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Classical IVT

Theorem

Let f be a function defined on [a, b] with f (a) < y < f (b). Then
there is x ∈ [a, b] such that f (x) = y.
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Definition

A function f is locally non-constant if, on every interval [a, b], it
satisfies

∀y∃x .f (x) 6= y .

Lemma

Polynomials are locally non-constant.
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exponential complexity (factor ≈ 3)
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Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN
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