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Motivation

FTA-project at (then) University of Nijmegen

Tactic to prove equalities in fields

intuitively “admissible” in simpler structures

uses partial reflection. . .

Goal: hierarchy of tactics parallel to hierarchy of structures
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Reflection

Given: a predicate P on a domain D

Decision procedure f for (subset E of) D

such that f(e) = 1 ⇐⇒ P ([[e]])

E
[[·]]

//

f

��

D

P

��

=

Prop
id // Prop
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Partial Reflection

Generalization where [[·]] : E → D is replaced by ][ ⊆ E ×D

not (necessarily) total

not (necessarily) functional

used to get past induction-recursion required by

[[e/f ]] = [[e]]/[[f ]]

(we can now write e ][ x → f ][ y → e/f ][ x/y)
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Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13



Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13



Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13



Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13



Our tactic: Rational

In our situation:

D is a field

P (x, y) := (x = y)

f computes N (x − y) and checks whether it outputs 0

Hierarchical Reflection – p. 6/13



How the normalization works

For any expression e, N (e) = p1/p2

p1 and p2 are polynomials on some variables fully
expanded and sorted

take p2 = 1: we get a tactic for rings!

(actually even in abelian groups with some extra work. . . )
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The big picture

F : Field

��

E

][G ((PPPPPPPPPPPPPPP

][F
66mmmmmmmmmmmmmmm ][R

// R : Ring

��
G : Group

e × f ][R x × y but not e × f ][G x × y

e/f ][F x/y but not e/f ][G x/y or e/f ][R x/y
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Good news, bad news

The good news. . .

it works!

reuse of around 60% of the code (the type E and the
normalization function N )

. . . and the bad news

further unification requires extra axiom
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In a perfect world (I)

F : Field

��

F : Field

��

E

][G

""FFFFFFFFFFFFFFFFFFF

][F

;;xxxxxxxxxxxxxxxxxxx ][R
// R : Ring

��

7→ E

][

""FFFFFFFFFFFFFFFFFFF

][

;;xxxxxxxxxxxxxxxxxxx ][
// R : Ring

��
G : Group G : Group
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In a perfect world (II)

Instead of defining ][G, ][R and ][F by e.g.

e ][G x ∧ f ][G y ⇒ e + f ][G x + y

e ][F x ∧ f ][F y ∧ y 6= 0 ⇒ e/f ][F x/y

define ][− : ΠA:SetoidE → A s.t.

A is group ∧ e ][A x ∧ f ][A y ⇒ e + f ][A x + y

A is field ∧ e ][A x ∧ f ][A y ∧ y 6= 0 ⇒ e/f ][A x/y

using subtyping of algebraic structures.
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The K-axiom

We cannot prove

e ][A a ∧ e ][A b ⇒ a =A b

without the K-axiom

〈x, y[x]〉 = 〈x′, y′[x′]〉 ⇒ x = x′ ∧ y = y′

The K-axiom, although consistent with, is not provable
within Coq.
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Conclusions

Powerful tactics for equational reasoning

Reuse of code for fields, rings and groups

Improvement possible using K-axiom

(and more on the paper)
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