
Hierarchical Reflection
TPHOLs, 15 September 2004

Luı́s Cruz-Filipe

Radboud University of Nijmegen, Netherlands

Center for Logic and Computation, Portugal

(joint work with Freek Wiedijk)

Hierarchical Reflection – p. 1/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures

Hierarchical Reflection – p. 2/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Contents

1. Motivation

2. Reflection

3. Partial reflection

4. “Hierarchical” reflection

5. Conclusions

Hierarchical Reflection – p. 3/13

Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop

Hierarchical Reflection – p. 4/13

Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop

Hierarchical Reflection – p. 4/13

Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop

Hierarchical Reflection – p. 4/13

Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop

Hierarchical Reflection – p. 4/13

Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop

Hierarchical Reflection – p. 4/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Partial Reflection

Generalization where [[·]] : E → D is replaced by][⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f]] = [[e]]/[[f]]

(we can now write e][x → f][y → e/f][x/y)

Hierarchical Reflection – p. 5/13

Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13

Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13

Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13

Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13

Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13

How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . .)

Hierarchical Reflection – p. 7/13

How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . .)

Hierarchical Reflection – p. 7/13

How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . .)

Hierarchical Reflection – p. 7/13

How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . .)

Hierarchical Reflection – p. 7/13

How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . .)

Hierarchical Reflection – p. 7/13

The big picture

F : Field

��

E

][G ((PPPPPPPPPPPPPPP

][F
66mmmmmmmmmmmmmmm][R

// R : Ring

��
G : Group

e × f][R x × y but not e × f][G x × y

e/f][F x/y but not e/f][G x/y or e/f][R x/y

Hierarchical Reflection – p. 8/13

The big picture

F : Field

��

E

][G ((PPPPPPPPPPPPPPP

][F
66mmmmmmmmmmmmmmm][R

// R : Ring

��
G : Group

e × f][R x × y but not e × f][G x × y

e/f][F x/y but not e/f][G x/y or e/f][R x/y

Hierarchical Reflection – p. 8/13

The big picture

F : Field

��

E

][G ((PPPPPPPPPPPPPPP

][F
66mmmmmmmmmmmmmmm][R

// R : Ring

��
G : Group

e × f][R x × y but not e × f][G x × y

e/f][F x/y but not e/f][G x/y or e/f][R x/y

Hierarchical Reflection – p. 8/13

The big picture

F : Field

��

E

][G ((PPPPPPPPPPPPPPP

][F
66mmmmmmmmmmmmmmm][R

// R : Ring

��
G : Group

e × f][R x × y but not e × f][G x × y

e/f][F x/y but not e/f][G x/y or e/f][R x/y

Hierarchical Reflection – p. 8/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N)

. . . and the bad news

further unification requires extra axiom

Hierarchical Reflection – p. 9/13

In a perfect world (I)

F : Field

��

F : Field

��

E

][G

""FFFFFFFFFFFFFFFFFFF

][F

;;xxxxxxxxxxxxxxxxxxx][R
// R : Ring

��

7→ E

][

""FFFFFFFFFFFFFFFFFFF

][

;;xxxxxxxxxxxxxxxxxxx][
// R : Ring

��
G : Group G : Group

Hierarchical Reflection – p. 10/13

In a perfect world (II)

Instead of defining][G,][R and][F by e.g.

e][G x ∧ f][G y ⇒ e + f][G x + y

e][F x ∧ f][F y ∧ y 6= 0 ⇒ e/f][F x/y

define][− : ΠA:SetoidE → A s.t.

A is group ∧ e][A x ∧ f][A y ⇒ e + f][A x + y

A is field ∧ e][A x ∧ f][A y ∧ y 6= 0 ⇒ e/f][A x/y

using subtyping of algebraic structures.

Hierarchical Reflection – p. 11/13

In a perfect world (II)

Instead of defining][G,][R and][F by e.g.

e][G x ∧ f][G y ⇒ e + f][G x + y

e][F x ∧ f][F y ∧ y 6= 0 ⇒ e/f][F x/y

define][− : ΠA:SetoidE → A s.t.

A is group ∧ e][A x ∧ f][A y ⇒ e + f][A x + y

A is field ∧ e][A x ∧ f][A y ∧ y 6= 0 ⇒ e/f][A x/y

using subtyping of algebraic structures.

Hierarchical Reflection – p. 11/13

In a perfect world (II)

Instead of defining][G,][R and][F by e.g.

e][G x ∧ f][G y ⇒ e + f][G x + y

e][F x ∧ f][F y ∧ y 6= 0 ⇒ e/f][F x/y

define][− : ΠA:SetoidE → A s.t.

A is group ∧ e][A x ∧ f][A y ⇒ e + f][A x + y

A is field ∧ e][A x ∧ f][A y ∧ y 6= 0 ⇒ e/f][A x/y

using subtyping of algebraic structures.

Hierarchical Reflection – p. 11/13

In a perfect world (II)

Instead of defining][G,][R and][F by e.g.

e][G x ∧ f][G y ⇒ e + f][G x + y

e][F x ∧ f][F y ∧ y 6= 0 ⇒ e/f][F x/y

define][− : ΠA:SetoidE → A s.t.

A is group ∧ e][A x ∧ f][A y ⇒ e + f][A x + y

A is field ∧ e][A x ∧ f][A y ∧ y 6= 0 ⇒ e/f][A x/y

using subtyping of algebraic structures.

Hierarchical Reflection – p. 11/13

In a perfect world (II)

Instead of defining][G,][R and][F by e.g.

e][G x ∧ f][G y ⇒ e + f][G x + y

e][F x ∧ f][F y ∧ y 6= 0 ⇒ e/f][F x/y

define][− : ΠA:SetoidE → A s.t.

A is group ∧ e][A x ∧ f][A y ⇒ e + f][A x + y

A is field ∧ e][A x ∧ f][A y ∧ y 6= 0 ⇒ e/f][A x/y

using subtyping of algebraic structures.

Hierarchical Reflection – p. 11/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

The K-axiom

We cannot prove

e][A a ∧ e][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.

Hierarchical Reflection – p. 12/13

Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)

Hierarchical Reflection – p. 13/13

Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)

Hierarchical Reflection – p. 13/13

Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)

Hierarchical Reflection – p. 13/13

Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)

Hierarchical Reflection – p. 13/13

Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)

Hierarchical Reflection – p. 13/13

	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation

	Contents
	Contents
	Contents
	Contents
	Contents
	Contents

	Reflection
	Reflection
	Reflection
	Reflection
	Reflection

	Partial Reflection
	Partial Reflection
	Partial Reflection
	Partial Reflection
	Partial Reflection
	Partial Reflection

	Our tactic: ational
	Our tactic: ational
	Our tactic: ational
	Our tactic: ational
	Our tactic: ational

	How the normalization works
	How the normalization works
	How the normalization works
	How the normalization works
	How the normalization works

	The big picture
	The big picture
	The big picture
	The big picture

	Good news, bad news
	Good news, bad news
	Good news, bad news
	Good news, bad news
	Good news, bad news
	Good news, bad news

	In a perfect world (I)
	In a perfect world (II)
	In a perfect world (II)
	In a perfect world (II)
	In a perfect world (II)
	In a perfect world (II)

	The K-axiom
	The K-axiom
	The K-axiom
	The K-axiom
	The K-axiom
	The K-axiom

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

