
Motivation
Outline

Reasoning about Probabilistic Sequential Programs

Lúıs Cruz-Filipe
(joint work with R. Chadha, P. Mateus and A. Sernadas)

Security and Quantum Information Group
Instituto de Telecomunicações

Lisbon, Portugal

Seminário de Lógica Matemática
October 19, 2006

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

Motivation

reasoning about non-deterministic programs

new approach: truth values for formulas

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

Motivation

reasoning about non-deterministic programs

new approach: truth values for formulas

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

Motivation

reasoning about non-deterministic programs

new approach: truth values for formulas

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

1 The State Logic: EPPL
Language
Semantics
Calculus
Properties

2 The Programming Language
Syntax
Semantics

3 The Hoare Calculus
The calculus
Soundness
Completeness

4 Conclusions

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

1 The State Logic: EPPL
Language
Semantics
Calculus
Properties

2 The Programming Language
Syntax
Semantics

3 The Hoare Calculus
The calculus
Soundness
Completeness

4 Conclusions

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

1 The State Logic: EPPL
Language
Semantics
Calculus
Properties

2 The Programming Language
Syntax
Semantics

3 The Hoare Calculus
The calculus
Soundness
Completeness

4 Conclusions

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

Motivation
Outline

1 The State Logic: EPPL
Language
Semantics
Calculus
Properties

2 The Programming Language
Syntax
Semantics

3 The Hoare Calculus
The calculus
Soundness
Completeness

4 Conclusions

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Why EPPL

two-layered design (exogenous approach)

classical propositional logic at the lower level

probabilistic logic built at the higher level

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Why EPPL

two-layered design (exogenous approach)

classical propositional logic at the lower level

probabilistic logic built at the higher level

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Why EPPL

two-layered design (exogenous approach)

classical propositional logic at the lower level

probabilistic logic built at the higher level

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Real-closed fields

Definition

A real closed field is an ordered field K where:

every non-negative element of the K has a square root in K ;

every polynomial of odd degree with coefficients in K has at
least one solution in K .

Example

the set of real numbers with the usual multiplication, addition
and order relation;

the set of computable real numbers with the same operations.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Real-closed fields

Definition

A real closed field is an ordered field K where:

every non-negative element of the K has a square root in K ;

every polynomial of odd degree with coefficients in K has at
least one solution in K .

Example

the set of real numbers with the usual multiplication, addition
and order relation;

the set of computable real numbers with the same operations.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Real-closed fields

Definition

A real closed field is an ordered field K where:

every non-negative element of the K has a square root in K ;

every polynomial of odd degree with coefficients in K has at
least one solution in K .

Example

the set of real numbers with the usual multiplication, addition
and order relation;

the set of computable real numbers with the same operations.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Real-closed fields

Definition

A real closed field is an ordered field K where:

every non-negative element of the K has a square root in K ;

every polynomial of odd degree with coefficients in K has at
least one solution in K .

Example

the set of real numbers with the usual multiplication, addition
and order relation;

the set of computable real numbers with the same operations.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Real-closed fields

Definition

A real closed field is an ordered field K where:

every non-negative element of the K has a square root in K ;

every polynomial of odd degree with coefficients in K has at
least one solution in K .

Example

the set of real numbers with the usual multiplication, addition
and order relation;

the set of computable real numbers with the same operations.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Setting

finite range D of real numbers

finite set m = {0, . . . ,m − 1} of indices

registers xM = {xmk | k ∈ m} containing real values

registers bM = {bmk | k ∈ m} containing booleans

variables B = {Bk : k ∈ N} ranging over truth values

variables X = {Xk : k ∈ N} ranging over D

real-closed field K with set of algebraic numbers A
logical variables Y = {yk : k ∈ N} ranging over K

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Language

Real terms (with c ∈ D)

t ::= c | xm | X | (t + t) | (t t)

Classical state formulas

γ ::= bm | B | (t ≤ t) | ff | (γ ⇒ γ)

Probability terms (with r ∈ A)

p ::= r | y | r̃ | (
∫

γ) | (p + p) | (p p)

Probabilistic state formulas

η ::= (p ≤ p) | fff | (η ⊃ η)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Useful notions

Definition

An analytical term is a term without occurrences of probability
terms.

a ::= r | y | r̃ | (a + a) | (aa)

Definition

An analytical formula is a formula without occurrences of
probability terms.

κ ::= (a ≤ a) | fff | (κ ⊃ κ)

(�γ) stands for the formula ((
∫

γ) = (
∫

tt))
(♦γ) stands for the formula ((�(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Useful notions

Definition

An analytical term is a term without occurrences of probability
terms.

a ::= r | y | r̃ | (a + a) | (aa)

Definition

An analytical formula is a formula without occurrences of
probability terms.

κ ::= (a ≤ a) | fff | (κ ⊃ κ)

(�γ) stands for the formula ((
∫

γ) = (
∫

tt))
(♦γ) stands for the formula ((�(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Useful notions

Definition

An analytical term is a term without occurrences of probability
terms.

a ::= r | y | r̃ | (a + a) | (aa)

Definition

An analytical formula is a formula without occurrences of
probability terms.

κ ::= (a ≤ a) | fff | (κ ⊃ κ)

(�γ) stands for the formula ((
∫

γ) = (
∫

tt))
(♦γ) stands for the formula ((�(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Valuations

Definition

A valuation is a map that provides values to the memory variables
and corresponding logical variables. The set of all valuations is
denoted by V.

The denotation [[t]]v of a real term t given a valuation v is defined
inductively as expected.
Satisfaction v c γ of a classical state formula γ by a valuation v
is also defined inductively as usual.

Definition

The extent of a classical state formula γ in a set V of valuations is

|γ|V = {v ∈ V | v c γ}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Valuations

Definition

A valuation is a map that provides values to the memory variables
and corresponding logical variables. The set of all valuations is
denoted by V.

The denotation [[t]]v of a real term t given a valuation v is defined
inductively as expected.
Satisfaction v c γ of a classical state formula γ by a valuation v
is also defined inductively as usual.

Definition

The extent of a classical state formula γ in a set V of valuations is

|γ|V = {v ∈ V | v c γ}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Valuations

Definition

A valuation is a map that provides values to the memory variables
and corresponding logical variables. The set of all valuations is
denoted by V.

The denotation [[t]]v of a real term t given a valuation v is defined
inductively as expected.
Satisfaction v c γ of a classical state formula γ by a valuation v
is also defined inductively as usual.

Definition

The extent of a classical state formula γ in a set V of valuations is

|γ|V = {v ∈ V | v c γ}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Valuations

Definition

A valuation is a map that provides values to the memory variables
and corresponding logical variables. The set of all valuations is
denoted by V.

The denotation [[t]]v of a real term t given a valuation v is defined
inductively as expected.
Satisfaction v c γ of a classical state formula γ by a valuation v
is also defined inductively as usual.

Definition

The extent of a classical state formula γ in a set V of valuations is

|γ|V = {v ∈ V | v c γ}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Measure functions

Definition

A finitely additive, discrete and bounded K-measure µ on a set X
is a map from X to K+ such that:

µ(∅) = 0;

if U1 ∩ U2 = ∅, then µ(U1 ∪ U2) = µ(U1) + µ(U2).

A K-measure µ over X is a probability measure if µ(X) = 1.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Measure functions

Definition

A finitely additive, discrete and bounded K-measure µ on a set X
is a map from X to K+ such that:

µ(∅) = 0;

if U1 ∩ U2 = ∅, then µ(U1 ∪ U2) = µ(U1) + µ(U2).

A K-measure µ over X is a probability measure if µ(X) = 1.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Measure functions

Definition

A finitely additive, discrete and bounded K-measure µ on a set X
is a map from X to K+ such that:

µ(∅) = 0;

if U1 ∩ U2 = ∅, then µ(U1 ∪ U2) = µ(U1) + µ(U2).

A K-measure µ over X is a probability measure if µ(X) = 1.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Measure functions

Definition

A finitely additive, discrete and bounded K-measure µ on a set X
is a map from X to K+ such that:

µ(∅) = 0;

if U1 ∩ U2 = ∅, then µ(U1 ∪ U2) = µ(U1) + µ(U2).

A K-measure µ over X is a probability measure if µ(X) = 1.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Definition

A generalized probabilistic state consists of a real closed field K
and a finitely additive, discrete and finite K-measure over ℘V.

Given a classical formula γ we define

µγ = λV .µ(|γ|V).

Definition

Given a real closed field K, a K-assignment is a map ρ : Y → K.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Definition

A generalized probabilistic state consists of a real closed field K
and a finitely additive, discrete and finite K-measure over ℘V.

Given a classical formula γ we define

µγ = λV .µ(|γ|V).

Definition

Given a real closed field K, a K-assignment is a map ρ : Y → K.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Definition

A generalized probabilistic state consists of a real closed field K
and a finitely additive, discrete and finite K-measure over ℘V.

Given a classical formula γ we define

µγ = λV .µ(|γ|V).

Definition

Given a real closed field K, a K-assignment is a map ρ : Y → K.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Interpretation

Denotation of probability terms

[[r]]ρK ,µ = r

[[y]]ρK ,µ = ρ(y)

[[(
∫

γ)]]ρK ,µ = µ(|γ|V)

[[p1 + p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ + [[p2]]

ρ
K ,µ

[[p1p2]]
ρ
K ,µ = [[p1]]

ρ
K ,µ × [[p2]]

ρ
K ,µ

Satisfaction of probabilistic formulas

(K , µ)ρ (p1 ≤ p2) iff [[p1]]
ρ
K ,µ ≤ [[p2]]

ρ
K ,µ

(K , µ)ρ 6 fff

(K , µ)ρ (η1 ⊃ η2) iff (K , µ)ρ η2 or (K , µ)ρ 6 η1

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

A classical state formula γ is said to be valid if it holds for all
valuations v ∈ V.

Example

((x1 ≤ x2) ∧ (x1 > 0))⇒ (x12 ≤ x22)

Since D is finite, the set of valid classical state formulas is
recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

A classical state formula γ is said to be valid if it holds for all
valuations v ∈ V.

Example

((x1 ≤ x2) ∧ (x1 > 0))⇒ (x12 ≤ x22)

Since D is finite, the set of valid classical state formulas is
recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

A classical state formula γ is said to be valid if it holds for all
valuations v ∈ V.

Example

((x1 ≤ x2) ∧ (x1 > 0))⇒ (x12 ≤ x22)

Since D is finite, the set of valid classical state formulas is
recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

A probabilistic formula η is said to be a probabilistic tautology if
there exists a propositional tautology β such that η is obtained
from β by replacing all occurrences of ⊥ by fff, → by ⊃ and each
propositional symbol (uniformly) by a probabilistic state formula.

Example

((
∫
(x1 ≤ x2)) < 1) ⊃ (((

∫
(x1 ≤ x2)) < 1) ∩ ttt)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

A probabilistic formula η is said to be a probabilistic tautology if
there exists a propositional tautology β such that η is obtained
from β by replacing all occurrences of ⊥ by fff, → by ⊃ and each
propositional symbol (uniformly) by a probabilistic state formula.

Example

((
∫
(x1 ≤ x2)) < 1) ⊃ (((

∫
(x1 ≤ x2)) < 1) ∩ ttt)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

An analytical formula κ is a valid analytical formula if κ is satisfied
by ρ for any real closed field K and any K-assignment ρ.

Example

((y1 ≤ y2) ∧ (y1 > 0)) ⊃ (y2
1 ≤ y2

2)

The set of valid analytical formulas is decidable.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

An analytical formula κ is a valid analytical formula if κ is satisfied
by ρ for any real closed field K and any K-assignment ρ.

Example

((y1 ≤ y2) ∧ (y1 > 0)) ⊃ (y2
1 ≤ y2

2)

The set of valid analytical formulas is decidable.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Auxiliary notions

Definition

An analytical formula κ is a valid analytical formula if κ is satisfied
by ρ for any real closed field K and any K-assignment ρ.

Example

((y1 ≤ y2) ∧ (y1 > 0)) ⊃ (y2
1 ≤ y2

2)

The set of valid analytical formulas is decidable.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Calculus

Axioms

[CTaut] ` (�γ) for each valid state formula γ

[PTaut] ` η for each probabilistic tautology η

[RCF] ` κ~y
~p for any valid analytical formula κ

[Meas∅] ` ((
∫

ff) = 0)

[FAdd] ` (((
∫
(γ1 ∧ γ2)) = 0) ⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] ` ((�(γ1 ⇒ γ2)) ⊃ ((
∫

γ1) ≤ (
∫

γ2)))

Inference rule

[PMP] η1, (η1 ⊃ η2) ` η2

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Calculus

Axioms

[CTaut] ` (�γ) for each valid state formula γ

[PTaut] ` η for each probabilistic tautology η

[RCF] ` κ~y
~p for any valid analytical formula κ

[Meas∅] ` ((
∫

ff) = 0)

[FAdd] ` (((
∫
(γ1 ∧ γ2)) = 0) ⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] ` ((�(γ1 ⇒ γ2)) ⊃ ((
∫

γ1) ≤ (
∫

γ2)))

Inference rule

[PMP] η1, (η1 ⊃ η2) ` η2

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Calculus

Axioms

[CTaut] ` (�γ) for each valid state formula γ

[PTaut] ` η for each probabilistic tautology η

[RCF] ` κ~y
~p for any valid analytical formula κ

[Meas∅] ` ((
∫

ff) = 0)

[FAdd] ` (((
∫
(γ1 ∧ γ2)) = 0) ⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] ` ((�(γ1 ⇒ γ2)) ⊃ ((
∫

γ1) ≤ (
∫

γ2)))

Inference rule

[PMP] η1, (η1 ⊃ η2) ` η2

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Calculus

Axioms

[CTaut] ` (�γ) for each valid state formula γ

[PTaut] ` η for each probabilistic tautology η

[RCF] ` κ~y
~p for any valid analytical formula κ

[Meas∅] ` ((
∫

ff) = 0)

[FAdd] ` (((
∫
(γ1 ∧ γ2)) = 0) ⊃ ((

∫
(γ1 ∨ γ2)) = (

∫
γ1) + (

∫
γ2)))

[Mon] ` ((�(γ1 ⇒ γ2)) ⊃ ((
∫

γ1) ≤ (
∫

γ2)))

Inference rule

[PMP] η1, (η1 ⊃ η2) ` η2

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Soundness

Theorem

The axiom system of EPPL is sound: if ` η, then � η.

Proof.

Straightforward from the definition of the semantics.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Soundness

Theorem

The axiom system of EPPL is sound: if ` η, then � η.

Proof.

Straightforward from the definition of the semantics.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Completeness and Decidability

Theorem

The proof system of EPPL is weakly complete: if � η, then ` η.
Moreover, the set of theorems of EPPL is recursive.

Proof.

The central result is to show that if η is consistent then there is a
model (K, µ)ρ such that (K, µ)ρ η. The decidability follows by
showing that the consistency of a formula is decidable.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Completeness and Decidability

Theorem

The proof system of EPPL is weakly complete: if � η, then ` η.
Moreover, the set of theorems of EPPL is recursive.

Proof.

The central result is to show that if η is consistent then there is a
model (K, µ)ρ such that (K, µ)ρ η. The decidability follows by
showing that the consistency of a formula is decidable.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Construction of the model

1 compute the (finite) set of valuations over the memory cells
and the logical variables in the sets B and X occurring in η
and let this set of valuations be V ;

2 let κ1 be the analytical formula obtained from η by effectively
replacing measure terms (

∫
γ) by sums

∑
vcγ,v∈V yv where

yv represents the probability of the valuation v ;

3 let κ be the analytical formula κ1 ∩
⋂

yv |v∈V (0 ≤ yv);

4 η is consistent iff κ is;

5 finally, consistency of κ is decided by the axiom RCF and the
model is constructed for a consistent κ by solving for yv in
real closed fields.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Construction of the model

1 compute the (finite) set of valuations over the memory cells
and the logical variables in the sets B and X occurring in η
and let this set of valuations be V ;

2 let κ1 be the analytical formula obtained from η by effectively
replacing measure terms (

∫
γ) by sums

∑
vcγ,v∈V yv where

yv represents the probability of the valuation v ;

3 let κ be the analytical formula κ1 ∩
⋂

yv |v∈V (0 ≤ yv);

4 η is consistent iff κ is;

5 finally, consistency of κ is decided by the axiom RCF and the
model is constructed for a consistent κ by solving for yv in
real closed fields.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Construction of the model

1 compute the (finite) set of valuations over the memory cells
and the logical variables in the sets B and X occurring in η
and let this set of valuations be V ;

2 let κ1 be the analytical formula obtained from η by effectively
replacing measure terms (

∫
γ) by sums

∑
vcγ,v∈V yv where

yv represents the probability of the valuation v ;

3 let κ be the analytical formula κ1 ∩
⋂

yv |v∈V (0 ≤ yv);

4 η is consistent iff κ is;

5 finally, consistency of κ is decided by the axiom RCF and the
model is constructed for a consistent κ by solving for yv in
real closed fields.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Construction of the model

1 compute the (finite) set of valuations over the memory cells
and the logical variables in the sets B and X occurring in η
and let this set of valuations be V ;

2 let κ1 be the analytical formula obtained from η by effectively
replacing measure terms (

∫
γ) by sums

∑
vcγ,v∈V yv where

yv represents the probability of the valuation v ;

3 let κ be the analytical formula κ1 ∩
⋂

yv |v∈V (0 ≤ yv);

4 η is consistent iff κ is;

5 finally, consistency of κ is decided by the axiom RCF and the
model is constructed for a consistent κ by solving for yv in
real closed fields.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Language
Semantics
Calculus
Properties

Construction of the model

1 compute the (finite) set of valuations over the memory cells
and the logical variables in the sets B and X occurring in η
and let this set of valuations be V ;

2 let κ1 be the analytical formula obtained from η by effectively
replacing measure terms (

∫
γ) by sums

∑
vcγ,v∈V yv where

yv represents the probability of the valuation v ;

3 let κ be the analytical formula κ1 ∩
⋂

yv |v∈V (0 ≤ yv);

4 η is consistent iff κ is;

5 finally, consistency of κ is decided by the axiom RCF and the
model is constructed for a consistent κ by solving for yv in
real closed fields.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Syntax

s ::= skip | xm← t | bm← γ | toss(bm, r) | s; s | if γ then s else s

Definition

An expression is either a term t or a classical state formula γ.

Expressions may contain variables in the set X (input to the
program).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Syntax

s ::= skip | xm← t | bm← γ | toss(bm, r) | s; s | if γ then s else s

Definition

An expression is either a term t or a classical state formula γ.

Expressions may contain variables in the set X (input to the
program).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Syntax

s ::= skip | xm← t | bm← γ | toss(bm, r) | s; s | if γ then s else s

Definition

An expression is either a term t or a classical state formula γ.

Expressions may contain variables in the set X (input to the
program).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Notation

[[γ]]v = tt if v c γ and [[γ]]v = ff otherwise

if m is a memory cell and e is an expression of the same type, then
δm
e (v) assigns the value [[e]]v to the cell m and coincides with v

elsewhere

(K, µ1) + (K, µ2) = (K, µ1 + µ2)

r(K, µ) = (K, rµ)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Notation

[[γ]]v = tt if v c γ and [[γ]]v = ff otherwise

if m is a memory cell and e is an expression of the same type, then
δm
e (v) assigns the value [[e]]v to the cell m and coincides with v

elsewhere

(K, µ1) + (K, µ2) = (K, µ1 + µ2)

r(K, µ) = (K, rµ)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Notation

[[γ]]v = tt if v c γ and [[γ]]v = ff otherwise

if m is a memory cell and e is an expression of the same type, then
δm
e (v) assigns the value [[e]]v to the cell m and coincides with v

elsewhere

(K, µ1) + (K, µ2) = (K, µ1 + µ2)

r(K, µ) = (K, rµ)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Notation

[[γ]]v = tt if v c γ and [[γ]]v = ff otherwise

if m is a memory cell and e is an expression of the same type, then
δm
e (v) assigns the value [[e]]v to the cell m and coincides with v

elsewhere

(K, µ1) + (K, µ2) = (K, µ1 + µ2)

r(K, µ) = (K, rµ)

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Syntax
Semantics

Denotation of programs

The denotation of a program s is a function on generalized
probabilistic states.

[[skip]] = λ(K, µ).(K, µ)

[[xm← t]] = λ(K, µ).(K, µ ◦ (δxm
t)−1)

[[bm← γ]] = λ(K, µ).(K, µ ◦ (δbm
γ)−1)

[[toss(bm, r)]] = λ(K, µ).(r̃([[bm← tt]](K, µ)) +

(1− r̃)([[bm← ff]](K, µ)))

[[s1; s2]] = λ(K, µ).[[s2]]([[s1]](K, µ))

[[if γ then s1 else s2]] = λ(K, µ).([[s1]](K, µγ) + [[s2]](K, µ(¬ γ)))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Hoare assertions

Ψ ::= η | {η} s {η}

(K, µ)ρ h η if (K, µ)ρ η

(K, µ)ρ h {η1} s {η2} if (K, µ)ρ η2 whenever [[s]](K, µ)ρ η1

Definition

A Hoare assertion Ψ is semantically valid (�h Ψ) if (K, µ)ρ h Ψ
for every generalized probabilistic state (K, µ) and any
K-assignment ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Hoare assertions

Ψ ::= η | {η} s {η}

(K, µ)ρ h η if (K, µ)ρ η

(K, µ)ρ h {η1} s {η2} if (K, µ)ρ η2 whenever [[s]](K, µ)ρ η1

Definition

A Hoare assertion Ψ is semantically valid (�h Ψ) if (K, µ)ρ h Ψ
for every generalized probabilistic state (K, µ) and any
K-assignment ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Hoare assertions

Ψ ::= η | {η} s {η}

(K, µ)ρ h η if (K, µ)ρ η

(K, µ)ρ h {η1} s {η2} if (K, µ)ρ η2 whenever [[s]](K, µ)ρ η1

Definition

A Hoare assertion Ψ is semantically valid (�h Ψ) if (K, µ)ρ h Ψ
for every generalized probabilistic state (K, µ) and any
K-assignment ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Hoare assertions

Ψ ::= η | {η} s {η}

(K, µ)ρ h η if (K, µ)ρ η

(K, µ)ρ h {η1} s {η2} if (K, µ)ρ η2 whenever [[s]](K, µ)ρ η1

Definition

A Hoare assertion Ψ is semantically valid (�h Ψ) if (K, µ)ρ h Ψ
for every generalized probabilistic state (K, µ) and any
K-assignment ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed terms

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The term toss(bm, r ; p) is the term obtained from p by replacing
every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; r ′) = r ′

toss(bm, r ; y) = y

toss(bm, r ; (
∫

γ)) = (r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff))

toss(bm, r ; (p + p′)) = (toss(bm, r ; p) + toss(bm, r ; p′))

toss(bm, r ; (pp′)) = (toss(bm, r ; p) toss(bm, r ; p′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed terms

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The term toss(bm, r ; p) is the term obtained from p by replacing
every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; r ′) = r ′

toss(bm, r ; y) = y

toss(bm, r ; (
∫

γ)) = (r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff))

toss(bm, r ; (p + p′)) = (toss(bm, r ; p) + toss(bm, r ; p′))

toss(bm, r ; (pp′)) = (toss(bm, r ; p) toss(bm, r ; p′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed terms

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The term toss(bm, r ; p) is the term obtained from p by replacing
every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; r ′) = r ′

toss(bm, r ; y) = y

toss(bm, r ; (
∫

γ)) = (r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff))

toss(bm, r ; (p + p′)) = (toss(bm, r ; p) + toss(bm, r ; p′))

toss(bm, r ; (pp′)) = (toss(bm, r ; p) toss(bm, r ; p′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed formulas

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The formula toss(bm, r ; η) is the formula obtained from η by
replacing every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; fff) = fff

toss(bm, r ; (p ≤ p′)) = (toss(bm, r ; p) ≤ toss(bm, r ; p′))

toss(bm, r ; (η ⊃ η′)) = (toss(bm, r ; η) ⊃ toss(bm, r ; η′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed formulas

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The formula toss(bm, r ; η) is the formula obtained from η by
replacing every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; fff) = fff

toss(bm, r ; (p ≤ p′)) = (toss(bm, r ; p) ≤ toss(bm, r ; p′))

toss(bm, r ; (η ⊃ η′)) = (toss(bm, r ; η) ⊃ toss(bm, r ; η′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Tossed formulas

Let bm be a memory cell, r ∈ A be a constant and p be a
probabilistic term.
The formula toss(bm, r ; η) is the formula obtained from η by
replacing every occurrence of each measure term (

∫
γ) by

r̃(
∫

γbm
tt) + (1− r̃)(

∫
γbm

ff).

toss(bm, r ; fff) = fff

toss(bm, r ; (p ≤ p′)) = (toss(bm, r ; p) ≤ toss(bm, r ; p′))

toss(bm, r ; (η ⊃ η′)) = (toss(bm, r ; η) ⊃ toss(bm, r ; η′))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned terms

Let γ be classical state formula and p be a probabilistic term.
The term (p/γ) is the term obtained from p by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

r/γ = r

y/γ = y

(
∫

γ′)/γ = (
∫
(γ ∧ γ′))

(p + p′)/γ = (p/γ + p′/γ)

(pp′)/γ = ((p/γ) (p′/γ))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned terms

Let γ be classical state formula and p be a probabilistic term.
The term (p/γ) is the term obtained from p by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

r/γ = r

y/γ = y

(
∫

γ′)/γ = (
∫
(γ ∧ γ′))

(p + p′)/γ = (p/γ + p′/γ)

(pp′)/γ = ((p/γ) (p′/γ))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned terms

Let γ be classical state formula and p be a probabilistic term.
The term (p/γ) is the term obtained from p by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

r/γ = r

y/γ = y

(
∫

γ′)/γ = (
∫
(γ ∧ γ′))

(p + p′)/γ = (p/γ + p′/γ)

(pp′)/γ = ((p/γ) (p′/γ))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned formulas

Let γ be classical state formula and p be a probabilistic term.
The formula η/γ is the formula obtained from η by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

fff/γ = fff

(p ≤ p′)/γ = (p/γ ≤ p′/γ)

(η ⊃ η′)/γ = (η/γ ⊃ η′/γ)

(η1 gγ η2) stands for ((η1/γ) ∩ (η2/(¬ γ))).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned formulas

Let γ be classical state formula and p be a probabilistic term.
The formula η/γ is the formula obtained from η by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

fff/γ = fff

(p ≤ p′)/γ = (p/γ ≤ p′/γ)

(η ⊃ η′)/γ = (η/γ ⊃ η′/γ)

(η1 gγ η2) stands for ((η1/γ) ∩ (η2/(¬ γ))).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned formulas

Let γ be classical state formula and p be a probabilistic term.
The formula η/γ is the formula obtained from η by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

fff/γ = fff

(p ≤ p′)/γ = (p/γ ≤ p′/γ)

(η ⊃ η′)/γ = (η/γ ⊃ η′/γ)

(η1 gγ η2) stands for ((η1/γ) ∩ (η2/(¬ γ))).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Conditioned formulas

Let γ be classical state formula and p be a probabilistic term.
The formula η/γ is the formula obtained from η by replacing every
occurrence of each measure term (

∫
γ′) by (

∫
(γ′ ∧ γ)).

fff/γ = fff

(p ≤ p′)/γ = (p/γ ≤ p′/γ)

(η ⊃ η′)/γ = (η/γ ⊃ η′/γ)

(η1 gγ η2) stands for ((η1/γ) ∩ (η2/(¬ γ))).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Axioms

[TAUT] ` η if η is an EPPL theorem

[
∫

FREE] ` {κ} s {κ} if κ is an analytical formula

[SKIP] ` {η} skip {η}
[ASGR] ` {ηxm

t } xm← t {η}
[ASGB] ` {ηbm

γ }bm← γ {η}
[TOSS] ` {toss(bm, η; r)} toss(bm, r) {η}

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Inference rules

[SEQ] {η0} s1 {η1}, {η1} s2 {η2} ` {η0} s1; s2 {η2}

[IF] {η1} s1 {y1 = (
∫

γ0)}, {η2} s2 {y2 = (
∫

γ0)}
` {η1 gγ η2}if γ then s1 else s2{y1 + y2 = (

∫
γ0)}

[ELIMV] {η1 ∩ (y = p)} s {η2} ` {η1
y
p} s {η2}

y does not occur in p or η2

[CONS] η0 ⊃ η1, {η1} s {η2}, η2 ⊃ η3 ` {η0} s {η3}
[OR] {η0} s {η2}, {η1} s {η2} ` {η0 ∪ η1} s {η2}

[AND] {η0} s {η1}, {η0} s {η2} ` {η0} s {η1 ∩ η2}
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Inference rules

[SEQ] {η0} s1 {η1}, {η1} s2 {η2} ` {η0} s1; s2 {η2}

[IF] {η1} s1 {y1 = (
∫

γ0)}, {η2} s2 {y2 = (
∫

γ0)}
` {η1 gγ η2}if γ then s1 else s2{y1 + y2 = (

∫
γ0)}

[ELIMV] {η1 ∩ (y = p)} s {η2} ` {η1
y
p} s {η2}

y does not occur in p or η2

[CONS] η0 ⊃ η1, {η1} s {η2}, η2 ⊃ η3 ` {η0} s {η3}
[OR] {η0} s {η2}, {η1} s {η2} ` {η0 ∪ η1} s {η2}

[AND] {η0} s {η1}, {η0} s {η2} ` {η0} s {η1 ∩ η2}
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Inference rules

[SEQ] {η0} s1 {η1}, {η1} s2 {η2} ` {η0} s1; s2 {η2}

[IF] {η1} s1 {y1 = (
∫

γ0)}, {η2} s2 {y2 = (
∫

γ0)}
` {η1 gγ η2}if γ then s1 else s2{y1 + y2 = (

∫
γ0)}

[ELIMV] {η1 ∩ (y = p)} s {η2} ` {η1
y
p} s {η2}

y does not occur in p or η2

[CONS] η0 ⊃ η1, {η1} s {η2}, η2 ⊃ η3 ` {η0} s {η3}
[OR] {η0} s {η2}, {η1} s {η2} ` {η0 ∪ η1} s {η2}

[AND] {η0} s {η1}, {η0} s {η2} ` {η0} s {η1 ∩ η2}
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Inference rules

[SEQ] {η0} s1 {η1}, {η1} s2 {η2} ` {η0} s1; s2 {η2}

[IF] {η1} s1 {y1 = (
∫

γ0)}, {η2} s2 {y2 = (
∫

γ0)}
` {η1 gγ η2}if γ then s1 else s2{y1 + y2 = (

∫
γ0)}

[ELIMV] {η1 ∩ (y = p)} s {η2} ` {η1
y
p} s {η2}

y does not occur in p or η2

[CONS] η0 ⊃ η1, {η1} s {η2}, η2 ⊃ η3 ` {η0} s {η3}
[OR] {η0} s {η2}, {η1} s {η2} ` {η0 ∪ η1} s {η2}

[AND] {η0} s {η1}, {η0} s {η2} ` {η0} s {η1 ∩ η2}
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for classical valuations

Lemma

For any valuation v ∈ V, any classical state formula γ, any
memory cell m (xm or bm) and term e of the same type,

vm
[[e]]v

c γ iff v c γm
e .

Proof.

Induction on the structure of γ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for classical valuations

Lemma

For any valuation v ∈ V, any classical state formula γ, any
memory cell m (xm or bm) and term e of the same type,

vm
[[e]]v

c γ iff v c γm
e .

Proof.

Induction on the structure of γ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for classical valuations

Lemma

For any valuation v ∈ V, any classical state formula γ, any
memory cell m (xm or bm) and term e of the same type,

vm
[[e]]v

c γ iff v c γm
e .

Proof.

Induction on the structure of γ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Lemma

Let (K, µ) be a generalized probabilistic structure and ρ be a
K-assignment. Given a memory cell m and a term e of the same
type, let µ′ = µ ◦ (δm

e)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = [[(
∫

γm
e)]]ρ(K,µ)

for any classical state formula γ.
Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[pm
e]]ρ(K,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K, µ)ρ ηm
e .

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Lemma

Let (K, µ) be a generalized probabilistic structure and ρ be a
K-assignment. Given a memory cell m and a term e of the same
type, let µ′ = µ ◦ (δm

e)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = [[(
∫

γm
e)]]ρ(K,µ)

for any classical state formula γ.
Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[pm
e]]ρ(K,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K, µ)ρ ηm
e .

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Lemma

Let (K, µ) be a generalized probabilistic structure and ρ be a
K-assignment. Given a memory cell m and a term e of the same
type, let µ′ = µ ◦ (δm

e)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = [[(
∫

γm
e)]]ρ(K,µ)

for any classical state formula γ.
Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[pm
e]]ρ(K,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K, µ)ρ ηm
e .

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for assignment

Proof.

(δm
e)−1(|γ|V) = |γm

e |V and hence µ((δm
e)−1(|γ|V)) = µ(|γm

e |V).

Therefore, by definition,

[[(
∫

γ)]]ρ(K,µ′) = µ ◦ (δm
e)−1(|γ|V) = µ(|γm

e |V) = [[(
∫

γm
e)]]ρ(K,µ).

The result is extended to probabilistic terms and formulas by
induction.

Corollary

Axioms ASGB and ASGR are sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Lemma

Let (K , µ) be a generalized probabilistic structure, ρ be a
K-assignment, r ∈ A be a constant and
µ′ = r̃µ ◦ (δbm

tt)−1 + (1− r̃)µ ◦ (δbm
ff)−1.

For any classical state formula γ,

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γbm
tt)]]ρ(K ,µ) + (1− r̃)[[(

∫
γbm

ff)]]ρ(K ,µ).

Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[toss(bm, r ; p)]]ρ(K ,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K , µ)ρ toss(bm, r ; η).
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Lemma

Let (K , µ) be a generalized probabilistic structure, ρ be a
K-assignment, r ∈ A be a constant and
µ′ = r̃µ ◦ (δbm

tt)−1 + (1− r̃)µ ◦ (δbm
ff)−1.

For any classical state formula γ,

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γbm
tt)]]ρ(K ,µ) + (1− r̃)[[(

∫
γbm

ff)]]ρ(K ,µ).

Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[toss(bm, r ; p)]]ρ(K ,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K , µ)ρ toss(bm, r ; η).
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Lemma

Let (K , µ) be a generalized probabilistic structure, ρ be a
K-assignment, r ∈ A be a constant and
µ′ = r̃µ ◦ (δbm

tt)−1 + (1− r̃)µ ◦ (δbm
ff)−1.

For any classical state formula γ,

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γbm
tt)]]ρ(K ,µ) + (1− r̃)[[(

∫
γbm

ff)]]ρ(K ,µ).

Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[toss(bm, r ; p)]]ρ(K ,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K , µ)ρ toss(bm, r ; η).
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Lemma

Let (K , µ) be a generalized probabilistic structure, ρ be a
K-assignment, r ∈ A be a constant and
µ′ = r̃µ ◦ (δbm

tt)−1 + (1− r̃)µ ◦ (δbm
ff)−1.

For any classical state formula γ,

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γbm
tt)]]ρ(K ,µ) + (1− r̃)[[(

∫
γbm

ff)]]ρ(K ,µ).

Furthermore, for any probabilistic term p,

[[p]]ρ(K,µ′) = [[toss(bm, r ; p)]]ρ(K ,µ),

and, for any probabilistic formula η,

(K, µ′)ρ η iff (K , µ)ρ toss(bm, r ; η).
Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Proof.

Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γ)]]ρ(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ(K,µ2)

by definition. Also

[[(
∫

γ)]]ρ(K,µ1)
= [[(

∫
γbm

tt)]]ρ(K ,µ) and [[(
∫

γ)]]ρ(K,µ2)
= [[(

∫
γbm

ff)]]ρ(K ,µ).

The claim for probabilistic terms and probabilistic formulas then
follows by induction.

Corollary

Axiom TOSS is sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Proof.

Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γ)]]ρ(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ(K,µ2)

by definition. Also

[[(
∫

γ)]]ρ(K,µ1)
= [[(

∫
γbm

tt)]]ρ(K ,µ) and [[(
∫

γ)]]ρ(K,µ2)
= [[(

∫
γbm

ff)]]ρ(K ,µ).

The claim for probabilistic terms and probabilistic formulas then
follows by induction.

Corollary

Axiom TOSS is sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Proof.

Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γ)]]ρ(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ(K,µ2)

by definition. Also

[[(
∫

γ)]]ρ(K,µ1)
= [[(

∫
γbm

tt)]]ρ(K ,µ) and [[(
∫

γ)]]ρ(K,µ2)
= [[(

∫
γbm

ff)]]ρ(K ,µ).

The claim for probabilistic terms and probabilistic formulas then
follows by induction.

Corollary

Axiom TOSS is sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Proof.

Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γ)]]ρ(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ(K,µ2)

by definition. Also

[[(
∫

γ)]]ρ(K,µ1)
= [[(

∫
γbm

tt)]]ρ(K ,µ) and [[(
∫

γ)]]ρ(K,µ2)
= [[(

∫
γbm

ff)]]ρ(K ,µ).

The claim for probabilistic terms and probabilistic formulas then
follows by induction.

Corollary

Axiom TOSS is sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Substitution Lemma for probabilistic tosses

Proof.

Let µ1 = µ ◦ (δbm
tt)−1 and µ2 = µ ◦ (δbm

ff)−1. Then

[[(
∫

γ)]]ρ(K,µ′) = r̃ [[(
∫

γ)]]ρ(K,µ1)
+ (1− r̃)[[(

∫
γ)]]ρ(K,µ2)

by definition. Also

[[(
∫

γ)]]ρ(K,µ1)
= [[(

∫
γbm

tt)]]ρ(K ,µ) and [[(
∫

γ)]]ρ(K,µ2)
= [[(

∫
γbm

ff)]]ρ(K ,µ).

The claim for probabilistic terms and probabilistic formulas then
follows by induction.

Corollary

Axiom TOSS is sound.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of
∫

FREE

Lemma

For any statement s, any analytical formula κ, any generalized
state (K, µ) and K assignment ρ,

([[s]](K, µ))ρ κ iff (K, µ)ρ κ.

Proof.

The interpretation of analytical formulas depends only on ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of
∫

FREE

Lemma

For any statement s, any analytical formula κ, any generalized
state (K, µ) and K assignment ρ,

([[s]](K, µ))ρ κ iff (K, µ)ρ κ.

Proof.

The interpretation of analytical formulas depends only on ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of
∫

FREE

Lemma

For any statement s, any analytical formula κ, any generalized
state (K, µ) and K assignment ρ,

([[s]](K, µ))ρ κ iff (K, µ)ρ κ.

Proof.

The interpretation of analytical formulas depends only on ρ.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Lemma

For any generalized state (K, µ), K-assignment ρ and classical
state formulas γ and γ′,

[[(
∫

γ′)/γ]]ρ(K,µ) = [[(
∫

γ′)]]ρ(K,µγ).

Furthermore, for any probability term p,

[[p/γ]]ρ(K,µ) = [[p]]ρ(K,µγ),

and, for any probabilistic formula η,

(K, µ)ρ η/γ iff (K, µγ)ρ η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Lemma

For any generalized state (K, µ), K-assignment ρ and classical
state formulas γ and γ′,

[[(
∫

γ′)/γ]]ρ(K,µ) = [[(
∫

γ′)]]ρ(K,µγ).

Furthermore, for any probability term p,

[[p/γ]]ρ(K,µ) = [[p]]ρ(K,µγ),

and, for any probabilistic formula η,

(K, µ)ρ η/γ iff (K, µγ)ρ η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Lemma

For any generalized state (K, µ), K-assignment ρ and classical
state formulas γ and γ′,

[[(
∫

γ′)/γ]]ρ(K,µ) = [[(
∫

γ′)]]ρ(K,µγ).

Furthermore, for any probability term p,

[[p/γ]]ρ(K,µ) = [[p]]ρ(K,µγ),

and, for any probabilistic formula η,

(K, µ)ρ η/γ iff (K, µγ)ρ η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

By definition,

[[(
∫

γ′)]]ρ(K,µγ) = µγ(|γ′|V) = µ(|γ′|V ∩ |γ|V) = µ(|γ′ ∧ γ|V) =

[[(
∫

γ′)/γ]]ρ(K,µ).

The claims for probabilistic terms and formulas follow by
induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

By definition,

[[(
∫

γ′)]]ρ(K,µγ) = µγ(|γ′|V) = µ(|γ′|V ∩ |γ|V) = µ(|γ′ ∧ γ|V) =

[[(
∫

γ′)/γ]]ρ(K,µ).

The claims for probabilistic terms and formulas follow by
induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Corollary

Given probabilistic state formulas η1 and η2, programs s1 and s2,
variables y1 ∈ Y and y2 ∈ Y and a classical state formula γ,

�h {η1} s1 {y1 = (
∫

γ)} and �h {η2} s2 {y2 = (
∫

γ)}

iff, for any classical state formula γ0,

�h {η1 gγ0 η2} if γ0 then s1 else s2 {y1 + y2 = (
∫

γ)}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Corollary

Given probabilistic state formulas η1 and η2, programs s1 and s2,
variables y1 ∈ Y and y2 ∈ Y and a classical state formula γ,

�h {η1} s1 {y1 = (
∫

γ)} and �h {η2} s2 {y2 = (
∫

γ)}

iff, for any classical state formula γ0,

�h {η1 gγ0 η2} if γ0 then s1 else s2 {y1 + y2 = (
∫

γ)}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of IF

Proof.

Suppose that (K, µ)ρ η1 gγ0 η2. Then (K, µ)ρ η1/γ0 and
(K, µ)ρ η2/(¬ γ0). Thus, (K, µγ0)ρ η1 and (K, µ(¬ γ0))ρ η2.
Let (K, µ1) = [[s1]](K, µγ0), (K, µ2) = [[s2]](K, µ(¬ γ0)) and
µ′ = µ1 + µ2.
Since h {η1} s1 {y1 = (

∫
γ)} and (K, µγ0)ρ η1, it follows that

(K, µ1) h y1 = (
∫

γ). Thus, by definition ρ(y1) = µ1(|γ|V).
Similarly, ρ(y2) = µ2(|γ|V).
Hence,
µ′(|γ|V) = µ1(|γ|V) + µ2(|γ|V) = ρ(y1) + ρ(y2) = ρ(y1 + y2) and
(K, µ′)ρ (y1 + y2 = (

∫
γ)) as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then:

for any probabilistic term p0, [[p0]]
ρ1

(K,µ) = [[p0
y
p]]ρ(K,µ);

for any probabilistic formula η, (K, µ)ρ1 η iff (K, µ)ρ ηy
p .

Proof.

Let p0 be a variable y0.
If y0 is y , then [[y]]ρ1

(K,µ) = k = [[p]]ρ(K,µ) = [[y y
p]]ρ(K,µ).

Otherwise, [[y0]]
ρ1

(K,µ) = ρ1(y0) = ρ(y0) = [[y0]]
ρ
(K,µ) = [[y0

y
p]]ρ(K,µ).

The rest follows by induction.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of ELIMV

Lemma

Given y not occurring in either p or in η,

if h {η1 ∩ (y = p)} s {η2} then h {η1
y
p} s {η2}.

Proof.

Assume that h {η1 ∩ (y = p)} s {η2} and suppose that
(K, µ)ρ η1

y
p.

Let k = [[p]]ρ(K,µ) and ρ1 = ρy
k . Then (K, µ)ρ1 η1 and

[[y]]ρ1

(K,µ) = k. Also [[p]]ρ1

(K,µ) = [[py
p]]ρ(K,µ) = [[p]]ρ(K,µ) = k.Therefore,

(K, µ)ρ1 (y = p).
Since h {η1 ∩ (y = p)} s {η2} and ρ1 and ρ differ only in the
value assigned to y , which does not occur in η2, ([[s]](K, µ))ρ η2

as required.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of the calculus

Theorem

If ` Ψ then �h Ψ.

Proof.

By induction on the length of the derivation of ` Ψ using the
previous lemmas.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Soundness of the calculus

Theorem

If ` Ψ then �h Ψ.

Proof.

By induction on the length of the derivation of ` Ψ using the
previous lemmas.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(skip, p) = p

pt(bm← γ, p) = pbm
γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r ; p)

pt(s1; s2, p) = pt(s1, pt(s2, p))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(skip, p) = p

pt(bm← γ, p) = pbm
γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r ; p)

pt(s1; s2, p) = pt(s1, pt(s2, p))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(skip, p) = p

pt(bm← γ, p) = pbm
γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r ; p)

pt(s1; s2, p) = pt(s1, pt(s2, p))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(skip, p) = p

pt(bm← γ, p) = pbm
γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r ; p)

pt(s1; s2, p) = pt(s1, pt(s2, p))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(skip, p) = p

pt(bm← γ, p) = pbm
γ

pt(xm← t, p) = pxm
t

pt(toss(bm, r), p) = toss(bm, r ; p)

pt(s1; s2, p) = pt(s1, pt(s2, p))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(if γ then s1 else s2, r) = r

pt(if γ then s1 else s2, y) = y

pt(if γ then s1 else s2, (
∫

γ0)) = (pt(s1, (
∫

γ0))/γ +

pt(s2, (
∫

γ0))/(¬ γ))

pt(if γ then s1 else s2, (p1 + p2)) = (pt(if γ then s1 else s2, p1) +

pt(if γ then s1 else s2, p2))

pt(if γ then s1 else s2, (p1 p2)) = (pt(if γ then s1 else s2, p1)×
pt(if γ then s1 else s2, p2))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(if γ then s1 else s2, r) = r

pt(if γ then s1 else s2, y) = y

pt(if γ then s1 else s2, (
∫

γ0)) = (pt(s1, (
∫

γ0))/γ +

pt(s2, (
∫

γ0))/(¬ γ))

pt(if γ then s1 else s2, (p1 + p2)) = (pt(if γ then s1 else s2, p1) +

pt(if γ then s1 else s2, p2))

pt(if γ then s1 else s2, (p1 p2)) = (pt(if γ then s1 else s2, p1)×
pt(if γ then s1 else s2, p2))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Preterms

pt(if γ then s1 else s2, r) = r

pt(if γ then s1 else s2, y) = y

pt(if γ then s1 else s2, (
∫

γ0)) = (pt(s1, (
∫

γ0))/γ +

pt(s2, (
∫

γ0))/(¬ γ))

pt(if γ then s1 else s2, (p1 + p2)) = (pt(if γ then s1 else s2, p1) +

pt(if γ then s1 else s2, p2))

pt(if γ then s1 else s2, (p1 p2)) = (pt(if γ then s1 else s2, p1)×
pt(if γ then s1 else s2, p2))

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Properties of preterms

Lemma

[[pt(s, p)]]ρ(K,µ) = [[p]]ρ[[s]](K,µ).

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions

wp(s, fff) = fff

wp(s, (p1 ≤ p2)) = (pt(s, p1) ≤ pt(s, p2))

wp(s, (η1 ⊃ η2)) = (wp(s, η1) ⊃ wp(s, η2))

Theorem

(K, µ)ρ h wp(s, η) iff ([[s]](K, µ))ρ h η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions

wp(s, fff) = fff

wp(s, (p1 ≤ p2)) = (pt(s, p1) ≤ pt(s, p2))

wp(s, (η1 ⊃ η2)) = (wp(s, η1) ⊃ wp(s, η2))

Theorem

(K, µ)ρ h wp(s, η) iff ([[s]](K, µ))ρ h η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions

wp(s, fff) = fff

wp(s, (p1 ≤ p2)) = (pt(s, p1) ≤ pt(s, p2))

wp(s, (η1 ⊃ η2)) = (wp(s, η1) ⊃ wp(s, η2))

Theorem

(K, µ)ρ h wp(s, η) iff ([[s]](K, µ))ρ h η.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, semantically

Corollary

�h {η′} s {η} iff � (η′ ⊃ wp(s, η)).

Proof.

(⇒) Suppose that �h {η′} s {η} and (K, µ)ρ η′.
Then ([[s]](K, µ))ρ η, hence (K, µ)ρ wp(s, η). Therefore
� (η′ ⊃ wp(s, η)).

(⇐) Suppose that � (η′ ⊃ wp(s, η)) and (K, µ)ρ η′.
Then (K, µ)ρ wp(s, η) and hence ([[s]](K, µ))ρ η. Therefore
�h {η′} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, sintactically

Lemma

For any probabilistic term p, statement s and variable y ,

` {y = pt(s, p)} s {y = p}.

Theorem

For any statement s and any conditional-free formula η,

` {wp(s, η)} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Weakest preconditions, sintactically

Lemma

For any probabilistic term p, statement s and variable y ,

` {y = pt(s, p)} s {y = p}.

Theorem

For any statement s and any conditional-free formula η,

` {wp(s, η)} s {η}.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Theorem

Let s be a probabilistic sequential program and η be an EPPL
formula. If �h {η′} s {η}, then ` {η′} s {η}.

Moreover, the set of theorems of the Hoare calculus is recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Theorem

Let s be a probabilistic sequential program and η be an EPPL
formula. If �h {η′} s {η}, then ` {η′} s {η}.

Moreover, the set of theorems of the Hoare calculus is recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Theorem

Let s be a probabilistic sequential program and η be an EPPL
formula. If �h {η′} s {η}, then ` {η′} s {η}.

Moreover, the set of theorems of the Hoare calculus is recursive.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

The calculus
Soundness
Completeness

Completeness and decidability

Proof.

Completeness. Suppose that �h {η′} s {η}. Then
� (η′ ⊃ wp(s, η)). By completeness of EPPL, ` (η′ ⊃ wp(s, η)).
On the other hand, ` {wp(s, η)} s {η}, whence ` {η′} s {η} by
CONS.

Decidability. By soundness and completeness, ` {η′} s {η} iff
�h {η′} s {η}. By completeness of EPPL and the properties of
weakest preconditions, it follows that ` {η′} s {η} iff
` (η′ ⊃ wp(s, η)). The decidability is now a consequence of the
decidability of EPPL and the fact that wp(s, η) can be computed
algorithmically.

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Achievements

logic for non-deterministic programs with truth-functional
semantics

sound, complete and decidable state logic

sound, complete and decidable Hoare calculus

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Achievements

logic for non-deterministic programs with truth-functional
semantics

sound, complete and decidable state logic

sound, complete and decidable Hoare calculus

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Achievements

logic for non-deterministic programs with truth-functional
semantics

sound, complete and decidable state logic

sound, complete and decidable Hoare calculus

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Future work

unbounded iteration (while)

quantum programming languages

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

The State Logic: EPPL
The Programming Language

The Hoare Calculus
Conclusions

Future work

unbounded iteration (while)

quantum programming languages

Lúıs Cruz-Filipe Reasoning about Probabilistic Sequential Programs

	Motivation
	Outline
	
	The State Logic: EPPL
	Language
	Semantics
	Calculus
	Properties

	The Programming Language
	Syntax
	Semantics

	The Hoare Calculus
	The calculus
	Soundness
	Completeness

	Conclusions

