The essence of proofs when fibring sequent calculi

Luís Cruz-Filipe^{1,2} Cristina Sernadas^{1,2})

¹Center for Logic and Computation Lisbon, Portugal

> ²Dept. Mathematics, IST Lisbon, Portugal

Logic and Computation Seminar May 13th 2005

• no work on fibring of sequent calculus

- "intuitive" definition not very satisfactory...
- ideas from work on proof systems

- no work on fibring of sequent calculus
- "intuitive" definition not very satisfactory...
- ideas from work on proof systems

- no work on fibring of sequent calculus
- "intuitive" definition not very satisfactory...
- ideas from work on proof systems

Background

- 2 Sequent calculi given by rules
 - Definitions
 - Examples
 - Fibring
- 3 Sequent calculi given by derivations
 - Definitions
 - Fibring
 - Equivalence
- Preservation results
 - Cut elimination
 - Decidability

Conclusions & future work

< ロ > (四 > (三 > (三 >)))

Background

- Definitions
- Examples
- Fibring
- 3 Sequent calculi given by derivations
 - Definitions
 - Fibring
 - Equivalence
- Preservation results
 - Cut elimination
 - Decidability
- 5 Conclusions & future work

< ロ > (四 > (三 > (三 >)))

Background

- Definitions
- Examples
- Fibring
- 3 Sequent calculi given by derivations
 - Definitions
 - Fibring
 - Equivalence

Preservation results

- Cut elimination
- Decidability
- 5 Conclusions & future work

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト

크

Background

- Definitions
- Examples
- Fibring
- 3 Sequent calculi given by derivations
 - Definitions
 - Fibring
 - Equivalence

Preservation results

- Cut elimination
- Decidability
- 5 Conclusions & future work

・ 同・ ・ ヨ・ ・ ヨ・

Background

- Definitions
- Examples
- Fibring
- 3 Sequent calculi given by derivations
 - Definitions
 - Fibring
 - Equivalence

Preservation results

- Cut elimination
- Decidability
- 5 Conclusions & future work

向下 イヨト イヨト

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Definition

A (propositional) signature C is a family of sets indexed by the natural numbers.

The elements of each C_k are called *constructors* or *connectives* of arity k.

We say that $C \subseteq C'$ if $C_k \subseteq C'_k$ for every $k \in \mathbb{N}$.

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Definition

A (propositional) signature C is a family of sets indexed by the natural numbers.

The elements of each C_k are called *constructors* or *connectives* of arity k.

We say that $C \subseteq C'$ if $C_k \subseteq C'_k$ for every $k \in \mathbb{N}$.

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Definition

Let *C* be a signature and $\Xi = \{\xi_n : n \in \mathbb{N}\}\$ be a countable set of meta-variables.

The language $L(C, \Xi)$ is the free algebra over C generated by Ξ .

The elements of $L(C, \Xi)$ are called *formulas*.

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Substitutions

Definition

A substitution is a map $\sigma : \Xi \to L(C)$.

Substitutions can be inductively extended to formulas and to sets of formulas:

- $\sigma(\gamma)$ is the formula where each $\xi \in \Xi$ is replaced by $\sigma(\xi)$;
- $\sigma(\Gamma) = \{\sigma(\gamma) : \gamma \in \Gamma\}.$

In particular, when $\sigma(\xi_n) \in \Xi$ for every *n*, we say that σ is a *renaming of variables*.

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Substitutions

Definition

A substitution is a map $\sigma : \Xi \rightarrow L(C)$.

Substitutions can be inductively extended to formulas and to sets of formulas:

- σ(γ) is the formula where each ξ ∈ Ξ is replaced by σ(ξ);
- $\sigma(\Gamma) = \{\sigma(\gamma) : \gamma \in \Gamma\}.$

In particular, when $\sigma(\xi_n) \in \Xi$ for every *n*, we say that σ is a *renaming of variables*.

Sequent calculi given by rules Sequent calculi given by derivations Preservation results Conclusions & future work

Substitutions

Definition

A substitution is a map $\sigma : \Xi \rightarrow L(C)$.

Substitutions can be inductively extended to formulas and to sets of formulas:

• $\sigma(\gamma)$ is the formula where each $\xi \in \Xi$ is replaced by $\sigma(\xi)$;

•
$$\sigma(\Gamma) = \{\sigma(\gamma) : \gamma \in \Gamma\}.$$

In particular, when $\sigma(\xi_n) \in \Xi$ for every *n*, we say that σ is a *renaming of variables*.

(日) (문) (문) (문) (문)

Definitions Examples Fibring

Definition

A sequent calculus (given by rules) is a pair $\mathcal{R} = \langle C, R \rangle$, where C is a signature and R is a set of rules including structural rules and specific rules (for the connectives).

Definitions Examples Fibring

Structural rules

These are chosen among the following.

Definitions Examples Fibring

Structural rules

These are chosen among the following.

(日) (四) (王) (王) (王)

Definitions Examples Fibring

Structural rules

These are chosen among the following.

$$\begin{array}{ccc} \underline{\xi_1, \Delta_1 \longrightarrow \Delta_2 \quad \Delta_1 \longrightarrow \Delta_2, \xi_1} \\ \underline{\Delta_1 \longrightarrow \Delta_2} \\ \end{array} \ \ Cut \\ \hline \underline{\Delta_1 \longrightarrow \Delta_2} \\ \underline{\xi_1, \Delta_1 \longrightarrow \Delta_2} \\ \hline \underline{\xi_1, \Delta_1 \longrightarrow \Delta_2} \\ \underline{\Delta_1, \xi_1, \xi_1 \longrightarrow \Delta_2} \\ \end{array} \\ \begin{array}{c} LW \\ \underline{\Delta_1 \longrightarrow \Delta_2, \xi_1} \\ \underline{\Delta_1 \longrightarrow \xi_1, \xi_1, \Delta_2} \\ \hline \underline{\Delta_1 \longrightarrow \xi_1, \Delta_2} \\ \hline \underline{\Delta_1 \longrightarrow \xi_1, \Delta_2} \\ \end{array} \\ \begin{array}{c} RC \\ RC \\ \hline \end{array}$$

Definitions Examples Fibring

These can include:

- Left rules: the antecedent of the conclusion includes a formula $c(\varphi_1, \ldots, \varphi_n)$ for some *n*-ary connective *c*.
- Right rules: the consequent of the conclusion includes a formula c(φ₁,...,φ_n) for some n-ary connective c.

Definitions Examples Fibring

These can include:

- Left rules: the antecedent of the conclusion includes a formula $c(\varphi_1, \ldots, \varphi_n)$ for some *n*-ary connective *c*.
- Right rules: the consequent of the conclusion includes a formula c(φ₁,...,φ_n) for some n-ary connective c.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

Δ_{1,1} → Δ_{2,1} is s;
for each i = 1,..., n, one of the following holds

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

• $\Delta_{1,1} \longrightarrow \Delta_{2,1}$ is s;

• for each i = 1, ..., n, one of the following holds:

• $\Delta_{1,i} \longrightarrow \Delta_{2,i}$ is an axiom (justified by Ax);

• $\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$ (justified by Hyp);

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

• $\Delta_{1,i} \longrightarrow \Delta_{2,i}$ is an axiom (justified by Ax);

• $\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$ (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i+1}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i}$$
 is an axiom (justified by Ax);

• $\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$ (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^{n}$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i}$$
 is an axiom (justified by Ax);

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$$
 (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i+1}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i}$$
 is an axiom (justified by Ax);

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$$
 (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i+1}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^n$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i}$$
 is an axiom (justified by Ax);

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$$
 (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i+1}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Derivations

Definition

A (rule-)derivation of a sequent s from a set of sequents Δ in sequent calculus \mathcal{R} is a finite sequence $\{\Delta_{1,i} \longrightarrow \Delta_{2,i}\}_{i=1}^{n}$ of sequents such that:

•
$$\Delta_{1,1} \longrightarrow \Delta_{2,1}$$
 is s;

• for each i = 1, ..., n, one of the following holds:

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i}$$
 is an axiom (justified by Ax);

•
$$\Delta_{1,i} \longrightarrow \Delta_{2,i} \in \Delta$$
 (justified by Hyp);

• for some rule $r = \langle \{\theta_1, \ldots, \theta_k\}, \gamma \rangle$ and substitution σ , $\Delta_{1,i} \longrightarrow \Delta_{2,i} = \sigma(\gamma)$ and $\sigma(\theta_j) \in \{\Delta_{1,k} \longrightarrow \Delta_{2,k}\}_{k=i+1}^n$ (justified by r, i_1, \ldots, i_k).

Notation: $\Delta \vdash_{\mathcal{R}} s$ or (when Δ is empty) $\vdash_{\mathcal{R}} s$.

Definitions Examples Fibring

Example: S4

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \ \mathsf{L} \rightarrow \quad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \ \mathsf{R} \rightarrow$$

$$\frac{\xi_1, \Gamma_1 \longrightarrow \Diamond(\Delta_1)}{(\Diamond \xi_1), \Box(\Gamma_1), \Gamma_2 \longrightarrow \Delta_2, \Diamond(\Delta_1)} \ \mathsf{L} \Diamond \qquad \frac{\Gamma, \xi_1, (\Box \xi_1) \longrightarrow \Delta}{\Gamma, (\Box \xi_1) \longrightarrow \Delta} \ \mathsf{L} \Box$$

 $\frac{\Box \Gamma_1 \longrightarrow \xi_1, \Delta_1}{\Gamma_2, \Box(\Gamma_1) \longrightarrow (\Box\xi_1), \Diamond(\Delta_1), \Delta_2} R\Box \qquad \frac{\Gamma \longrightarrow \Delta, \sigma}{\Gamma \longrightarrow \Delta}$

where $\Box(\Gamma) = \{(\Box \varphi) : \varphi \in \Gamma\}$ and $\Diamond(\Gamma) = \{(\Diamond \varphi) : \varphi \in \Gamma\}$

(日) (四) (王) (王) (王)

크

Definitions Examples Fibring

Example: S4

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \ \mathsf{L} \rightarrow \quad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \ \mathsf{R} \rightarrow$$

$$\frac{\xi_1, \Gamma_1 \longrightarrow \Diamond(\Delta_1)}{(\Diamond \xi_1), \Box(\Gamma_1), \Gamma_2 \longrightarrow \Delta_2, \Diamond(\Delta_1)} \ \mathsf{L} \Diamond \qquad \frac{\Gamma, \xi_1, (\Box \xi_1) \longrightarrow \Delta}{\Gamma, (\Box \xi_1) \longrightarrow \Delta} \ \mathsf{L} \Box$$

$$\frac{\Box \Gamma_1 \longrightarrow \xi_1, \Delta_1}{\Gamma_2, \Box(\Gamma_1) \longrightarrow (\Box \xi_1), \Diamond(\Delta_1), \Delta_2} \ \mathsf{R} \Box \qquad \frac{\Gamma \longrightarrow \Delta, \xi_1, (\Diamond \xi_1)}{\Gamma \longrightarrow \Delta, (\Diamond \xi_1)} \ \mathsf{R} \Diamond$$

where $\Box(\Gamma) = \{(\Box \varphi) : \varphi \in \Gamma\}$ and $\Diamond(\Gamma) = \{(\Diamond \varphi) : \varphi \in \Gamma\}$

Definitions Examples Fibring

Example: S4

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \ \mathsf{L} \rightarrow \quad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \ \mathsf{R} \rightarrow$$

$$\frac{\xi_1, \Gamma_1 \longrightarrow \Diamond(\Delta_1)}{(\Diamond \xi_1), \Box(\Gamma_1), \Gamma_2 \longrightarrow \Delta_2, \Diamond(\Delta_1)} \ \mathsf{L} \Diamond \qquad \frac{\Gamma, \xi_1, (\Box \xi_1) \longrightarrow \Delta}{\Gamma, (\Box \xi_1) \longrightarrow \Delta} \ \mathsf{L} \Box$$

$$\frac{\Box \Gamma_1 \longrightarrow \xi_1, \Delta_1}{\Gamma_2, \Box (\Gamma_1) \longrightarrow (\Box \xi_1), \Diamond (\Delta_1), \Delta_2} \ \mathsf{R} \Box \qquad \frac{\Gamma \longrightarrow \Delta, \xi_1, (\Diamond \xi_1)}{\Gamma \longrightarrow \Delta, (\Diamond \xi_1)} \ \mathsf{R} \Diamond$$

where $\Box(\Gamma) = \{(\Box \varphi) : \varphi \in \Gamma\}$ and $\Diamond(\Gamma) = \{(\Diamond \varphi) : \varphi \in \Gamma\}$

Definitions Examples Fibring

Derivation in S4

Example

The following shows that $\vdash_{S4} \longrightarrow (\Diamond(\xi_1 \rightarrow (\Box \xi_1))).$

Definitions Examples Fibring

Example: D

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \mathrel{\mathsf{L}} \rightarrow \qquad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \mathrel{\mathsf{R}} \rightarrow$$

$$\frac{\Gamma \longrightarrow \Delta, \xi_1}{\Gamma, (\neg \xi_1) \longrightarrow \Delta} \ \mathsf{L}\neg$$

$$\frac{\Gamma, \xi_1 \longrightarrow \Delta}{\Gamma \longrightarrow (\neg \xi_1), \Delta} \ \mathsf{R} \neg$$

$$\frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Box\xi_1)} \ \mathsf{R}\Box \qquad \frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Diamond\xi_1)} \ \mathsf{R}\Diamond$$

Definitions Examples Fibring

Example: D

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \ L \rightarrow \qquad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \ R \rightarrow$$

$$\frac{\Gamma \longrightarrow \Delta, \xi_1}{\Gamma, (\neg \xi_1) \longrightarrow \Delta} \mathsf{L}^-$$

$$\frac{\Gamma, \xi_1 \longrightarrow \Delta}{\Gamma \longrightarrow (\neg \xi_1), \Delta} \ \mathsf{R} \neg$$

(ロ) (部) (注) (注) (注)

$$\frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Box\xi_1)} \ \mathsf{R}\Box \qquad \frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Diamond\xi_1)} \ \mathsf{R}\langle$$

Definitions Examples Fibring

Example: D

All structural rules plus:

$$\frac{\Gamma \longrightarrow \Delta, \xi_1 \quad \xi_2, \Gamma \longrightarrow \Delta}{(\xi_1 \rightarrow \xi_2), \Gamma \longrightarrow \Delta} \ L \rightarrow \qquad \frac{\xi_1, \Gamma \longrightarrow \Delta, \xi_2}{\Gamma \longrightarrow \Delta, (\xi_1 \rightarrow \xi_2)} \ R \rightarrow$$

$$\frac{\Gamma \longrightarrow \Delta, \xi_1}{\Gamma, (\neg \xi_1) \longrightarrow \Delta} \ \mathsf{L} \neg \qquad \qquad \frac{\Gamma, \xi_1 \longrightarrow \Delta}{\Gamma \longrightarrow (\neg \xi_1), \Delta} \ \mathsf{R} \neg$$

$$\frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Box\xi_1)} \ \mathsf{R}\Box \qquad \frac{\Gamma \longrightarrow \xi_1}{\Box(\Gamma) \longrightarrow (\Diamond\xi_1)} \ \mathsf{R}\Diamond$$
Definitions Examples Fibring

Derivation in D

Example

The following shows that
$$\longrightarrow \xi_2 \vdash_D \longrightarrow (\Diamond(\xi_1 \rightarrow \xi_2))$$

$$\begin{array}{ll} 1. & \longrightarrow \left(\Diamond (\xi_1 \to \xi_2) \right) & \quad \text{Cut}, 2, 5 \\ 2. & \left(\Box \xi_2 \right) \longrightarrow \left(\Diamond (\xi_1 \to \xi_2) \right) & \quad \text{R} \Diamond, 3 \\ 3. & \xi_2 \longrightarrow \left(\xi_1 \to \xi_2 \right) & \quad \text{R} \to, 4 \\ 4. & \xi_2, \xi_1 \longrightarrow \xi_2 & \quad \text{Ax} \\ 5. & \longrightarrow \left(\Diamond (\xi_1 \to \xi_2) \right), \left(\Box \xi_2 \right) & \quad \text{RW}, 6 \\ 6. & \longrightarrow \left(\Box \xi_2 \right) & \quad \text{R} \Box, 7 \\ 7. & \longrightarrow \xi_2 & \quad \text{Hyp} \end{array}$$

Definitions Examples Fibring

Definition

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi.

The (rule-)*fibring* $\mathcal{R}' \uplus \mathcal{R}''$ of \mathcal{R}' and \mathcal{R}'' is the sequent calculus $\langle C' \cup C'', R' \cup R'' \rangle$.

Definitions Examples Fibring

Example

We can show that
$$\vdash_{S4 \uplus D} \longrightarrow (\Diamond''(\xi_2 \to (\Diamond'(\xi_1 \to (\Box'\xi_1)))))$$

$$\begin{array}{lll} 1. & \longrightarrow \Diamond''(\xi_2 \rightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{Cut}, 2, 5 \\ 2. & (\Box''(\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) \longrightarrow (\Diamond''(\xi_2 \rightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))))) & \quad \text{R} \Diamond'', 3 \\ 3. & (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))) \longrightarrow (\xi_2 \rightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{R} \rightarrow, 4 \\ 4. & \xi_2, (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))) \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{Ax} \\ 5. & \longrightarrow (\Diamond''(\xi_2 \rightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))))) & \quad \text{Ax} \\ 6. & \longrightarrow (\Box''(\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{R} \bigtriangledown', 6 \\ 6. & \longrightarrow (\Box''(\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{R} \bigtriangledown', 6 \\ 8. & \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1)))) & \quad \text{R} \Diamond', 8 \\ 8. & \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))), (\xi_1 \rightarrow (\Box'\xi_1)) & \quad \text{R} \ominus', 9 \\ 9. & \xi_1 \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))), (\Box'\xi_1) & \quad \text{R} \ominus', 10 \\ 1. & \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))), \xi_1 & \quad \text{R} \ominus', 11 \\ 1. & \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))), (\xi_1 \rightarrow (\Box'\xi_1)), \xi_1 & \quad \text{R} \rightarrow, 12 \\ 2. & \xi_1 \longrightarrow (\Diamond'(\xi_1 \rightarrow (\Box'\xi_1))), (\Box'\xi_1), \xi_1 & \quad \text{Ax} \\ \end{array}$$

(日) (四) (E) (E) (E)

Definitions Fibring Equivalence

Inspiration

Definition

A proof system is a tuple $\mathcal{P} = \langle C, D, \circ, P \rangle$ where C is a signature, D is a set, $\circ : \wp(D) \times D \to D$ and $P = \{P_{\Gamma}\}_{\Gamma \subseteq L(C)}$ is a family of relations $P_{\Gamma} \subseteq D \times L(C)$ satisfying the following properties.

- Right reflexivity: if $\gamma \in \Gamma$, then $P_{\Gamma}(d, \gamma)$ for some $d \in D$;
- Monotonicity: if $\Gamma_1 \subseteq \Gamma_2$, then $P_{\Gamma_1} \subseteq P_{\Gamma_2}$;
- Compositionality: if $P_{\Gamma}(E, \Psi)$ and $P_{\Psi}(d, \varphi)$, then $P_{\Gamma}(E \circ d, \varphi)$.

Definitions Fibring Equivalence

Inspiration

Definition

A proof system is a tuple $\mathcal{P} = \langle C, D, \circ, P \rangle$ where C is a signature, D is a set, $\circ : \wp(D) \times D \to D$ and $P = \{P_{\Gamma}\}_{\Gamma \subseteq L(C)}$ is a family of relations $P_{\Gamma} \subseteq D \times L(C)$ satisfying the following properties.

- Right reflexivity: if $\gamma \in \Gamma$, then $P_{\Gamma}(d, \gamma)$ for some $d \in D$;
- Monotonicity: if $\Gamma_1 \subseteq \Gamma_2$, then $P_{\Gamma_1} \subseteq P_{\Gamma_2}$;
- Compositionality: if $P_{\Gamma}(E, \Psi)$ and $P_{\Psi}(d, \varphi)$, then $P_{\Gamma}(E \circ d, \varphi)$.

Definitions Fibring Equivalence

Inspiration

Definition

A proof system is a tuple $\mathcal{P} = \langle C, D, \circ, P \rangle$ where C is a signature, D is a set, $\circ : \wp(D) \times D \to D$ and $P = \{P_{\Gamma}\}_{\Gamma \subseteq L(C)}$ is a family of relations $P_{\Gamma} \subseteq D \times L(C)$ satisfying the following properties.

- Right reflexivity: if $\gamma \in \Gamma$, then $P_{\Gamma}(d, \gamma)$ for some $d \in D$;
- Monotonicity: if $\Gamma_1 \subseteq \Gamma_2$, then $P_{\Gamma_1} \subseteq P_{\Gamma_2}$;
- Compositionality: if $P_{\Gamma}(E, \Psi)$ and $P_{\Psi}(d, \varphi)$, then $P_{\Gamma}(E \circ d, \varphi)$.

Definitions Fibring Equivalence

Inspiration

Definition

A proof system is a tuple $\mathcal{P} = \langle C, D, \circ, P \rangle$ where C is a signature, D is a set, $\circ : \wp(D) \times D \to D$ and $P = \{P_{\Gamma}\}_{\Gamma \subseteq L(C)}$ is a family of relations $P_{\Gamma} \subseteq D \times L(C)$ satisfying the following properties.

- Right reflexivity: if $\gamma \in \Gamma$, then $P_{\Gamma}(d, \gamma)$ for some $d \in D$;
- Monotonicity: if $\Gamma_1 \subseteq \Gamma_2$, then $P_{\Gamma_1} \subseteq P_{\Gamma_2}$;
- Compositionality: if $P_{\Gamma}(E, \Psi)$ and $P_{\Psi}(d, \varphi)$, then $P_{\Gamma}(E \circ d, \varphi)$.

Definitions Fibring Equivalence

Definition

A sequent calculus given by derivations is a pair $\mathcal{D} = \langle C, P \rangle$ where C is a signature and $P = \{P_{\Delta} : \Delta \in \wp_{\operatorname{fin}}\operatorname{Seq}_{C}\}$ is a family of predicates $P_{\Delta} \subseteq \operatorname{Seq}_{C}^{*} \times \operatorname{Seq}_{C}$ such that the following conditions hold.

- Conclusion: if $P_{\Delta}(\omega, s)$ holds, then s is the first element in ω .
- Monotonicity: if $\Delta_1 \subseteq \Delta_2$, then $P_{\Delta_1} \subseteq P_{\Delta_2}$
- Closure under substitution: if P_Δ(ω, s) holds and σ is a substitution, then P_{σ(Δ)}(σ(ω), σ(s)) also holds.

Definitions Fibring Equivalence

Definition

A sequent calculus given by derivations is a pair $\mathcal{D} = \langle C, P \rangle$ where C is a signature and $P = \{P_{\Delta} : \Delta \in \wp_{\operatorname{fin}}\operatorname{Seq}_{C}\}$ is a family of predicates $P_{\Delta} \subseteq \operatorname{Seq}_{C}^{*} \times \operatorname{Seq}_{C}$ such that the following conditions hold.

- Conclusion: if $P_{\Delta}(\omega, s)$ holds, then s is the first element in ω .
- Monotonicity: if $\Delta_1 \subseteq \Delta_2$, then $P_{\Delta_1} \subseteq P_{\Delta_2}$.
- Closure under substitution: if P_Δ(ω, s) holds and σ is a substitution, then P_{σ(Δ)}(σ(ω), σ(s)) also holds.

Definitions Fibring Equivalence

Definition

A sequent calculus given by derivations is a pair $\mathcal{D} = \langle C, P \rangle$ where C is a signature and $P = \{P_{\Delta} : \Delta \in \wp_{\operatorname{fin}}\operatorname{Seq}_{C}\}$ is a family of predicates $P_{\Delta} \subseteq \operatorname{Seq}_{C}^{*} \times \operatorname{Seq}_{C}$ such that the following conditions hold.

- Conclusion: if $P_{\Delta}(\omega, s)$ holds, then s is the first element in ω .
- Monotonicity: if $\Delta_1 \subseteq \Delta_2$, then $P_{\Delta_1} \subseteq P_{\Delta_2}$.
- Closure under substitution: if P_Δ(ω, s) holds and σ is a substitution, then P_{σ(Δ)}(σ(ω), σ(s)) also holds.

Definitions Fibring Equivalence

Definition

A sequent calculus given by derivations is a pair $\mathcal{D} = \langle C, P \rangle$ where C is a signature and $P = \{P_{\Delta} : \Delta \in \wp_{\operatorname{fin}}\operatorname{Seq}_{C}\}$ is a family of predicates $P_{\Delta} \subseteq \operatorname{Seq}_{C}^{*} \times \operatorname{Seq}_{C}$ such that the following conditions hold.

- Conclusion: if $P_{\Delta}(\omega, s)$ holds, then s is the first element in ω .
- Monotonicity: if $\Delta_1 \subseteq \Delta_2$, then $P_{\Delta_1} \subseteq P_{\Delta_2}$.
- Closure under substitution: if P_Δ(ω, s) holds and σ is a substitution, then P_{σ(Δ)}(σ(ω), σ(s)) also holds.

Definitions Fibring Equivalence

Induced calculus from rules

Let $\mathcal{R} = \langle C, R \rangle$ be a sequent calculus given by rules and define $\mathcal{D}(\mathcal{R}) = \langle C, P \rangle$ where $P_{\Delta}(\omega, s)$ holds iff ω is a rule-derivation of s from Δ .

Then $\mathcal{D}(\mathcal{R})$ is a sequent calculus given by derivations.

Furthermore, $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}(\mathcal{R})} s$.

Definitions Fibring Equivalence

Translation

Definition

Let C and C' be signatures with $C \subseteq C'$ and $g: L(C') \rightarrow \mathbb{N}$ be an injection.

The translation $\tau_g : L(C') \rightarrow L(C)$ is a map defined inductively as follows:

- $\tau_g(\xi_i) = \xi_{2i+1}$ for $\xi_i \in \Xi$;
- $\tau_g(c(\gamma'_1, \ldots, \gamma'_k)) = c(\tau_g(\gamma'_1), \ldots, \tau_g(\gamma'_k))$ for $c \in C_k$ and $\gamma'_1, \ldots, \gamma'_k \in L(C')$;
- $\tau_{g}(c'(\gamma'_{1},\ldots,\gamma'_{k})) = \xi_{2g(c'(\gamma'_{1},\ldots,\gamma'_{k}))}$ for $c' \in C'_{k} \setminus C_{k}$ and $\gamma'_{1},\ldots,\gamma'_{k} \in L(C').$

(日) (四) (注) (注) (三) (三)

Definitions Fibring Equivalence

Translation

Definition

Let C and C' be signatures with $C \subseteq C'$ and $g: L(C') \rightarrow \mathbb{N}$ be an injection.

The translation $\tau_g : L(C') \rightarrow L(C)$ is a map defined inductively as follows:

• $\tau_g(\xi_i) = \xi_{2i+1}$ for $\xi_i \in \Xi$;

• $\tau_g(c(\gamma'_1, \ldots, \gamma'_k)) = c(\tau_g(\gamma'_1), \ldots, \tau_g(\gamma'_k))$ for $c \in C_k$ and $\gamma'_1, \ldots, \gamma'_k \in L(C')$;

• $au_{g}(c'(\gamma'_{1},\ldots,\gamma'_{k})) = \xi_{2g(c'(\gamma'_{1},\ldots,\gamma'_{k}))}$ for $c' \in C'_{k} \setminus C_{k}$ and $\gamma'_{1},\ldots,\gamma'_{k} \in L(C')$.

《曰》 《圖》 《圖》 《頁》 三字

Definitions Fibring Equivalence

Translation

Definition

Let C and C' be signatures with $C \subseteq C'$ and $g: L(C') \rightarrow \mathbb{N}$ be an injection.

The translation $\tau_g : L(C') \rightarrow L(C)$ is a map defined inductively as follows:

•
$$\tau_g(\xi_i) = \xi_{2i+1}$$
 for $\xi_i \in \Xi$;

- $\tau_g(c(\gamma'_1, \ldots, \gamma'_k)) = c(\tau_g(\gamma'_1), \ldots, \tau_g(\gamma'_k))$ for $c \in C_k$ and $\gamma'_1, \ldots, \gamma'_k \in L(C')$;
- $\tau_g(c'(\gamma'_1,\ldots,\gamma'_k)) = \xi_{2g(c'(\gamma'_1,\ldots,\gamma'_k))}$ for $c' \in C'_k \setminus C_k$ and $\gamma'_1,\ldots,\gamma'_k \in L(C')$.

《曰》 《圖》 《圖》 《頁》 三字

Definitions Fibring Equivalence

Translation

Definition

Let C and C' be signatures with $C \subseteq C'$ and $g: L(C') \rightarrow \mathbb{N}$ be an injection.

The translation $\tau_g : L(C') \rightarrow L(C)$ is a map defined inductively as follows:

•
$$\tau_{g}(\xi_{i}) = \xi_{2i+1}$$
 for $\xi_{i} \in \Xi$;
• $\tau_{g}(c(\gamma'_{1}, \ldots, \gamma'_{k})) = c(\tau_{g}(\gamma'_{1}), \ldots, \tau_{g}(\gamma'_{k}))$ for $c \in C_{k}$ and $\gamma'_{1}, \ldots, \gamma'_{k} \in L(C')$;
• $\tau_{g}(c'(\gamma'_{1}, \ldots, \gamma'_{k})) = \xi_{2g(c'(\gamma'_{1}, \ldots, \gamma'_{k}))}$ for $c' \in C'_{k} \setminus C_{k}$ and $\gamma'_{1}, \ldots, \gamma'_{k} \in L(C')$.

Definitions Fibring Equivalence

Inverse translation

Definition

With C, C' and g as above, $\tau_g^{-1} : \Xi \to L(C')$ is the following substitution:

•
$$\tau_g^{-1}(\xi_{2i+1}) = \xi_i;$$

• $\tau_g^{-1}(\xi_{2i}) = g^{-1}(i).$

It is easy to check that $au^{-1}\circ au=\mathrm{id}$ and $au\circ au^{-1}=\mathrm{id}$

Definitions Fibring Equivalence

Inverse translation

Definition

With C, C' and g as above, $\tau_g^{-1} : \Xi \to L(C')$ is the following substitution:

•
$$\tau_g^{-1}(\xi_{2i+1}) = \xi_i;$$

• $\tau^{-1}(\xi_{2i}) = \sigma^{-1}(i)$

It is easy to check that $\tau^{-1} \circ \tau = \mathrm{id}$ and $\tau \circ \tau^{-1} = \mathrm{id}$.

Definitions Fibring Equivalence

Inverse translation

Definition

With C, C' and g as above, $\tau_g^{-1} : \Xi \to L(C')$ is the following substitution:

•
$$\tau_g^{-1}(\xi_{2i+1}) = \xi_i;$$

•
$$\tau_g^{-1}(\xi_{2i}) = g^{-1}(i).$$

It is easy to check that $\tau^{-1} \circ \tau = id$ and $\tau \circ \tau^{-1} = id$.

Definitions Fibring Equivalence

Inverse translation

Definition

With C, C' and g as above, $\tau_g^{-1} : \Xi \to L(C')$ is the following substitution:

•
$$\tau_g^{-1}(\xi_{2i+1}) = \xi_i;$$

•
$$\tau_g^{-1}(\xi_{2i}) = g^{-1}(i).$$

It is easy to check that $\tau^{-1} \circ \tau = id$ and $\tau \circ \tau^{-1} = id$.

Definitions Fibring Equivalence

Inverse translation

Definition

With C, C' and g as above, $\tau_g^{-1} : \Xi \to L(C')$ is the following substitution:

•
$$\tau_g^{-1}(\xi_{2i+1}) = \xi_i;$$

• $\tau_g^{-1}(\xi_{2i}) = g^{-1}(i)$

It is easy to check that $\tau^{-1} \circ \tau = id$ and $\tau \circ \tau^{-1} = id$.

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

 $^\prime$ and au'' are the translations of $L(\mathcal{C})$ to $L(\mathcal{C}')$ and $L(\mathcal{C}')$

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s)$) holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

' and au'' are the translations of L(C) to L(C') and L(C'')

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega),\tau'(s))$ holds, then $P_{\Delta}(\omega,s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

 τ' and τ'' are the translations of L(C) to L(C') and L(C'').

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega),\tau'(s))$ holds, then $P_{\Delta}(\omega,s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

 τ' and τ'' are the translations of L(C) to L(C') and L(C'')

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega),\tau'(s))$ holds, then $P_{\Delta}(\omega,s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

 τ' and τ'' are the translations of L(C) to L(C') and L(C'')

Definitions Fibring Equivalence

Definition

Let $\mathcal{D}' = \langle C', P' \rangle$ and $\mathcal{D}'' = \langle C'', P'' \rangle$ be sequent calculi given by derivations.

The fibring $\mathcal{D}' \uplus \mathcal{D}''$ is the sequent calculus $\langle C, P \rangle$, where $C = C' \cup C''$ and each P_{Δ} is inductively defined as follows.

- if $P'_{\tau'(\Delta)}(\tau'(\omega),\tau'(s))$ holds, then $P_{\Delta}(\omega,s)$ also holds;
- if $P_{\tau''(\Delta)}''(\omega), \tau''(s))$ holds, then $P_{\Delta}(\omega, s)$ also holds;
- for finite $\Sigma = \{s_1, \ldots, s_k\} \subseteq \text{Seq}_C$, if $P_{\Delta}(\omega_i, s_i)$ holds for $i = 1, \ldots, k$ and $P_{\Sigma}(\omega_s, s)$ holds, then $P_{\Delta}(\omega, s)$ holds, where ω is the sequence of sequents $\omega_s \cdot \omega_1 \cdot \ldots \cdot \omega_k$.

 τ' and τ'' are the translations of L(C) to L(C') and L(C'').

Definitions Fibring Equivalence

Example

We show that
$$\vdash_{\mathcal{D}(S4) \uplus \mathcal{D}(D)} \longrightarrow (\Diamond''(\xi_2 \to (\Diamond'(\xi_1 \to (\Box'\xi_1)))))$$

$$\begin{array}{lll} 1. & \longrightarrow (\Diamond''(\xi_1 \to (\Diamond'(\xi_1 \to (\Box'\xi_1))))) & \quad \mbox{Cut}, 2, 5 \\ 2. & (\Box''(\Diamond'(\xi_1 \to (\Box'\xi_1))) \to (\Diamond''(\xi_1 \to (\Diamond'(\xi_1 \to (\Box'\xi_1))))) & \quad \mbox{R} \Diamond'', 3 \\ 3. & (\Diamond'(\xi_1 \to (\Box'\xi_1))) \to (\xi_1 \to (\Diamond'(\xi_1 \to (\Box'\xi_1)))) & \quad \mbox{R} \to , 4 \\ 4. & (\Diamond'(\xi_1 \to (\Box'\xi_1))), \xi_1 \to (\Diamond'(\xi_1 \to (\Box'\xi_1)))) & \quad \mbox{Ax} \\ 5. & \longrightarrow (\Diamond''(\xi_1 \to (\Diamond'(\xi_1 \to (\Box'\xi_1)))) & \quad \mbox{Ax} \\ 6. & \longrightarrow (\Box''(\Diamond'(\xi_1 \to (\Box'\xi_1)))) & \quad \mbox{R} \Box'', 7 \\ 7. & \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))) & \quad \mbox{Hyp} \\ 1. & \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))) & \quad \mbox{R} \ominus', 2 \\ 2. & \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))), (\xi_1 \to (\Box'\xi_1)) & \quad \mbox{R} \Box', 4 \\ 4. & \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))), (\xi_1 \to (\Box'\xi_1)), \xi_1 & \quad \mbox{R} \ominus', 5 \\ 5. & \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))), (\xi_1 \to (\Box'\xi_1)), \xi_1 & \quad \mbox{R} \ominus', 6 \\ 6. & \xi_1 \longrightarrow (\Diamond'(\xi_1 \to (\Box'\xi_1))), (\Box'\xi_1), \xi_1 & \quad \mbox{Ax} \\ \end{array}$$

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;
- $\mathcal{C} = \mathcal{C}' \cup \mathcal{C}''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \operatorname{Seq}_{\mathcal{C}}$ and $s \in \operatorname{Seq}_{\mathcal{C}}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D}=\mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and $\mathcal{D}'';$
- $C = C' \cup C''$ is the common signature of $\mathcal R$ and $\mathcal D$.

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \operatorname{Seq}_{\mathcal{C}}$ and $s \in \operatorname{Seq}_{\mathcal{C}}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;
- $C = C' \cup C''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \operatorname{Seq}_{\mathcal{C}}$ and $s \in \operatorname{Seq}_{\mathcal{C}}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;

• $C = C' \cup C''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \operatorname{Seq}_{C}$ and $s \in \operatorname{Seq}_{C}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;
- $C = C' \cup C''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \text{Seq}_{C}$ and $s \in \text{Seq}_{C}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;
- $C = C' \cup C''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \text{Seq}_{C}$ and $s \in \text{Seq}_{C}$.

Definitions Fibring Equivalence

Theorem

Let $\mathcal{R}' = \langle C', R' \rangle$ and $\mathcal{R}'' = \langle C'', R'' \rangle$ be sequent calculi given by rules such that Cut, LW and RW are in $R' \cup R''$, and define:

- \$\mathcal{D}' = \mathcal{D}(\mathcal{R}')\$ and \$\mathcal{D}'' = \mathcal{D}(\mathcal{R}'')\$ are the sequent calculi given by derivations induced by \$\mathcal{R}'\$ and \$\mathcal{R}''\$;
- $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is the fibring of \mathcal{R}' and \mathcal{R}'' ;
- $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is the fibring of \mathcal{D}' and \mathcal{D}'' ;
- $C = C' \cup C''$ is the common signature of \mathcal{R} and \mathcal{D} .

Then \mathcal{D} and \mathcal{R} are equivalent systems in the sense that $\Delta \vdash_{\mathcal{R}} s$ iff $\Delta \vdash_{\mathcal{D}} s$, for any $\Delta \subseteq \text{Seq}_{C}$ and $s \in \text{Seq}_{C}$.

イロト イポト イヨト イヨト 三日

Cut elimination Decidability

Definition

A sequent calculus given by rules $\mathcal{R} = \langle C, R \rangle$ has cut elimination iff, for any $\Delta \subseteq \text{Seq}_C$ and $s \in \text{Seq}_C$, whenever $\Delta \vdash_{\mathcal{R}} s$ there is a derivation ω for $\Delta \vdash_{\mathcal{R}} s$ that does not use the cut rule.

Theorem

Let \mathcal{R}' and \mathcal{R}'' be sequent calculi given by rules with cut elimination. Then their fibring \mathcal{R} also has cut elimination.
Cut elimination Decidability

Definition

A sequent calculus given by rules $\mathcal{R} = \langle C, R \rangle$ has cut elimination iff, for any $\Delta \subseteq \text{Seq}_C$ and $s \in \text{Seq}_C$, whenever $\Delta \vdash_{\mathcal{R}} s$ there is a derivation ω for $\Delta \vdash_{\mathcal{R}} s$ that does not use the cut rule.

Theorem

Let \mathcal{R}' and \mathcal{R}'' be sequent calculi given by rules with cut elimination. Then their fibring \mathcal{R} also has cut elimination.

Cut elimination Decidability

Definition

A sequent calculus given by derivations $\mathcal{D} = \langle C, P \rangle$ is *decidable* iff, for every recursive set $\Delta \subseteq \text{Seq}_C$, the relation P_Δ is recursive.

A sequent calculus given by rules \mathcal{R} is decidable iff $\mathcal{D}(\mathcal{R})$ is decidable.

Cut elimination Decidability

Definition

A sequent calculus given by derivations $\mathcal{D} = \langle C, P \rangle$ is *decidable* iff, for every recursive set $\Delta \subseteq \text{Seq}_C$, the relation P_Δ is recursive.

A sequent calculus given by rules ${\mathcal R}$ is decidable iff ${\mathcal D}({\mathcal R})$ is decidable.

Cut elimination Decidability

Theorem (Characterization via rules)

A \mathcal{R} be a sequent calculus given by rules is decidable iff for every rule r the relation S_r is recursive, where S_r is the relation such that $S_r(s_1, \ldots, s_n, s)$ holds iff $\langle \{s_1, \ldots, s_n\}, s \rangle$ is an instance of r.

Corollary

Let \mathcal{R}' and \mathcal{R}'' be decidable sequent calculi given by rules.

Then their fibring $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is decidable.

Cut elimination Decidability

Theorem (Characterization via rules)

A \mathcal{R} be a sequent calculus given by rules is decidable iff for every rule r the relation S_r is recursive, where S_r is the relation such that $S_r(s_1, \ldots, s_n, s)$ holds iff $\langle \{s_1, \ldots, s_n\}, s \rangle$ is an instance of r.

Corollary

Let \mathcal{R}' and \mathcal{R}'' be decidable sequent calculi given by rules.

Then their fibring $\mathcal{R} = \mathcal{R}' \uplus \mathcal{R}''$ is decidable.

Cut elimination Decidability

Theorem

Let \mathcal{D}' and \mathcal{D}'' be decidable sequent calculi given by derivations.

Then their fibring $\mathcal{D} = \mathcal{D}' \uplus \mathcal{D}''$ is decidable.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether
 P'_{τ'(Δ)}(τ'(ω), τ'(s)) holds or P''_{τ''(Δ)}(τ''(ω), τ''(s)) holds.
 If either is the case, output 1; otherwise move to the next
 partition.
 - Otherwise, let ω^* be the first sequence in the partition and $\omega_1, \ldots, \omega_n$ the remaining ones. Let s_i denote $(\omega_i)_i$
 - For each i = 1,...., n check whether P_Λ(ω₁, s_i) holds: this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether
 - $P_{[\alpha_1,\dots,\alpha_n]}(\omega, s)$ holds. If this is the case, output 1.

• When no partitions of ω are left, output 0.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether
 P'_{τ'(Δ)}(τ'(ω), τ'(s)) holds or P''_{τ''(Δ)}(τ''(ω), τ''(s)) holds.
 If either is the case, output 1; otherwise move to the next
 partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁
 - For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all i, check whether
 - $P_{\{s_1,\ldots,s_n\}}(\omega,s)$ holds. If this is the case, output 1.
- When no partitions of ω are left, output 0.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds or $P''_{\tau''(\Delta)}(\tau''(\omega), \tau''(s))$ holds. If either is the case, output 1; otherwise move to the next partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁.
 - Solution For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether

 $\mathcal{P}_{\{s_1,...,s_n\}}(\omega,s)$ holds. If this is the case, output 1.

• When no partitions of ω are left, output 0.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds or $P''_{\tau''(\Delta)}(\tau''(\omega), \tau''(s))$ holds. If either is the case, output 1; otherwise move to the next partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁.
 - Solution For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether P_{{s1},...,s_n}(ω, s) holds. If this is the case, output 1.
- When no partitions of ω are left, output 0.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds or $P''_{\tau''(\Delta)}(\tau''(\omega), \tau''(s))$ holds. If either is the case, output 1; otherwise move to the next partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁.
 - Solution For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether
 P_{{s1},...,sn</sub>(ω, s) holds. If this is the case, output 1.
- When no partitions of ω are left, output 0.

◆□→ ◆□→ ◆三→ ◆三→ -

- 33

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds or $P''_{\tau''(\Delta)}(\tau''(\omega), \tau''(s))$ holds. If either is the case, output 1; otherwise move to the next partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁.
 - So For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether P_{s1,...,sn}(ω, s) holds. If this is the case, output 1.

• When no partitions of ω are left, output 0.

Cut elimination Decidability

Algorithm

- For each partition of ω do
 - If the partition is singular, check whether $P'_{\tau'(\Delta)}(\tau'(\omega), \tau'(s))$ holds or $P''_{\tau''(\Delta)}(\tau''(\omega), \tau''(s))$ holds. If either is the case, output 1; otherwise move to the next partition.
 - Otherwise, let ω^{*} be the first sequence in the partition and ω₁,..., ω_n the remaining ones. Let s_i denote (ω_i)₁.
 - For each i = 1,..., n check whether P_Δ(ω_i, s_i) holds. If this is not the case, go on to the next partition.
 - If the test above succeeded for all *i*, check whether P_{s1,...,sn}(ω, s) holds. If this is the case, output 1.
- When no partitions of ω are left, output 0.

・ロト ・ 一日 ト ・ 日 ト ・ ・ 日 ト ・

• Definition of sequent calculus via derivations

- New definition of fibring
- Preservation of cut-elimination
- Preservation of decidability

(日) (四) (三) (三) (三)

- Definition of sequent calculus via derivations
- New definition of fibring
- Preservation of cut-elimination
- Preservation of decidability

(日) (部) (注) (注)

- Definition of sequent calculus via derivations
- New definition of fibring
- Preservation of cut-elimination
- Preservation of decidability

(日) (四) (三) (三) (三)

크

- Definition of sequent calculus via derivations
- New definition of fibring
- Preservation of cut-elimination
- Preservation of decidability

(日) (部) (注) (注)

크

• Generalization of the notion of sequent

• Generalization beyond propositional signature

- Generalization of the notion of sequent
- Generalization beyond propositional signature

(日) (四) (三) (三)