
Introduction
Outline

Execution of Extracted Programs

Lúıs Cruz-Filipe1 Pierre Letouzey2

1Center for Logic and Computation
Lisbon, Portugal

2

Mathematisches Institut
Ludwig-Maximilians-Universitt Mnchen

Mnchen, Germany

CALCULEMUS workshop
July 18th 2005

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Motivation

Coq extraction

C-CoRN library

work on extracting programs from C-CoRN (with Bas Spitters)

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Motivation

Coq extraction

C-CoRN library

work on extracting programs from C-CoRN (with Bas Spitters)

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Motivation

Coq extraction

C-CoRN library

work on extracting programs from C-CoRN (with Bas Spitters)

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Practical problems

extracted code unreadable

compilation requires manual editing

compiled code does not terminate

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Practical problems

extracted code unreadable

compilation requires manual editing

compiled code does not terminate

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

Practical problems

extracted code unreadable

compilation requires manual editing

compiled code does not terminate

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

1 Compiling extracted code

2 Computing e

3 Computing
√

2

4 Conclusions

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

1 Compiling extracted code

2 Computing e

3 Computing
√

2

4 Conclusions

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

1 Compiling extracted code

2 Computing e

3 Computing
√

2

4 Conclusions

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Introduction
Outline

1 Compiling extracted code

2 Computing e

3 Computing
√

2

4 Conclusions

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Coq type system too powerful:

types may depend on terms
records may include types

possibility of using unsafe coercions

correctness still guaranteed

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Coq type system too powerful:

types may depend on terms
records may include types

possibility of using unsafe coercions

correctness still guaranteed

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Coq type system too powerful:

types may depend on terms
records may include types

possibility of using unsafe coercions

correctness still guaranteed

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Coq type system too powerful:

types may depend on terms
records may include types

possibility of using unsafe coercions

correctness still guaranteed

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Coq type system too powerful:

types may depend on terms
records may include types

possibility of using unsafe coercions

correctness still guaranteed

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Definitions

e is defined as the sum of the series

e =
∞∑

n=0

1

n!

first non-trivial example of a “real” real number

precise representation depends on proof terms

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Definitions

e is defined as the sum of the series

e =
∞∑

n=0

1

n!

first non-trivial example of a “real” real number

precise representation depends on proof terms

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Definitions

e is defined as the sum of the series

e =
∞∑

n=0

1

n!

first non-trivial example of a “real” real number

precise representation depends on proof terms

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Immediate problems & solutions

natural numbers in unary notation changed to binary notation

proofs by induction changed to more structured proofs

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Immediate problems & solutions

natural numbers in unary notation changed to binary notation

proofs by induction changed to more structured proofs

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Immediate problems & solutions

natural numbers in unary notation changed to binary notation

proofs by induction changed to more structured proofs

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Immediate problems & solutions

natural numbers in unary notation changed to binary notation

proofs by induction changed to more structured proofs

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Immediate problems & solutions

natural numbers in unary notation changed to binary notation

proofs by induction changed to more structured proofs

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Less trivial problems

no advantage is taken of the concrete model

solution: parameterize on proof terms

efficient program!

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Less trivial problems

no advantage is taken of the concrete model

solution: parameterize on proof terms

efficient program!

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Less trivial problems

no advantage is taken of the concrete model

solution: parameterize on proof terms

efficient program!

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Main strategy

Try to apply the same techniques that worked so well for e:

identify and attack potential bottlenecks

factor common proof steps

change proofs in an intelligent way

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Main strategy

Try to apply the same techniques that worked so well for e:

identify and attack potential bottlenecks

factor common proof steps

change proofs in an intelligent way

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Main strategy

Try to apply the same techniques that worked so well for e:

identify and attack potential bottlenecks

factor common proof steps

change proofs in an intelligent way

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Main strategy

Try to apply the same techniques that worked so well for e:

identify and attack potential bottlenecks

factor common proof steps

change proofs in an intelligent way

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Classical IVT

Theorem

Let f be a function defined on [a, b] with f (a) < y < f (b). Then
there is x ∈ [a, b] such that f (x) = y.

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

A constructive variant

Theorem

Let f be a locally non-constant function. . .

Definition

A function f is locally non-constant if, on every interval [a, b], it
satisfies

∀y∃x .f (x) 6= y .

Lemma

Polynomials are locally non-constant.

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

A constructive variant

Theorem

Let f be a locally non-constant function. . .

Definition

A function f is locally non-constant if, on every interval [a, b], it
satisfies

∀y∃x .f (x) 6= y .

Lemma

Polynomials are locally non-constant.

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

A constructive variant

Theorem

Let f be a locally non-constant function. . .

Definition

A function f is locally non-constant if, on every interval [a, b], it
satisfies

∀y∃x .f (x) 6= y .

Lemma

Polynomials are locally non-constant.

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Another constructive variant

Theorem

Let f be a strictly increasing function. . .

Lemma

λx .xn − c is strictly increasing on [0, c + 1].

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

Another constructive variant

Theorem

Let f be a strictly increasing function. . .

Lemma

λx .xn − c is strictly increasing on [0, c + 1].

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

The bad news

After several rounds of optimizations. . . the extracted program is

still VERY slow.

exponential complexity (factor ≈ 3)

no obvious improvements left. . .

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

The bad news

After several rounds of optimizations. . . the extracted program is

still VERY slow.

exponential complexity (factor ≈ 3)

no obvious improvements left. . .

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

The bad news

After several rounds of optimizations. . . the extracted program is

still VERY slow.

exponential complexity (factor ≈ 3)

no obvious improvements left. . .

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

The bad news

After several rounds of optimizations. . . the extracted program is

still VERY slow.

exponential complexity (factor ≈ 3)

no obvious improvements left. . .

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

An alternative approach

Formalization of the FTA proof in the concrete model, with
extraction in mind.

reduced fractions

explicit bounds for Cauchy sequences

functions as limit of rational-valued functions

Much better results!

Unfortunately, not portable to C-CoRN

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

extraction is not a magic button

extraction probably will never be a magic button

proving and computing seem to be essentially different things

no notion of “good” proof

will “good” proofs yield good programs?

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

extraction is not a magic button

extraction probably will never be a magic button

proving and computing seem to be essentially different things

no notion of “good” proof

will “good” proofs yield good programs?

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

extraction is not a magic button

extraction probably will never be a magic button

proving and computing seem to be essentially different things

no notion of “good” proof

will “good” proofs yield good programs?

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

extraction is not a magic button

extraction probably will never be a magic button

proving and computing seem to be essentially different things

no notion of “good” proof

will “good” proofs yield good programs?

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs



Compiling extracted code
Computing e

Computing
√

2
Conclusions

extraction is not a magic button

extraction probably will never be a magic button

proving and computing seem to be essentially different things

no notion of “good” proof

will “good” proofs yield good programs?

L. Cruz-Filipe, P. Letouzey Execution of Extracted Programs


	Introduction
	Outline
	Compiling extracted code
	Computing e
	Computing 2
	Conclusions

