systematic way. The construction proposed
by those authors can be simplified in the framework of multi-context systems.

A default rule has the form
α1, . . . , αk : β1, . . . , βn

γ
, where αi, βj and γ are

literals for all i, j, with intended semantics that if, for some instantiation θ
of the free variables in the rule, all αiθ hold and it is consistent to assume
that all βjθ hold, then γθ is inferred. Several semantics for default rules have
been proposed [1], namely Reiter’s original semantics [30] based on extensions –
theories that are fixpoints w.r.t. the default rules.

Pattern Default rule.

Problem. Context Ci should include the default rule
α1, . . . , αk : β1, . . . , βn

γ
.

Solution. Include the bridge rule (i : γ) ← (i : α1), . . . , (i : αk), not(i :
β1), . . . , not(i : βn) in bri.

The result below makes the correspondence with the standard default se-
mantics precise, considering minimal equilibria – equilibria whose belief sets are
not proper supersets of any other equilibria.2

Proposition 5. Let O be an ontology and Γ be a set of default rules in the
language of O. Let M be the MCS with a single context Ctx(O) and bridge rules
obtained by applying Default rule to the rules in Γ . Then S is a minimal
equilibrium of M iff S is an extension of O and Γ .

Proof. We use Reiter’s characterization of extensions [30]. For a set of formulas
F , let E(F, 0) = O and E(F, i+1) be the theory generated from E(F, i) and all γ

such that
α1, . . . , αk : β1, . . . , βn

γ
∈ Γ , αj ∈ E(F, i) for 1 ≤ j ≤ k, and ¬βj 6∈ F

for 1 ≤ j ≤ n. Let EF =
⋃+∞
i=0 E(F, i). Then E is an extension of O and Γ iff

E = EE .
In particular, for any extension E of O and Γ , E = ACCL(E ∪ appE(E)),

whence E is an equilibrium of M . Conversely, if S is an equilibrium of M , then
by induction E(S, i) ⊆ S: for i = 0 this is trivial; for i+1 assume that E(S, i) ⊆ S
and note that E(S, i+ 1) is then derived from E(S, i) and the heads of rules that
are applicable in E(S, i). Hence ES ⊆ S.

2 In this setting, this simplified definition of minimal equilibria is equivalent to the
original one in [3].



Then: if S is an equilibrium of M , then ES ⊆ S is also an equilibrium of M
that is simultaneously an extension of O and Γ ; if S is a minimal equilibrium,
then necessarily ES = S, yielding the thesis. Conversely, if E is an extension of
O and Γ , then it is an equilibrium of M , and since extensions are minimal w.r.t.
set inclusion it must be a minimal equilibrium. ut

This result can be made a bit stronger; under some conditions, which often
arise in practice, only minimal equilibria exist.

Corollary 1. Let O, Γ and M be as in Proposition 5 and suppose that, for every

extension E and rule
α1, . . . , αk : β1, . . . , βn

γ
∈ Γ , αi ∈ E iff αi is a consequence

of O. Then every equilibrium of M is an extension of O and Γ .

Proof. Under the hypothesis, αj ∈ Ei iff αj ∈ E, and the thesis follows. ut

In particular, if the rules in Γ are prerequisite free [5] (i.e. k = 0), then every
equilibrium of M corresponds to an extension of O and Γ , and conversely. This
is interesting in practice, as it corresponds to many useful applications such as
the modeling of closed-world reasoning by means of default rules [5]. For this
correspondence to hold, however, it is essential that Ctx(O) be defined as above,
and not by having the usual models-as-belief-sets construction of [3].

Example 2. Suppose thatO is the ontology consisting of the single formula C(a)t
C(b). Then O’s models must contain at least one of C(a) or C(b). Since none of
these is guaranteed to hold in all models, ACCL(O) = ∅. Adding closed-world
semantics to C, by means of the translated default rule (1 : ¬C(X)) ← not(1 :
C(X)), yields two possible equilibria, corresponding to the two extensions of the
corresponding default rule: {C(a),¬C(b)} and {C(b),¬C(a)}.

With the approach from [3], ACCL(O) contains the three models {C(a),¬C(b)},
{C(b),¬C(a)} and {C(a),C(b)}. The bridge rule above has no effect, and adding
it to the corresponding MCS still yields three equilibria, one of which does not
correspond to an extension of O and that rule.

The pattern Default rule generalizes the notion of default rule to multi-
context systems that are not generated from an ontology. Furthermore, we can
remove the requirement that all literals in the rule come from the same context
and encode more general default rules. By the results above, we can see minimal
equilibria for MCSs with applications of this pattern as generalized default ex-
tensions, obtaining a systematic way to approximate closed-world reasoning in
a standard way.

In order to obtain true closed-world reasoning (in the sense that e.g. the MCS
in Example 2 would be inconsistent, as O is inconsistent with the closed-world
assumption) one could define ACCi as a binary operator, separating the original
belief state from the conclusions derived from the application of bridge rules and
allowing them to be treated differently. We are currently studying the impact of
this change in the theory of MCSs.



Working with alignments. Another, seemingly unrelated, problem that occurs
quite often in practice is that of reasoning within the merge of two ontologies,
given an alignment, without actually constructing the merged ontology.

An alignment between two ontologies O1 and O2 is a set A of atoms t(P,Q)
where P is a concept (or role) from O1, Q is a concept (resp. role) from O2, and
t ∈ {subsumed, subsumes, equivalent, disjoint} (see [32]).

Definition 2. Let O1 and O2 be two ontologies and A be an alignment between
them. The MCS induced by A is M(O1,O2,A), containing Ctx(O1) and Ctx(O2)
with the following bridge rules:

– for each triple subsumed(P,Q) ∈ A,

(2 : Q(X))← (1 : P (X)) (2)
(1 : ¬P (X))← (2 : ¬Q(X)) (3)

if P and Q are concepts, or their binary counterparts, if they are roles;
– for each triple disjoint(P,Q) ∈ A,

(2 : ¬Q(X))← (1 : P (X)) (4)
(1 : ¬P (X))← (2 : Q(X)) (5)

if P and Q are concepts, or their binary counterparts, if they are roles.

The triple subsumes(P,Q) is treated as subsumed(Q,P ), with the appropriate
context changes, and equivalent(P,Q) is seen as the conjunction of subsumed(P,Q)
and subsumed(Q,P ).

Again this achieves a merge of O1 and O2 at the level of the individuals in
the import domain – we cannot reason e.g. about the potential subsumption of
a concept from O1 by a concept from O2. Still, this construction is useful as it
avoids the extra step of constructing a new ontology.

There is a more practical aspect of this approach that we can ameliorate:
when querying M(O1,O2,A), one must know where the concept or role in the
query originates from. This issue can be bypassed by applying Group Encap-
sulation to hide the two contexts in this MCS.

Pattern Alignment.

Problem. We want to reason about the instances in the merge of two on-
tologies O1 and O2 w.r.t. a given (consistent) alignment A, without
building the merged ontology.

Solution. Apply Group Encapsulation to M(O1,O2,A).

This design pattern assumes that A is consistent; however, it may happen
that it is not (yet) guaranteed to be consistent. In order to avoid possible incon-
sistencies at the level of the instances, we may use the more robust technique
from [28], taking the maximal consistent merge of O1 and O2 by writing the
alignment triples as default rules. This translates to constructing M ′(O1,O2,A)



as M(O1,O2,A) but replacing the bridge rules with those obtained by Default
Rule, protecting the context from the introduction of (explicit) inconsistencies.
For example, if C and D are concepts, then subsumed(C,D) would yield

(2 : D(X))← (1 : C(X)), not (2 : ¬D(X))
(1 : ¬C(X))← (2 : ¬D(X)), not (1 : C(X))

Example 3. Consider a very simple case where O1 has the two instance ax-
ioms C(a) and C(b), O2 only has the axiom ¬D(a) t ¬D(b), and A contains
subsumed(C,D). Note thatA is inconsistent withO1 andO2. ThenM ′(O1,O2,A)
has two distinct equilibria, namely S1 = 〈{C(a),C(b)}, {D(a),¬D(b)}〉 and S2 =
〈{C(a),C(b)}, {¬D(a),D(b)}〉. In both, the semantics of D is maximal (it includes
as many instances of C as it may consistently do). As expected, none of these
equilibria satisfies the alignment axiom C v D.

There is a drawback to this construction: the high number of bridge rules
required, which grows with the number of concepts and roles in O1 and O2. It
would be useful to be able to write these bridge rules in a second-order language,
e.g. rule (2) would become

(2 : D(X))← (0 : subsumes(C,D)), (1 : C(X)) (6)

where context C0 is simply A. The interesting aspect is that context C0 can
actually be seen as a relational (first-order) context – it is the usage of its “con-
stants” as predicate names in the bridge rules that gives them a higher-order
nature. We are currently working on developing a formal theory of MCSs with
higher-order rules.

6 Conclusions

In this paper we addressed several issues related to the flow of information
between the several components of a relational multi-context system, presenting
general-purpose design patterns that systematize the constructs supporting this
communication.

Due to the specific semantics of bridge rules, these constructions only affect
the individuals in the import domains of the contexts where new predicates
are defined. This apparent limitation is however essential to avoid fundamental
inconsistency and undecidability problems: the main advantage of several of
these design patterns is precisely that they allow one to mimic extending the
expressiveness of a context for one particular definition in a way that, in its full
generality, would render the context inconsistent or undecidable.

We also study particular constructions adapted to working with ontologies,
introducing a new definition of the context generated from an ontology in a way
that is fundamentally different from what had been previously suggested [3]. This
new definition truly captures the nature of the open-world vs closed-world se-
mantics in the form required to allow fine-tuning of the particular interpretation
for specific predicates.



The development of these design patterns also suggests the study of syntactic
extensions to MCSs: changing the consequence operator to a binary one, allowing
different treatment of data from the knowledge base and that inferred from
application of bridge rules, in order to have true closed-world reasoning; and
higher-order bridge rules, where the result of queries to one context can be used
to decide which predicates to use on subsequent queries to other contexts, or even
to which context those queries should be made. The last construct has been used
– but in the form of meta-level notation, as an abbreviation for a set of rules
– in work by other authors [11, 22]. We are currently working on making these
two constructions first-class citizens of multi-context systems, allowing them in
the syntax of bridge rules and studying their semantics formally.
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