A New Look at the Fundamental Theorem of Algebra

Luís Cruz-Filipe

Seminário de Álgebra, Universidade de Coimbra
January 20, 2004

University of Nijmegen, The Netherlands
Centro de Lógica e Computação, Portugal

Applications

of a

Constructive

Formalization

Program Extraction:

- what
- why
- how
- precise notion
- why
- "natural examples"
- meaning
- why
- theoretical interest
- practical interest
- how. . .

Overview

1. Formalization of Mathematics
2. Constructive Mathematics
3. Program Extraction
4. The FTA Proof
5. Conclusions \& Future Work

Formalizing Mathematics

What Faithful representation of proofs in a computer

Why High guarantee of correctness

Presentation and exchange

Applications

Constructive Mathematics

Intuitionistic logic (Brouwer): do not accept $A \vee \neg A$
\rightsquigarrow no clear interpretation of this axiom
\rightsquigarrow realizability: proof of $\forall x \cdot \exists y \cdot P(x, y)$ defines a (computable) function

Natural examples:

- Curry-Howard isomorphism
- internal logic of a topos

Program Extraction

Idea: make the implicit algorithm in a proof of $\forall x \cdot \exists y \cdot P(x, y)$ explicit
\rightsquigarrow distinction between the actual algorithm and its properties
\rightsquigarrow proofs may influence results of computations (e.g. $\frac{1}{x}$)

Useful when correctness is more dear than efficiency

The Fundamental Theorem of Algebra

Theorem. Let f be a non-constant polynomial with complex coefficients. Then f has a root, i.e., there exists a complex number z such that $f(z)=0$.

Proof. [H. Kneser, 1940] Let f be a polynomial over \mathbb{C}. Then $|f(z)| \longrightarrow \infty$ as $|z| \longrightarrow \infty$, therefore $|f|$ has a minimum at $z_{0} \in \mathbb{C}$.

Take $g(z)=f\left(z-z_{0}\right)=\sum_{i=0}^{n} a_{n} z^{n}$ and suppose $g(0) \neq 0$. Take the least $k>0$ s.t. $a_{k} \neq 0$; then $g(z)=a_{0}+a_{k} z^{k}+O\left(z^{k+1}\right)$.

Taking ε small enough, at $z^{\prime}=\varepsilon \sqrt[k]{-\frac{a_{0}}{a_{k}}}$ the term in $O\left(z^{k+1}\right)$ will be negligible, and $\left|g\left(z^{\prime}\right)\right| \approx\left|a_{0}\right|\left(1-\varepsilon^{k}\right)<|g(0)|$. Contradiction.

The Fundamental Theorem of Algebra (cont.)

\rightsquigarrow not a constructive proof: we prove $\neg \neg \exists z \cdot f(z)=0$, which is weaker than the intended $\exists z \cdot f(z)=0$.
\rightsquigarrow however, given z such that $|f(z)|>0$ the proof contains a construction of z^{\prime} with $|f(z)|>\left|f\left(z^{\prime}\right)\right|$
\rightsquigarrow might this be used to define a Cauchy sequence converging to a root of f ?

Problem: conflicting demands on ε

The FTA for Monic Polynomials

Three problems:

1. equality not decidable;
2. choosing k with $\sqrt[k]{\frac{\left|b_{0}\right|}{\left|b_{k}\right|}}$ minimal not possible;
3. taking k_{j} with $\left|b_{k_{j}}\right| r_{j}^{k_{j}}$ maximal not possible.

The FTA for Monic Polynomials (cont.)

To solve (1): restate the result as

$$
\text { "if }\left|f\left(z_{i}\right)\right|<c \text { then }\left|f\left(z_{i+1}\right)\right|<q c \text { " }
$$

with q as above.

Now we can decide whether $\left|f\left(z_{i}\right)\right|<q c$ or $\left|f\left(z_{i}\right)\right|>0$, and the proof can proceed as before.

The FTA for Monic Polynomials (cont.)

To solve (2): take a minimum "up to ε "; that is, simultaneously define r_{0} and k_{0} such that, given $\varepsilon>0$,

$$
\begin{aligned}
a_{k_{0}} r_{0}^{k_{0}} & =a_{0}+\varepsilon \\
a_{i} r_{0}^{i}-\varepsilon & <a_{k_{0}} r_{0}^{k_{0}}
\end{aligned}
$$

(Start with $k_{0}=n, r_{0}=\sqrt[n]{a_{0}-\varepsilon}$.
For each i down to 1:

- if $a_{i} r_{0}^{i}<a_{0}$ do nothing;
- if $a_{i} r_{0}^{i}>a_{0}-\varepsilon$, redefine $k_{0}=i$ and $r_{0}=\sqrt[i]{\left(a_{0}-\varepsilon\right) / a_{i}}$.

When i reaches $0, k_{0}$ and r_{0} will satisfy the above conditions.)

The Fundamental Theorem of Algebra: General Case

Idea: given $f(z)=\sum_{i=0}^{n} a_{n} z^{n}$, apply the previous result to f / a_{n}.

Problem: even if f is non-constant there is no guarantee that $a_{n} \neq 0$.
\leadsto different approach, proof by induction on n.

The Implicit Algorithm Made Explicit

\rightsquigarrow M. Kneser's original proof corresponds to the Newton-Raphson algorithm to find a root of the polynomial
\rightsquigarrow the version presented (and formalized) is slightly less efficient, because k_{i} 's start at 0 instead of -1
\rightsquigarrow currently, basic arithmetic too slow; computation of square roots in \mathbb{R} takes too long

Conclusions \& Future Work

- Formalizing mathematics is useful
- "Forgetting" the principle of the excluded middle not too dramatic
- Program extraction may one day be "right" way to program

