Hierarchical Reflection

TPHOLs, 15 September 2004

Luís Cruz-Filipe

Radboud University of Nijmegen, Netherlands
Center for Logic and Computation, Portugal
(joint work with Freek Wiedijk)

Motivation

Motivation

FTA-project at (then) University of Nijmegen

Motivation

FTA-project at (then) University of Nijmegen
Tactic to prove equalities in fields

Motivation

FTA-project at (then) University of Nijmegen
Tactic to prove equalities in fields

- intuitively "admissible" in simpler structures

Motivation

FTA-project at (then) University of Nijmegen
Tactic to prove equalities in fields

- intuitively "admissible" in simpler structures
© uses partial reflection...

Motivation

FTA-project at (then) University of Nijmegen
Tactic to prove equalities in fields

- intuitively "admissible" in simpler structures
© uses partial reflection...
Goal: hierarchy of tactics parallel to hierarchy of structures

Contents

Contents

1. Motivation

Contents

1. Motivation
2. Reflection

Contents

1. Motivation
2. Reflection
3. Partial reflection

Contents

1. Motivation
2. Reflection
3. Partial reflection
4. "Hierarchical" reflection

Contents

1. Motivation
2. Reflection
3. Partial reflection
4. "Hierarchical" reflection
5. Conclusions

Reflection

Reflection

Given: a predicate P on a domain \mathcal{D}

Reflection

Given: a predicate P on a domain \mathcal{D}
Decision procedure f for (subset \mathcal{E} of) \mathcal{D}

Reflection

Given: a predicate P on a domain \mathcal{D}
Decision procedure f for (subset \mathcal{E} of) \mathcal{D}
such that $f(e)=1 \Longleftrightarrow P(\llbracket e \rrbracket)$

Reflection

Given: a predicate P on a domain \mathcal{D}
Decision procedure f for (subset \mathcal{E} of) \mathcal{D}
such that $f(e)=1 \Longleftrightarrow P(\llbracket e \rrbracket)$

Partial Reflection

Partial Reflection

Generalization where $\llbracket \cdot \rrbracket: \mathcal{E} \rightarrow \mathcal{D}$ is replaced by $\mathbb{I} \subseteq \mathcal{E} \times \mathcal{D}$

Partial Reflection

Generalization where $\llbracket \rrbracket \rrbracket: \mathcal{E} \rightarrow \mathcal{D}$ is replaced by $\llbracket \subseteq \mathcal{E} \times \mathcal{D}$ not (necessarily) total

Partial Reflection

Generalization where $\llbracket \rrbracket \rrbracket: \mathcal{E} \rightarrow \mathcal{D}$ is replaced by $\mathbb{\llbracket} \subseteq \mathcal{E} \times \mathcal{D}$
万 not (necessarily) total

- not (necessarily) functional

Partial Reflection

Generalization where $\llbracket \rrbracket \rrbracket: \mathcal{E} \rightarrow \mathcal{D}$ is replaced by $\llbracket \subseteq \mathcal{E} \times \mathcal{D}$
6 not (necessarily) total

- not (necessarily) functional
used to get past induction-recursion required by

$$
\llbracket e / f \rrbracket=\llbracket e \rrbracket / \llbracket f \rrbracket
$$

Partial Reflection

Generalization where $\llbracket \rrbracket \rrbracket: \mathcal{E} \rightarrow \mathcal{D}$ is replaced by $\llbracket \subseteq \mathcal{E} \times \mathcal{D}$
6 not (necessarily) total

- not (necessarily) functional
used to get past induction-recursion required by

$$
\llbracket e / f \rrbracket=\llbracket e \rrbracket / \llbracket f \rrbracket
$$

(we can now write $e \rrbracket x \rightarrow f \rrbracket y \rightarrow e / f \rrbracket x / y$)

Our tactic: Rational

Our tactic: Rational

In our situation:

Our tactic: Rational

In our situation:

- \mathcal{D} is a field

Our tactic: Rational

In our situation:

- \mathcal{D} is a field

$$
P(x, y):=(x=y)
$$

Our tactic: Rational

In our situation:

6 \mathcal{D} is a field

6 $\quad P(x, y):=(x=y)$

6 f computes $\mathcal{N}(x-y)$ and checks whether it outputs 0

How the normalization works

How the normalization works

For any expression $e, \mathcal{N}(e)=p_{1} / p_{2}$

How the normalization works

For any expression $e, \mathcal{N}(e)=p_{1} / p_{2}$
p_{1} and p_{2} are polynomials on some variables fully expanded and sorted

How the normalization works

For any expression $e, \mathcal{N}(e)=p_{1} / p_{2}$
p_{1} and p_{2} are polynomials on some variables fully expanded and sorted
take $p_{2}=1$: we get a tactic for rings!

How the normalization works

For any expression $e, \mathcal{N}(e)=p_{1} / p_{2}$
p_{1} and p_{2} are polynomials on some variables fully expanded and sorted
take $p_{2}=1$: we get a tactic for rings!
(actually even in abelian groups with some extra work...)

The big picture

The big picture

The big picture

$e \times f]^{R} x \times y$ but not $\left.e \times f\right]^{G} x \times y$

The big picture

$e \times f]^{R} x \times y$ but not $\left.e \times f\right]^{G} x \times y$
$e / f]^{F} x / y$ but not $e / f \rrbracket^{G} x / y$ or $\left.e / f\right]^{R} x / y$

Good news, bad news

Good news, bad news

The good news...

Good news, bad news

The good news...

- it works!

Good news, bad news

The good news...

- it works!
- reuse of around 60% of the code (the type \mathcal{E} and the normalization function \mathcal{N})

Good news, bad news

The good news...

- it works!

6 reuse of around 60% of the code (the type \mathcal{E} and the normalization function \mathcal{N})
... and the bad news

Good news, bad news

The good news...

- it works!

6 reuse of around 60% of the code (the type \mathcal{E} and the normalization function \mathcal{N})
... and the bad news

6 further unification requires extra axiom

In a perfect world (I)

In a perfect world (II)

In a perfect world (II)

Instead of defining $\rrbracket^{G}, \prod^{R}$ and \rrbracket^{F} by e.g.

In a perfect world (II)

Instead of defining \prod^{G}, \prod^{R} and \rrbracket^{F} by e.g.

$$
\begin{aligned}
e \rrbracket^{G} x \wedge f \rrbracket^{G} y & \Rightarrow e+f \rrbracket^{G} x+y \\
e \rrbracket^{F} x \wedge f \rrbracket^{F} y \wedge y \neq 0 & \Rightarrow e / f \rrbracket^{F} x / y
\end{aligned}
$$

In a perfect world (II)

Instead of defining \prod^{G}, \prod^{R} and \rrbracket^{F} by e.g.

$$
\begin{aligned}
e \rrbracket^{G} x \wedge f \rrbracket^{G} y & \Rightarrow e+f \rrbracket^{G} x+y \\
e \rrbracket^{F} x \wedge f \rrbracket^{F} y \wedge y \neq 0 & \Rightarrow e / f \rrbracket^{F} x / y
\end{aligned}
$$

define $]^{-}: \Pi_{A: S e t o i d} \mathcal{E} \rightarrow A$ s.t.

In a perfect world (II)

Instead of defining $\rrbracket^{G}, \prod^{R}$ and \rrbracket^{F} by e.g.

$$
\begin{aligned}
e \rrbracket^{G} x \wedge f \mathbb{I}^{G} y & \Rightarrow e+f \rrbracket^{G} x+y \\
e \rrbracket^{F} x \wedge f \mathbb{I}^{F} y \wedge y \neq 0 & \Rightarrow e / f \prod^{F} x / y
\end{aligned}
$$

define $\mathbb{I}^{-}: \Pi_{A: S e t o i d} \mathcal{E} \rightarrow A$ s.t.
A is group $\wedge e \rrbracket^{A} x \wedge f \mathbb{J}^{A} y \Rightarrow e+f \rrbracket^{A} x+y$
A is field $\wedge e \rrbracket^{A} x \wedge f \rrbracket^{A} y \wedge y \neq 0 \Rightarrow e / f \rrbracket^{A} x / y$
using subtyping of algebraic structures.

The K -axiom

The K -axiom

We cannot prove

The K -axiom

We cannot prove

$$
\left.e \rrbracket^{A} a \wedge e\right]^{A} b \Rightarrow a={ }_{A} b
$$

The K -axiom

We cannot prove

$$
e \rrbracket^{A} a \wedge e \rrbracket^{A} b \Rightarrow a={ }_{A} b
$$

without the K-axiom

The K -axiom

We cannot prove

$$
e \rrbracket^{A} a \wedge e \rrbracket^{A} b \Rightarrow a={ }_{A} b
$$

without the K-axiom

$$
\langle x, y[x]\rangle=\left\langle x^{\prime}, y^{\prime}\left[x^{\prime}\right]\right\rangle \Rightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

The K-axiom

We cannot prove

$$
e \rrbracket^{A} a \wedge e \rrbracket^{A} b \Rightarrow a={ }_{A} b
$$

without the K-axiom

$$
\langle x, y[x]\rangle=\left\langle x^{\prime}, y^{\prime}\left[x^{\prime}\right]\right\rangle \Rightarrow x=x^{\prime} \wedge y=y^{\prime}
$$

The K-axiom, although consistent with, is not provable within Coq.

Conclusions

Conclusions

Powerful tactics for equational reasoning

Conclusions

Powerful tactics for equational reasoning
Reuse of code for fields, rings and groups

Conclusions

Powerful tactics for equational reasoning
Reuse of code for fields, rings and groups
© Improvement possible using K-axiom

Conclusions

Powerful tactics for equational reasoning

- Reuse of code for fields, rings and groups
© Improvement possible using K-axiom

6 (and more on the paper)

