Formalizing Mathematics in Coq

Luís Cruz-Filipe

University of Nijmegen Centro de Lógica e Computação

January 4, 2002

Overview

- 1. Introduction
- 2. Formalizing Mathematics: How and Why
- 3. Proof Assistants—Underlying Theory
- 4. Coq: Specific Characteristics
- 5. Towards a Formalization of Real Analysis
- 6. Conclusions & Future Work

Formalizing Mathematics

Why?

- Higher reliability for proofs
- Potential auxiliary tool in investigation
- Applications

How?

• Proof Assistants (Coq) which interactively generate proofs which are easy to check and perform computations.

Typed λ -calculus: terms and types.

- V is a set of *type variables*
- $\{x_i | i \in \mathbb{N}\}$ is a countable set of *term variables*

$$\mathbb{T} := \mathbb{V} \mid \mathbb{T} \to \mathbb{T}$$
$$\wedge := x_i \mid \lambda x_i : \mathbb{T} \cdot \wedge \mid \wedge \wedge$$

M: A means that the term M has type A.

A context Γ is a set of judgements of the form M : A.

Types of terms are inductively defined:

- if $M : A \in \Gamma$ then $\Gamma \vdash M : A$
- if $\Gamma, x : A \vdash M : B$ then $\Gamma \vdash (\lambda x : A.M) : A \rightarrow B$
- if $\Gamma \vdash M : A \rightarrow B$ and $\Gamma \vdash N : A$ then $\Gamma \vdash (MN) : B$

A is said to be *inhabited* iff there exists some M such that $\vdash M : A$

Let A, B and C be type variables and define

$$S := \lambda x : (A \to B \to C) . \lambda y : A \to B . \lambda z : A . x z (yz)$$
$$K := \lambda x : A . \lambda y : B . x$$

Then:

$$\vdash \mathbf{K} : A \to B \to A$$
$$\vdash \mathbf{S} : (A \to B \to C) \to (A \to B) \to A \to C$$

Viewing type variables as propositional variables and \rightarrow as (intuition-istic) implication, we have that:

- the rules for typing correspond exactly to the natural deduction rules for implication introduction and elimination in the implicative fragment of intuitionistic propositional logic
- \bullet the types of ${\bf K}$ and ${\bf S}$ correspond to intuitionistic tautologies

We have both *correction* and *completeness*.

Pure Type Systems

A Pure Type System (PTS) is a triple $\langle S, A, R \rangle$ where:

- \mathcal{S} is a set
- $\mathcal{A} \subseteq \mathcal{S}^2$
- $\mathcal{R} \subseteq S^3$

The elements of S are called *sorts*, the elements of A are called *axioms* and the elements of \mathcal{R} are called *rules*. We will usually represent an axiom $\langle x, A \rangle$ by x : A and abbreviate rules of the form $\langle s_1, s_2, s_2 \rangle$ to $\langle s_1, s_2 \rangle$.

Type assignment rules for PTS:

$$(\text{sort}) \qquad \vdash s_1 : s_2 \qquad s_1 : s_2 \in \mathcal{A}$$
$$(\text{var}) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \qquad x \notin \Gamma$$
$$(\text{weak}) \qquad \frac{\Gamma \vdash A : s \qquad \Gamma \vdash M : C}{\Gamma, x : A \vdash M : C} \qquad x \notin \Gamma$$

Important properties of PTS are:

Thinning: if $\Gamma \subseteq \Gamma'$ and $\Gamma \vdash M : A$ then $\Gamma' \vdash M : A$

Substitution: if $\Gamma_1, x : B, \Gamma_2 \vdash M : A$ and $\Gamma_1 \vdash N : B$ then $\Gamma_1, \Gamma_2[N/x] \vdash M[N/x] : A[N/x]$

Strengthening: if $\Gamma_1, x : B, \Gamma_2 \vdash M : A$ and $x \notin FV(\Gamma_2, M, A)$ then $\Gamma_1, \Gamma_2 \vdash M : A$

Reduction: if $\Gamma \vdash M : A$ and $M \rightarrow^*_{\beta} N$ then $\Gamma \vdash N : A$

A PTS such that A and R are functions is called *functional*. Functional PTS enjoy the following property:

Uniqueness: if $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$ then $A =_{\beta} B$

A morphism between two PTS $\langle S, A, \mathcal{R} \rangle$ and $\langle S', A', \mathcal{R}' \rangle$ is a function $f : S \to S'$ such that $f(A) \subseteq A'$ and $f(\mathcal{R}) \subseteq \mathcal{R}'$.

Morphisms preserve β -reduction, the diamond property and strong normalization.

 $\langle \{*\}, \{*:*\}, \{\langle *, *, * \rangle\} \rangle$ is a terminal object in the category of all PTS.

An important class of PTS are those where we just have two sorts * and \Box and the single axiom $*:\Box$. By combining these sorts in all possible ways to generate rules of the form $\langle s_1, s_2, s_2 \rangle$ we get eight PTS generally known as the *Lambda Cube*, which are usually presented in the following graphical way:

Inductive types and ι -reduction

Inductive $\mu : s :=$

$$\begin{array}{rcl} \operatorname{constr}_1 & : & \sigma_1^1(\mu) \to \ldots \to \sigma_{m_1}^1(\mu) \to \mu \\ & & & \\ & & \\ |\operatorname{constr}_n & : & \sigma_1^n(\mu) \to \ldots \to \sigma_{m_n}^n(\mu) \to \mu \end{array}$$
where each $\sigma_j^i(\mu)$ is of the form $A_1 \to A_k$ with μ not occurring in A_1, \ldots, A_k and either X is μ or μ does not occur in X .

Inductive types come with induction and recursion principles.

Inductive nat : Type := $\begin{array}{rcl}
0 & : & \operatorname{nat} \\
& |S & : & \operatorname{nat} \rightarrow \operatorname{nat} \\
\end{array}$ $\begin{array}{rcl}
\frac{\Gamma \vdash A : \operatorname{Type} & \Gamma \vdash f_1 : A & \Gamma \vdash f_2 : \operatorname{nat} \rightarrow A \rightarrow A \\
& \Gamma \vdash \operatorname{Rec}_{\operatorname{nat}} f_1 f_2 : \operatorname{nat} \rightarrow A \\
\end{array}$ $\begin{array}{rcl}
\frac{\Gamma \vdash P : \operatorname{nat} \rightarrow \operatorname{Prop} & \Gamma \vdash f_1 : P0 & \Gamma \vdash f_2 : \Pi x : \operatorname{nat}.Px \rightarrow P(Sx) \\
& \Gamma \vdash \operatorname{Rec}_{\operatorname{nat}} f_1 f_2 : \Pi x : \operatorname{nat}.Px \end{array}$

 $\begin{aligned} &\operatorname{Rec}_{\operatorname{nat}} f_1 f_2 0 \to_{\iota} f_1 \\ &\operatorname{Rec}_{\operatorname{nat}} f_1 f_2(St) \to_{\iota} f_2 t(\operatorname{Rec}_{\operatorname{nat}} f_1 f_2 t) \end{aligned}$

The Calculus of Inductive Constructions

$$S = \{\operatorname{Set}, \operatorname{Prop}, \operatorname{Type}(i) | i \in \mathbb{N} \}$$

$$\mathcal{A} = \{\operatorname{Set}: \operatorname{Type}(0), \operatorname{Prop}: \operatorname{Type}(0), \operatorname{Type}(i): \operatorname{Type}(i+1) | i \in \mathbb{N} \}$$

$$\mathcal{R} = \{\langle s_1, s_2 \rangle | s_1 \in \{\operatorname{Set}, \operatorname{Prop} \} \text{ or } s_1 \in \{\operatorname{Set}, \operatorname{Prop} \} \}$$

$$\bigcup \{\langle s_1, s_2, s_3 \rangle | s_i := \operatorname{Type}(n_i), n_1 \leq n_3 \text{ and } n_2 \leq n_3 \}$$

- no η -reduction
- restrictions to elimination over inductive types (due to consistency problems)

In Coq:

- $\lambda x : A.B$ is written as [x:A]B
- $\Pi x: A.B$ is written as (x:A)B
- Type(i) is written simply as Type
- δ -reduction
- special inductive type: Record

Implementation options

- Constructive mathematics
- η -reduction vs. setoids
- Coercions
- Set-based logic

My work

Goals: Formalization of main concepts and results of Calculus in one real variable:

- Taylor's Theorem
- Derivation rules
- Fundamental Theorem of Calculus

Environment: Work previously done in order to prove the Fundamental Theorem of Algebra, which already included:

- A construction of the reals as a complete ordered field satisfying the Archimedean axiom
- Formalized definitions of most common operations and constructions on the real numbers (algebraic operations, absolute value, maximum, Cauchy sequences, limit)
- Formalized proofs of the main properties of these operations
- Formalized notions of real valued (total) functions and pointwise continuity

Problems:

- No obvious concept of partial function
- Definitions depending on proofs
- Classical definitions won't work
- Little automation
- Need of "unfolding" lemmas

Example: from Rolle's Theorem to the Mean Law

 \rightarrow can only be applied to the exact elimination of the existential quantifier

```
Generalization:
```

```
(a,b:IR; f,h:(CSetoid_fun (subset (compact a b)) IR))
  (f A) [=] (f B)
  ->(derivative_I a b f h)
  ->(e:IR)
    (Zero[<]e)
    ->{x:(subset (compact a b)) & ((AbsIR (h x)) [<=] e)}</pre>
```

We now want to prove the Mean Law:

```
Variables a,b:IR.
Local I:=(compact a b).
```

Local A,B.

Variable f:(CSetoid_fun (subset I) IR).

Hypothesis diffF:(diffble_I ?? f).

Local f':=(projS1 ?? diffF).

```
Lemma Mean_Law : (e:IR)(Zero[<]e)-> {x:(subset I) & (AbsIR ((f B)[-](f A))[-](f' x)[*](b[-]a))[<=]e}.
```

Technique: define a function $h: [a,b] \rightarrow \mathbb{R}$ such that

$$h(x) = (x - a)(f(b) - f(a)) - f(x)(b - a)$$

and apply Rolle's Theorem.

How much of this proof can be done automatically?

- prove that h(a) = h(b)
- compute h'(x)
- prove that h'(x) = f(b) f(a) f'(x)(b-a)

Reflection Tactics: Rational and New_Deriv

Motivation: work syntactically.

Rational: prove that two elements of an arbitrary field are equal.

New_Deriv: prove that one function f' is the derivative of another function f.

The New_Deriv Tactic

Inductive type \mathcal{RF} of "restricted functions":

- constant and identity functions are in \mathcal{RF} ;
- \bullet differentiable functions are in \mathcal{RF}
- synctatical expressions built up from restricted functions using +, and * are in \mathcal{RF}
- → There is a trivial mapping $\llbracket \cdot \rrbracket$ from \mathcal{RF} into the class of functions from [a, b] to \mathbb{R} .
- → In \mathcal{RF} we can inductively define a syntactical derivative function ' satisfying [[f']] = [[f]]'.

Goal: an expression of the form (derivative_I a b f f').

Arguments: none.

Steps:

- 1. Determine an r such that $[\![r]\!] = f$ and substitute $[\![r]\!]$ for f in the goal
- 2. Calculate r'
- 3. Check that $\llbracket r' \rrbracket = f'$

```
Tactic Definition New_Deriv :=
Match Context With
[|-(derivative_I ?1 ?2 ?3 ?4)] -> Let r=(ifunct_to_restr ?3) In
Apply derivative_wdl with (restr_to_ifunct a b r); [
Intro; Simpl; Algebra
| Apply derivative_wdr with (restr_deriv a b r); [
Intro; Simpl; Try Rational
| Apply deriv_restr]].
```

Drawbacks:

 the equality proofs are not guaranteed to succeed; in this case, subgoals are left for the user to prove

Future Work

- Generalizing Rolle's and Taylor's Theorems to arbitrary partial functions
- Optimizing the tactics for automatic differentiation
- Theory of Integration
- Fundamental Theorem of Calculus