Formalizing Mathematics in Coq

Luís Cruz-Filipe

University of Nijmegen
Centro de Lógica e Computação

January 4, 2002

Overview

1. Introduction
2. Formalizing Mathematics: How and Why
3. Proof Assistants-Underlying Theory
4. Coq: Specific Characteristics
5. Towards a Formalization of Real Analysis
6. Conclusions \& Future Work

Formalizing Mathematics

Why?

- Higher reliability for proofs
- Potential auxiliary tool in investigation
- Applications

How?

- Proof Assistants (Coq) which interactively generate proofs which are easy to check and perform computations.

Typed λ-calculus: terms and types.

- \mathbb{V} is a set of type variables
- $\left\{x_{i} \mid i \in \mathbb{N}\right\}$ is a countable set of term variables

$$
\begin{aligned}
& \mathbb{T}:=\mathbb{V} \mid \mathbb{T} \rightarrow \mathbb{T} \\
& \wedge:=x_{i}\left|\lambda x_{i}: \mathbb{T} . \wedge\right| \wedge \wedge
\end{aligned}
$$

$M: A$ means that the term M has type A.

A context Γ is a set of judgements of the form $M: A$.

Types of terms are inductively defined:

- if $M: A \in \Gamma$ then $\Gamma \vdash M: A$
- if $\Gamma, x: A \vdash M: B$ then $\Gamma \vdash(\lambda x: A . M): A \rightarrow B$
- if $\Gamma \vdash M: A \rightarrow B$ and $\Gamma \vdash N: A$ then $\Gamma \vdash(M N): B$
A is said to be inhabited iff there exists some M such that $\vdash M: A$

Let A, B and C be type variables and define

$$
\begin{aligned}
\mathrm{S} & :=\lambda x:(A \rightarrow B \rightarrow C) \cdot \lambda y: A \rightarrow B \cdot \lambda z: A \cdot x z(y z) \\
\mathbf{K} & :=\lambda x: A \cdot \lambda y: B \cdot x
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \vdash \mathbf{K}: A \rightarrow B \rightarrow A \\
& \vdash \mathrm{~S}:(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow A \rightarrow C
\end{aligned}
$$

Viewing type variables as propositional variables and \rightarrow as (intuitionistic) implication, we have that:

- the rules for typing correspond exactly to the natural deduction rules for implication introduction and elimination in the implicative fragment of intuitionistic propositional logic
- the types of \mathbf{K} and \mathbf{S} correspond to intuitionistic tautologies

We have both correction and completeness.

Pure Type Systems

A Pure Type System (PTS) is a triple $\langle\mathcal{S}, \mathcal{A}, \mathcal{R}\rangle$ where:

- \mathcal{S} is a set
- $\mathcal{A} \subseteq \mathcal{S}^{2}$
- $\mathcal{R} \subseteq \mathcal{S}^{3}$

The elements of \mathcal{S} are called sorts, the elements of \mathcal{A} are called axioms and the elements of \mathcal{R} are called rules. We will usually represent an axiom $\langle x, A\rangle$ by $x: A$ and abbreviate rules of the form $\left\langle s_{1}, s_{2}, s_{2}\right\rangle$ to $\left\langle s_{1}, s_{2}\right\rangle$.

Type assignment rules for PTS:

$$
\begin{aligned}
& \text { (sort) } \vdash s_{1}: s_{2} \quad s_{1}: s_{2} \in \mathcal{A} \\
& \text { (var) } \frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash x: A} \quad x \notin \Gamma \\
& \text { (weak) } \frac{\Gamma \vdash A: s \quad \Gamma \vdash M: C}{\Gamma, x: A \vdash M: C} x \notin \Gamma
\end{aligned}
$$

$$
\begin{aligned}
\text { (product) } & \frac{\Gamma \vdash A: s_{1} \Gamma, x: A \vdash B: s_{2}}{\Gamma \vdash \Pi x: A . B: s_{3}}
\end{aligned} \quad\left\langle s_{1}, s_{2}, s_{3}\right\rangle \in \mathcal{R}
$$

Important properties of PTS are:

Thinning: if $\Gamma \subseteq \Gamma^{\prime}$ and $\Gamma \vdash M: A$ then $\Gamma^{\prime} \vdash M: A$

Substitution: if $\Gamma_{1}, x: B, \Gamma_{2} \vdash M: A$ and $\Gamma_{1} \vdash N: B$ then $\Gamma_{1}, \Gamma_{2}[N / x] \vdash$ $M[N / x]: A[N / x]$

Strengthening: if $\Gamma_{1}, x: B, \Gamma_{2} \vdash M: A$ and $x \notin F V\left(\Gamma_{2}, M, A\right)$ then $\Gamma_{1}, \Gamma_{2} \vdash M: A$

Reduction: if $\Gamma \vdash M: A$ and $M \rightarrow{ }_{\beta}^{*} N$ then $\Gamma \vdash N: A$

A PTS such that \mathcal{A} and \mathcal{R} are functions is called functional. Functional PTS enjoy the following property:

Uniqueness: if $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A={ }_{\beta} B$

A morphism between two $\operatorname{PTS}\langle\mathcal{S}, \mathcal{A}, \mathcal{R}\rangle$ and $\left\langle\mathcal{S}^{\prime}, \mathcal{A}^{\prime}, \mathcal{R}^{\prime}\right\rangle$ is a function $f: \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ such that $f(\mathcal{A}) \subseteq \mathcal{A}^{\prime}$ and $f(\mathcal{R}) \subseteq \mathcal{R}^{\prime}$.

Morphisms preserve β-reduction, the diamond property and strong normalization.
$\langle\{*\},\{*: *\},\{\langle *, *, *\rangle\}\rangle$ is a terminal object in the category of all PTS.

An important class of PTS are those where we just have two sorts * and \square and the single axiom $*: \square$. By combining these sorts in all possible ways to generate rules of the form $\left\langle s_{1}, s_{2}, s_{2}\right\rangle$ we get eight PTS generally known as the Lambda Cube, which are usually presented in the following graphical way:

Inductive types and ι-reduction

Inductive $\mu: s:=$

$$
\begin{aligned}
\operatorname{constr}_{1} & : \sigma_{1}^{1}(\mu) \rightarrow \ldots \rightarrow \sigma_{m_{1}}^{1}(\mu) \rightarrow \mu \\
& : \\
\operatorname{constr}_{n} & : \sigma_{1}^{n}(\mu) \rightarrow \ldots \rightarrow \sigma_{m_{n}}^{n}(\mu) \rightarrow \mu
\end{aligned}
$$

where each $\sigma_{j}^{i}(\mu)$ is of the form $A_{1} \rightarrow A_{k}$ with μ not occurring in A_{1}, \ldots, A_{k} and either X is μ or μ does not occur in X.

Inductive types come with induction and recursion principles.

Inductive nat : Type $:=$

$$
\begin{aligned}
0 & : \text { nat } \\
\mid S & : \text { nat } \rightarrow \text { nat }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash A: \text { Type } \quad \Gamma \vdash f_{1}: A \quad \Gamma \vdash f_{2}: \text { nat } \rightarrow A \rightarrow A}{\Gamma \vdash \operatorname{Rec}_{\text {nat }} f_{1} f_{2}: \text { nat } \rightarrow A} \text { elim }_{1} \\
\frac{\Gamma \vdash P: \text { nat } \rightarrow \operatorname{Prop} \quad \Gamma \vdash f_{1}: P 0 \quad \Gamma \vdash f_{2}: \Pi x: \text { nat. } P x \rightarrow P(S x)}{\Gamma \vdash \operatorname{Rec}_{\text {nat }} f_{1} f_{2}: \Pi x: \text { nat.Px }} \text { elim }{ }_{2}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Rec}_{\text {nat }} f_{1} f_{2} 0 & \rightarrow_{\iota} f_{1} \\
\operatorname{Rec}_{\text {nat }} f_{1} f_{2}(S t) & \rightarrow_{\iota} f_{2} t\left(\operatorname{Rec}_{\text {nat }} f_{1} f_{2} t\right)
\end{aligned}
$$

The Calculus of Inductive Constructions

$$
\begin{aligned}
\mathcal{S}= & \{\text { Set, Prop, Type }(i) \mid i \in \mathbb{N}\} \\
\mathcal{A}= & \{\operatorname{Set}: \text { Type(0), Prop:Type(0), Type }(i): \text { Type }(i+1) \mid i \in \mathbb{N}\} \\
\mathcal{R}= & \left\{\left\langle s_{1}, s_{2}\right\rangle \mid s_{1} \in\{\text { Set, Prop }\} \text { or } s_{1} \in\{\operatorname{Set}, \text { Prop }\}\right\} \\
& \bigcup\left\{\left\langle s_{1}, s_{2}, s_{3}\right\rangle \mid s_{i}:=\text { Type }\left(n_{i}\right), n_{1} \leq n_{3} \text { and } n_{2} \leq n_{3}\right\}
\end{aligned}
$$

- no η-reduction
- restrictions to elimination over inductive types (due to consistency problems)

In Coq:

- $\lambda x: A . B$ is written as $[\mathrm{x}: \mathrm{A}] \mathrm{B}$
- $\Pi x: A . B$ is written as (x:A)B
- Type(i) is written simply as Type
- δ-reduction
- special inductive type: Record

Implementation options

- Constructive mathematics
- η-reduction vs. setoids
- Coercions
- Set-based logic

My work

Goals: Formalization of main concepts and results of Calculus in one real variable:

- Taylor's Theorem
- Derivation rules
- Fundamental Theorem of Calculus

Environment: Work previously done in order to prove the Fundamental Theorem of Algebra, which already included:

- A construction of the reals as a complete ordered field satisfying the Archimedean axiom
- Formalized definitions of most common operations and constructions on the real numbers (algebraic operations, absolute value, maximum, Cauchy sequences, limit)
- Formalized proofs of the main properties of these operations
- Formalized notions of real valued (total) functions and pointwise continuity

Problems:

- No obvious concept of partial function
- Definitions depending on proofs
- Classical definitions won't work
- Little automation
- Need of "unfolding" lemmas

Example: from Rolle's Theorem to the Mean

Law

```
(a,b:IR; f:(CSetoid_fun (subset (compact a b)) IR);
    diffF:(diffble_I a b f))
    (f A) [=] (f B)
    -> (e:IR)(Zero[<]e)
    ->{x:(subset (compact a b))
        & ((AbsIR
            (projS1 ?? diffF x)) [<=] e)}
```

\rightarrow can only be applied to the exact elimination of the existential quantifier

Generalization:

```
(a,b:IR; f,h:(CSetoid_fun (subset (compact a b)) IR))
(f A) [=] (f B)
->(derivative_I a b f h)
->(e:IR)
    (Zero[<]e)
    ->{x:(subset (compact a b)) & ((AbsIR (h x)) [<=] e)}
```

We now want to prove the Mean Law:

Variables a,b:IR.
Local I:=(compact a b).

Local A,B.

Variable f:(CSetoid_fun (subset I) IR).

Hypothesis diffF:(diffble_I ?? f).

Local $f^{\prime}:=($ projS1 ?? diffF).

Lemma Mean_Law : (e:IR)(Zero[<]e)-> \{x:(subset I) \& (AbsIR ($(\mathrm{f} B)[-](\mathrm{f} \mathrm{A}))[-](f, x)[*](b[-] a))[<=] e\}$.

Technique: define a function $h:[a, b] \rightarrow \mathbb{R}$ such that

$$
h(x)=(x-a)(f(b)-f(a))-f(x)(b-a)
$$

and apply Rolle's Theorem.
How much of this proof can be done automatically?

- prove that $h(a)=h(b)$
- compute $h^{\prime}(x)$
- prove that $h^{\prime}(x)=f(b)-f(a)-f^{\prime}(x)(b-a)$

Reflection Tactics: Rational and New_Deriv

Motivation: work syntactically.

Rational: prove that two elements of an arbitrary field are equal.

New_Deriv: prove that one function f^{\prime} is the derivative of another function f.

The New_Deriv Tactic

Inductive type $\mathcal{R} \mathcal{F}$ of "restricted functions":

- constant and identity functions are in $\mathcal{R} \mathcal{F}$;
- differentiable functions are in $\mathcal{R} \mathcal{F}$
- synctatical expressions built up from restricted functions using +, - and $*$ are in $\mathcal{R} \mathcal{F}$
\rightarrow There is a trivial mapping $\llbracket \cdot \rrbracket$ from $\mathcal{R} \mathcal{F}$ into the class of functions from $[a, b]$ to \mathbb{R}.
\rightarrow In $\mathcal{R} \mathcal{F}$ we can inductively define a syntactical derivative function ' satisfying $\llbracket f^{\prime} \rrbracket=\llbracket f \rrbracket^{\prime}$.

Goal: an expression of the form (derivative_I a b f f').

Arguments: none.

Steps:

1. Determine an r such that $\llbracket r \rrbracket=f$ and substitute $\llbracket r \rrbracket$ for f in the goal
2. Calculate r^{\prime}
3. Check that $\llbracket r^{\prime} \rrbracket=f^{\prime}$

Tactic Definition New_Deriv :=
Match Context With

```
[|-(derivative_I ?1 ?2 ?3 ?4)] -> Let r=(ifunct_to_restr ?3) In
    Apply derivative_wdl with (restr_to_ifunct a b r); [
        Intro; Simpl; Algebra
        | Apply derivative_wdr with (restr_deriv a b r); [
        Intro; Simpl; Try Rational
        | Apply deriv_restr]].
```

Drawbacks:

- the equality proofs are not guaranteed to succeed; in this case, subgoals are left for the user to prove

Future Work

- Generalizing Rolle's and Taylor's Theorems to arbitrary partial functions
- Optimizing the tactics for automatic differentiation
- Theory of Integration
- Fundamental Theorem of Calculus

