
Introduction
Outline

The essence of proofs when fibring sequent calculi
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Signatures

Definition

A (propositional) signature C is a family of sets indexed by the
natural numbers.

The elements of each Ck are called constructors or connectives of
arity k.

We say that C ⊆ C ′ if Ck ⊆ C ′
k for every k ∈ N.
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Formulas

Definition

Let C be a signature and Ξ = {ξn : n ∈ N} be a countable set of
meta-variables.

The language L(C ,Ξ) is the free algebra over C generated by Ξ.

The elements of L(C ,Ξ) are called formulas.
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Substitutions

Definition

A substitution is a map σ : Ξ → L(C ).

Substitutions can be inductively extended to formulas and to sets
of formulas:

σ(γ) is the formula where each ξ ∈ Ξ is replaced by σ(ξ);

σ(Γ) = {σ(γ) : γ ∈ Γ}.

In particular, when σ(ξn) ∈ Ξ for every n, we say that σ is a
renaming of variables.
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Definition

A sequent calculus (given by rules) is a pair R = 〈C ,R〉, where C
is a signature and R is a set of rules including structural rules and
specific rules (for the connectives).
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Definitions
Examples
Fibring

Structural rules

These are chosen among the following.

ξ1,∆1 −→ ∆2 ∆1 −→ ∆2, ξ1

∆1 −→ ∆2
Cut

∆1 −→ ∆2

ξ1,∆1 −→ ∆2
LW

∆1 −→ ∆2

∆1 −→ ∆2, ξ1
RW

∆1, ξ1, ξ1 −→ ∆2

∆1, ξ1 −→ ∆2
LC

∆1 −→ ξ1, ξ1,∆2

∆1 −→ ξ1,∆2
RC
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Rules for the connectives

These can include:

Left rules: the antecedent of the conclusion includes a formula
c(ϕ1, . . . , ϕn) for some n-ary connective c .

Right rules: the consequent of the conclusion includes a
formula c(ϕ1, . . . , ϕn) for some n-ary connective c .
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Definitions
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Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents ∆ in
sequent calculus R is a finite sequence {∆1,i −→ ∆2,i}n

i=1 of
sequents such that:

∆1,1 −→ ∆2,1 is s;

for each i = 1, . . . , n, one of the following holds:

∆1,i −→ ∆2,i is an axiom (justified by Ax);
∆1,i −→ ∆2,i ∈ ∆ (justified by Hyp);
for some rule r = 〈{θ1, . . . , θk}, γ〉 and substitution σ,
∆1,i −→ ∆2,i = σ(γ) and σ(θj) ∈ {∆1,k −→ ∆2,k}n

k=i+1

(justified by r , i1, . . . , ik).

Notation: ∆ `R s or (when ∆ is empty) `R s.
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Example: S4

All structural rules plus:

Γ −→ ∆, ξ1 ξ2, Γ −→ ∆

(ξ1 → ξ2), Γ −→ ∆
L → ξ1, Γ −→ ∆, ξ2

Γ −→ ∆, (ξ1 → ξ2)
R →

ξ1, Γ1 −→ ♦(∆1)

(♦ξ1),�(Γ1), Γ2 −→ ∆2,♦(∆1)
L♦

Γ, ξ1, (�ξ1) −→ ∆

Γ, (�ξ1) −→ ∆
L�

�Γ1 −→ ξ1,∆1

Γ2,�(Γ1) −→ (�ξ1),♦(∆1),∆2
R�

Γ −→ ∆, ξ1, (♦ξ1)

Γ −→ ∆, (♦ξ1)
R♦

where �(Γ) = {(�ϕ) : ϕ ∈ Γ} and ♦(Γ) = {(♦ϕ) : ϕ ∈ Γ}
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Definitions
Examples
Fibring

Derivation in S4

Example

The following shows that `S4−→ (♦(ξ1 → (�ξ1))).

1. −→ (♦(ξ1 → (�ξ1))) R♦, 2
2. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)) R →, 3
3. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1) R�, 4
4. −→ (♦(ξ1 → (�ξ1))), ξ1 R♦, 5
5. −→ (♦(ξ1 → (�ξ1))), (ξ1 → (�ξ1)), ξ1 R →, 6
6. ξ1 −→ (♦(ξ1 → (�ξ1))), (�ξ1), ξ1 Ax
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Definitions
Examples
Fibring

Derivation in D

Example

The following shows that −→ ξ2 `D−→ (♦(ξ1 → ξ2))

1. −→ (♦(ξ1 → ξ2)) Cut, 2, 5
2. (�ξ2) −→ (♦(ξ1 → ξ2)) R♦, 3
3. ξ2 −→ (ξ1 → ξ2) R →, 4
4. ξ2, ξ1 −→ ξ2 Ax
5. −→ (♦(ξ1 → ξ2)), (�ξ2) RW, 6
6. −→ (�ξ2) R�, 7
7. −→ ξ2 Hyp
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Definitions
Examples
Fibring

Definition

Let R′ = 〈C ′,R ′〉 and R′′ = 〈C ′′,R ′′〉 be sequent calculi.

The (rule-)fibring R′ ]R′′ of R′ and R′′ is the sequent calculus
〈C ′ ∪ C ′′,R ′ ∪ R ′′〉.
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We can show that `S4]D−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))

1. −→ ♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))) Cut, 2, 5
2. (�′′(♦′(ξ1 → (�′ξ1)))) −→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1))))) R♦′′, 3
3. (♦′(ξ1 → (�′ξ1))) −→ (ξ2 → (♦′(ξ1 → (�′ξ1)))) R→, 4
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6. −→ (�′′(♦′(ξ1 → (�′ξ1)))) R�′′, 7
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Inspiration

Definition

A proof system is a tuple P = 〈C ,D, ◦,P〉 where C is a signature,
D is a set, ◦ : ℘(D)× D → D and P = {PΓ}Γ⊆L(C) is a family of
relations PΓ ⊆ D × L(C ) satisfying the following properties.

Right reflexivity: if γ ∈ Γ, then PΓ(d , γ) for some d ∈ D;

Monotonicity: if Γ1 ⊆ Γ2, then PΓ1 ⊆ PΓ2 ;

Compositionality: if PΓ(E ,Ψ) and PΨ(d , ϕ), then
PΓ(E ◦ d , ϕ).
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Definition

A sequent calculus given by derivations is a pair D = 〈C ,P〉 where
C is a signature and P = {P∆ : ∆ ∈ ℘finSeqC} is a family of
predicates P∆ ⊆ Seq∗C × SeqC such that the following conditions
hold.

Conclusion: if P∆(ω, s) holds, then s is the first element in ω.

Monotonicity: if ∆1 ⊆ ∆2, then P∆1 ⊆ P∆2 .

Closure under substitution: if P∆(ω, s) holds and σ is a
substitution, then Pσ(∆)(σ(ω), σ(s)) also holds.
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Induced calculus from rules

Let R = 〈C ,R〉 be a sequent calculus given by rules and define
D(R) = 〈C ,P〉 where P∆(ω, s) holds iff ω is a rule-derivation of s
from ∆.

Then D(R) is a sequent calculus given by derivations.

Furthermore, ∆ `R s iff ∆ `D(R) s.
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Translation

Definition

Let C and C ′ be signatures with C ⊆ C ′ and g : L(C ′) → N be an
injection.

The translation τg : L(C ′) → L(C ) is a map defined inductively as
follows:

τg (ξi ) = ξ2i+1 for ξi ∈ Ξ;

τg (c(γ′1, . . . , γ
′
k)) = c(τg (γ′1), . . . , τg (γ′k)) for c ∈ Ck and

γ′1, . . . , γ
′
k ∈ L(C ′);

τg (c ′(γ′1, . . . , γ
′
k)) = ξ2g(c ′(γ′

1,...,γ
′
k )) for c ′ ∈ C ′

k \ Ck and
γ′1, . . . , γ

′
k ∈ L(C ′).
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Inverse translation

Definition

With C , C ′ and g as above, τ−1
g : Ξ → L(C ′) is the following

substitution:

τ−1
g (ξ2i+1) = ξi ;

τ−1
g (ξ2i ) = g−1(i).

It is easy to check that τ−1 ◦ τ = id and τ ◦ τ−1 = id.
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Definition

Let D′ = 〈C ′,P ′〉 and D′′ = 〈C ′′,P ′′〉 be sequent calculi given by
derivations.

The fibring D′ ] D′′ is the sequent calculus 〈C ,P〉, where
C = C ′ ∪ C ′′ and each P∆ is inductively defined as follows.

if P ′
τ ′(∆)(τ

′(ω), τ ′(s)) holds, then P∆(ω, s) also holds;

if P ′′
τ ′′(∆)(τ

′′(ω), τ ′′(s)) holds, then P∆(ω, s) also holds;

for finite Σ = {s1, . . . , sk} ⊆ SeqC , if P∆(ωi , si ) holds for
i = 1, . . . , k and PΣ(ωs , s) holds, then P∆(ω, s) holds, where
ω is the sequence of sequents ωs · ω1 · . . . · ωk .

τ ′ and τ ′′ are the translations of L(C ) to L(C ′) and L(C ′′).
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Example

We show that `D(S4)]D(D)−→ (♦′′(ξ2 → (♦′(ξ1 → (�′ξ1)))))

1. −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))) Cut, 2, 5
2. (�′′(♦′(ξ1 → (�′ξ1)))) −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))) R♦′′, 3
3. (♦′(ξ1 → (�′ξ1))) −→ (ξ1 → (♦′(ξ1 → (�′ξ1)))) R→, 4
4. (♦′(ξ1 → (�′ξ1))), ξ1 −→ (♦′(ξ1 → (�′ξ1))) Ax
5. −→ (♦′′(ξ1 → (♦′(ξ1 → (�′ξ1))))), (�′′(♦′(ξ1 → (�′ξ1)))) RW, 6
6. −→ (�′′(♦′(ξ1 → (�′ξ1)))) R�′′, 7
7. −→ (♦′(ξ1 → (�′ξ1))) Hyp

1. −→ (♦′(ξ1 → (�′ξ1))) R♦′, 2
2. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)) R→, 3
3. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1) R�′, 4
4. −→ (♦′(ξ1 → (�′ξ1))), ξ1 R♦′, 5
5. −→ (♦′(ξ1 → (�′ξ1))), (ξ1 → (�′ξ1)), ξ1 R→, 6
6. ξ1 −→ (♦′(ξ1 → (�′ξ1))), (�′ξ1), ξ1 Ax
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Theorem

Let R′ = 〈C ′,R ′〉 and R′′ = 〈C ′′,R ′′〉 be sequent calculi given by
rules such that Cut, LW and RW are in R ′ ∪ R ′′, and define:

D′ = D(R′) and D′′ = D(R′′) are the sequent calculi given by
derivations induced by R′ and R′′;

R = R′ ]R′′ is the fibring of R′ and R′′;

D = D′ ] D′′ is the fibring of D′ and D′′;

C = C ′ ∪ C ′′ is the common signature of R and D.

Then D and R are equivalent systems in the sense that ∆ `R s iff
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Cut elimination
Decidability

Definition

A sequent calculus given by rules R = 〈C ,R〉 has cut elimination
iff, for any ∆ ⊆ SeqC and s ∈ SeqC , whenever ∆ `R s there is a
derivation ω for ∆ `R s that does not use the cut rule.

Theorem

Let R′ and R′′ be sequent calculi given by rules with cut
elimination.
Then their fibring R also has cut elimination.
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Definition

A sequent calculus given by derivations D = 〈C ,P〉 is decidable iff,
for every recursive set ∆ ⊆ SeqC , the relation P∆ is recursive.

A sequent calculus given by rules R is decidable iff D(R) is
decidable.
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Theorem (Characterization via rules)

A R be a sequent calculus given by rules is decidable iff for every
rule r the relation Sr is recursive, where Sr is the relation such that
Sr (s1, . . . , sn, s) holds iff 〈{s1, . . . , sn}, s〉 is an instance of r .

Corollary

Let R′ and R′′ be decidable sequent calculi given by rules.

Then their fibring R = R′ ]R′′ is decidable.
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Cut elimination
Decidability

Algorithm

For each partition of ω do

1 If the partition is singular, check whether
P ′

τ ′(∆)(τ
′(ω), τ ′(s)) holds or P ′′

τ ′′(∆)(τ
′′(ω), τ ′′(s)) holds.

If either is the case, output 1; otherwise move to the next
partition.

2 Otherwise, let ω∗ be the first sequence in the partition
and ω1, . . . , ωn the remaining ones. Let si denote (ωi )1.

3 For each i = 1, . . . , n check whether P∆(ωi , si ) holds. If
this is not the case, go on to the next partition.

4 If the test above succeeded for all i , check whether
P{s1,...,sn}(ω, s) holds. If this is the case, output 1.

When no partitions of ω are left, output 0.
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