
Formalizing Mathematis in Coq

Lu��s Cruz-Filipe

University of NijmegenCentro de L�ogia e Computa�~ao

January 4, 2002

Overview

1. Introdution2. Formalizing Mathematis: How and Why3. Proof Assistants|Underlying Theory4. Coq: Spei� Charateristis5. Towards a Formalization of Real Analysis6. Conlusions & Future Work

Formalizing MathematisWhy?� Higher reliability for proofs� Potential auxiliary tool in investigation� Appliations

How?� Proof Assistants (Coq) whih interatively generate proofs whihare easy to hek and perform omputations.

Typed �-alulus: terms and types.

� V is a set of type variables

� fxiji 2 N g is a ountable set of term variables

T := V j T ! T� := xi j �xi : T :� j ��

M : A means that the term M has type A.A ontext � is a set of judgements of the form M : A.

Types of terms are indutively de�ned:

� if M : A 2 � then � `M : A

� if �; x : A `M : B then � ` (�x : A:M) : A! B

� if � `M : A! B and � ` N : A then � ` (MN) : B

A is said to be inhabited i� there exists some M suh that `M : A

Let A, B and C be type variables and de�neS := �x :(A!B!C):�y :A!B:�z :A:xz(yz)K := �x :A:�y :B:x

Then: ` K : A!B!A` S : (A!B!C)!(A!B)!A!C

Viewing type variables as propositional variables and ! as (intuition-isti) impliation, we have that:

� the rules for typing orrespond exatly to the natural dedutionrules for impliation introdution and elimination in the impliativefragment of intuitionisti propositional logi

� the types of K and S orrespond to intuitionisti tautologies

We have both orretion and ompleteness.

Pure Type SystemsA Pure Type System (PTS) is a triple hS;A;Ri where:� S is a set� A � S2� R � S3The elements of S are alled sorts, the elements of A are alled axiomsand the elements of R are alled rules. We will usually represent anaxiom hx;Ai by x : A and abbreviate rules of the form hs1; s2; s2i tohs1; s2i.

Type assignment rules for PTS:

(sort) ` s1 :s2 s1 :s2 2 A

(var) � ` A :s�; x :A ` x :A x 62 �

(weak) � ` A :s � `M :C�; x :A `M :C x 62 �

(produt) � ` A :s1 �; x :A ` B :s2� ` �x :A:B : s3 hs1; s2; s3i 2 R

(abstration) �; x :A `M :B � ` �x :A:B : s� ` �x :A:M : �x :A:B

(appliation) � `M :�x :A:B � ` N :B� `MN :B [N=x℄

(onversion) � `M :A � ` B :s� `M :B A=R B

Important properties of PTS are:

Thinning: if � � �0 and � `M :A then �0 `M :A

Substitution: if �1; x :B;�2 `M :A and �1 ` N :B then �1;�2 [N=x℄ `M [N=x℄ : A [N=x℄

Strengthening: if �1; x : B;�2 ` M : A and x 62 FV (�2;M;A) then�1;�2 `M :A

Redution: if � `M :A and M !�� N then � ` N :A

A PTS suh that A and R are funtions is alled funtional. Fun-tional PTS enjoy the following property:

Uniqueness: if � `M :A and � `M :B then A=� B

A morphism between two PTS hS;A;Ri and hS 0;A0;R0i is a funtionf : S ! S 0 suh that f(A) � A0 and f(R) � R0.Morphisms preserve �-redution, the diamond property and strongnormalization.hf�g; f� :�g; fh�; �; �igi is a terminal objet in the ategory of all PTS.

An important lass of PTS are those where we just have two sorts �and � and the single axiom � : �. By ombining these sorts in all pos-sible ways to generate rules of the form hs1; s2; s2i we get eight PTSgenerally known as the Lambda Cube, whih are usually presented inthe following graphial way:
�! //�P!�2 ;;

w
w

w
w

w
w

w
w

w

//�P2 99
s

s
s

s
s

s
s

s
s

s

�! //

OO

�P!

OO

�! ;;
x

x
x

x
x

x
x

x

//

OO

�P 99
s

s
s

s
s

s
s

s
s

OO

Indutive types and �-redutionIndutive � : s :=onstr1 : �11(�)! : : :! �1m1(�)! �...jonstrn : �n1(�)! : : :! �nmn(�)! �where eah �ij(�) is of the form A1 ! Ak with � not ourring inA1; : : : ; Ak and either X is � or � does not our in X.Indutive types ome with indution and reursion priniples.

Indutive nat : Type := 0 : natjS : nat! nat� ` A :Type � ` f1 :A � ` f2 :nat!A!A elim1� ` Renatf1f2 : nat!A� ` P :nat!Prop � ` f1 :P0 � ` f2 : �x :nat:Px!P(Sx) elim2� ` Renatf1f2 : �x :nat:Px

Renatf1f20 !� f1Renatf1f2(St) !� f2t(Renatf1f2t)

The Calulus of Indutive Construtions

S = fSet;Prop;Type(i)ji 2 N gA = fSet :Type(0);Prop :Type(0);Type(i):Type(i+1)ji 2 N gR = fhs1; s2ijs1 2 fSet;Propg or s1 2 fSet;Propgg[fhs1; s2; s3ijsi := Type(ni); n1 � n3 and n2 � n3g

� no �-redution

� restritions to elimination over indutive types (due to onsistenyproblems)

In Coq:
� �x :A:B is written as [x:A℄B

� �x :A:B is written as (x:A)B

� Type(i) is written simply as Type

� Æ-redution
� speial indutive type: Reord

Implementation options

� Construtive mathematis

� �-redution vs. setoids

� Coerions
� Set-based logi

My workGoals: Formalization of main onepts and results of Calulus in onereal variable:
� Taylor's Theorem

� Derivation rules

� Fundamental Theorem of Calulus

Environment: Work previously done in order to prove the Funda-mental Theorem of Algebra, whih already inluded:� A onstrution of the reals as a omplete ordered �eld satisfyingthe Arhimedean axiom� Formalized de�nitions of most ommon operations and onstru-tions on the real numbers (algebrai operations, absolute value,maximum, Cauhy sequenes, limit)� Formalized proofs of the main properties of these operations� Formalized notions of real valued (total) funtions and pointwiseontinuity

Problems:
� No obvious onept of partial funtion

� De�nitions depending on proofs

� Classial de�nitions won't work

� Little automation

� Need of \unfolding" lemmas

Example: from Rolle's Theorem to the MeanLaw

(a,b:IR; f:(CSetoid_fun (subset (ompat a b)) IR);diffF:(diffble_I a b f))(f A) [=℄ (f B)->(e:IR)(Zero[<℄e)->{x:(subset (ompat a b))& ((AbsIR(projS1 ?? diffF x)) [<=℄ e)}! an only be applied to the exat elimination of the existentialquanti�er

Generalization:(a,b:IR; f,h:(CSetoid_fun (subset (ompat a b)) IR))(f A) [=℄ (f B)->(derivative_I a b f h)->(e:IR)(Zero[<℄e)->{x:(subset (ompat a b)) & ((AbsIR (h x)) [<=℄ e)}

We now want to prove the Mean Law:Variables a,b:IR.Loal I:=(ompat a b).Loal A,B.Variable f:(CSetoid_fun (subset I) IR).Hypothesis diffF:(diffble_I ?? f).Loal f':=(projS1 ?? diffF).Lemma Mean_Law : (e:IR)(Zero[<℄e)-> {x:(subset I) &(AbsIR ((f B)[-℄(f A))[-℄(f' x)[*℄(b[-℄a))[<=℄e}.

Tehnique: de�ne a funtion h : [a; b℄! R suh thath(x) = (x� a)(f(b)� f(a))� f(x)(b� a)and apply Rolle's Theorem.How muh of this proof an be done automatially?

� prove that h(a) = h(b)

� ompute h0(x)

� prove that h0(x) = f(b)� f(a)� f 0(x)(b� a)

Reetion Tatis: Rational and New_DerivMotivation: work syntatially.Rational: prove that two elements of an arbitrary �eld are equal.New_Deriv: prove that one funtion f 0 is the derivative of anotherfuntion f .

The New_Deriv TatiIndutive type RF of \restrited funtions":� onstant and identity funtions are in RF;� di�erentiable funtions are in RF� syntatial expressions built up from restrited funtions using +,� and � are in RF

! There is a trivial mapping [[�℄℄ from RF into the lass of funtionsfrom [a; b℄ to R .! In RF we an indutively de�ne a syntatial derivative funtion0 satisfying [[f 0℄℄ = [[f ℄℄0.

Goal: an expression of the form (derivative_I a b f f').Arguments: none.Steps:1. Determine an r suh that [[r℄℄ = f and substitute [[r℄℄ for f in thegoal2. Calulate r03. Chek that [[r0℄℄ = f 0

Tati Definition New_Deriv :=Math Context With[|-(derivative_I ?1 ?2 ?3 ?4)℄ -> Let r=(ifunt_to_restr ?3) InApply derivative_wdl with (restr_to_ifunt a b r); [Intro; Simpl; Algebra| Apply derivative_wdr with (restr_deriv a b r); [Intro; Simpl; Try Rational| Apply deriv_restr℄℄.Drawbaks:
� the equality proofs are not guaranteed to sueed; in this ase,subgoals are left for the user to prove

Future Work

� Generalizing Rolle's and Taylor's Theorems to arbitrary partialfuntions
� Optimizing the tatis for automati di�erentiation

� Theory of Integration

� Fundamental Theorem of Calulus

