(Still) Program Extraction from Large
Proof Developments

Luis Cruz-Filipel:?
Bas Spitters?

1 University of Nijmegen, Netherlands
2 Center for Logic and Computation, IST (Lisbon), Portugal

wWhy?
e Large constructive library

e C0OQ has extraction mechanism

e It doesn’'t work. ..

Disclaimer

For reasons beyond the authors’ control, none of the programs which
will be discussed were executable. Therefore, all statements of type

more than
program A is as efficient as program B
less than

should be taken with the proverbial grain of salt.

Contents

. Introduction

. Overview of Program Extraction

. Logic in the FTA-library

. Practical Results

. Some conclusions. ..

. Future Developments

Extraction

BHK-interpretation: connectives

Kleene's realizability: a more formal approach

Curry—Howard isomorphism: proofs <— programs

In practice: algorithm vs. properties; types as “markers”

FTA-logicC

e NO elimination of Prop terms over Set ~» no function definition
by cases

e All logic in Set

e EXxtracted program too big

A solution?

Identify computationally meaningful propositions; put everything else
in Prop.

~» most proof terms can be put back in Prop
~» significant amount of “dead code” is eliminated

(for more details see paper in Procs. TPHOLS 2003)

s — Prop
S1 — S92 — 82

s1 — So> — Set

Prop s; = so = Prop
51— 52— { Set otherwise

|_|(A : 81).(A — 82) — 82

M(A : Set).(A — s) — Set

Results

e FTA: extracts, compiles, runs. .. but does not terminate
e Rational numbers: everything is (almost) instantaneous

e Somewhere in between: e, m and /2

Computing e

def T 1
e — —
k|

n=0

~»> each term is a rational (constant sequence)

~» but much is going on. ..

Immediate Problems...

e Unary natural numbers

e A direct proof of k! # 0 requires computing k! in unary notation

. . . & Solutions
e Directly inject Zt into R

e Prove k! = 0 by induction on k

Some statistics. ..

10 "
' ' ' "fta-test-diff.txt" —+— le+06 ' ' ' ' “fta-test-time.txt" ———]
1
100000 |
0.1
10000
0.01
0.001 1000
0.0001 100 |
1e-05
10 |
le-06
1 -
1e-07
1e-08 o1t
1e-09 . L L ! ! 0.01

Still better (Thanks, Pierre!)

Optimize performance by working directly in the model:
e More efficient definition of factorial
e Simpler proofs and smaller proof terms

~» 100t approximation in 77 seconds (with 157 correct digits)

The next step: 2

Different constructive formulations of the IVT. ..

e for total functions;

e for partial functions;

e for monotone functions;

e for locally non-constant functions;

e for polynomials.

... and different extracted programs:

e new /2 now yields first approximation after just 6 seconds (instead
of 52 hours);

e complexity is still exponential;

e key lemma (for increasing version of IVT):

a<b= f(a) < f(b), where f is the function being iterated

Conclusions

The more abstract the formalization, the less efficient the ex-
tracted program

Obtaining a working program is far from straightforward

Small, carefully thought, modifications in the formalization can
make huge differences in the extracted program

Future improvements in Coq may also make huge differences. ..

Future Work
e “Computable” /2

e Improving the extraction mechanism: pruning, modules (?7)

e Eventually: the FTA

