
Motivation
Outline

Services: when specification meets implementation

Lúıs Cruz-Filipe
(joint work with A. Lopes)

LaSIGE and
Department of Informatics

FCUL, Lisbon, Portugal

GLOSS seminar
April 1, 2009

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Background

Sensoria, (web) services and service-oriented computing

SRML: very graphical, funny symbols, rich logic with intuitive
semantics

Conversation Calculus: same intuitive concepts, simple ideas

A mathematician’s view: the same, at the “right” level of
abstraction

. . . and what is the “right” level of abstraction?

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

Motivation

Goal

Establish a formal correspondence between SRML and the
Conversation Calculus.

We don’t want a mapping, translation, or even to give semantics
of one into the other. Just find that “right” level of abstraction.

Several concepts (on either side) do not have correspondence.
We’ll just restrict ourselves to the intersection of both systems.

Goal (revised)

Given a concrete specification, establish guidelines to build an
implementation that will be sound by construction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 A formal specification in SRML

3 Putting everything together

4 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 A formal specification in SRML

3 Putting everything together

4 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 A formal specification in SRML

3 Putting everything together

4 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Motivation
Outline

1 Basics

2 A formal specification in SRML

3 Putting everything together

4 Conclusions

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Main idea

Common knowledge

A picture is worth a thousand words.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Main idea

Common knowledge

A picture is worth a thousand words.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

@
@
�
�

�
�
�
�

�
�
�
�

@
@
�
�

@@
��

◇ ◇
◇

◇

◇ ◇
◇

◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

@
@
�

�

�
�
�
�

�
�
�
�

@
@
�
�

@@
��

◇ ◇
◇

◇

◇ ◇
◇

◇

@
@
�

�

◇ ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

@
@
�

�

�
�
�
�

�
�
�
�

@
@
�
�

@@
��

◇ ◇
◇

◇

◇ ◇
◇

◇
+

@
@
�

�

◇ ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

@
@
�
�

�
�
�
�

�
�
�
�

@
@
��

@
@
�
�

◇ ◇
◇

◇

◇ ◇
◇

◇

@
@
�

�

◇ ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

SRML

@
@
�

�

�
�
�
�

�
�
�
�

@
@
�
�

◇ ◇
◇

◇

◇ ◇
◇

◇

◇ ◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

The Conversation Calculus

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

The Conversation Calculus

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

The Conversation Calculus

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

The Conversation Calculus

+

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

The Conversation Calculus

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Message passing

within the same context (“here”)

to the other endpoint of a session (“there”)

to the enclosing context (“up”)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Case study

Consider the following example from the list of SENSORIA case
studies.

Example

A travel agent provides a booking service that, upon receiving a
request for a flight from a customer, executes the following steps:

1 contact two different airlines and ask them for prices for the
flight;

2 book the cheapest flight;

3 return the flight data to the customer.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

SRML
The Conversation Calculus
A concrete example
An intuitive implementation

Näıve implementation

def travelApp ⇒ (
instance alphaAir ▷ flightAvails ⇐ (

in ↑ flightRequestAA(flightData,travelClass).
out ← flightDetails(flightData,travelClass).
in ← flightTicket(response,price).
out ↑ flightResponseAA(response,price).
(in ↑ bookAA().out ← bookFlight().

+in ↑ cancelAA().out ← cancelFlight())
) ∣ . . . ∣
in ← travelRequest(employee,flightData).
out ↑ employeeTStatusRequest(employee).
in ↑ employeeTStatusResponse(travelClass).
out ↓ flightRequestAA(flightAA,travelClass).out ↓ flightRequestDA(flightDA,travelClass).
((in ↓ flightResponseAA(priceAA,flightAA).out ↓ Done)∣

(in ↓ flightResponseDA(priceDA,flightDA).out ↓ Done)∣
(in ↓ Done.in ↓ Done.
if (priceAA<priceDA) then

(out ← travelResponse(flightAA).out ↓ bookAA().out ↓ cancelDA())
else (out ← travelResponse(flightDA).out ↓ bookDA().out ↓ cancelAA())

)))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Specification: diagram

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�initBA

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�triggerAA1

@@
��

AA2 :
AirlineAgent

�triggerAA2
◇ CB :

c1,≡,d1
◇

◇
BD :
c2,≡,d2

◇

◇
AB1 :

c3,≡,d3
◇

◇
AB2 :

c4,≡,d4
◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Specification: diagram

TravelBooking

@
@
�
�

CR :
Customer

BA :
BookingAgent

�initBA

�
�
�
�

�
�
�
�

DB :
EmployeeDB

@@
��

AA1 :
AirlineAgent

�triggerAA1

@@
��

AA2 :
AirlineAgent

�triggerAA2
◇ CB :

c1,≡,d1
◇

◇
BD :
c2,≡,d2

◇

◇
AB1 :

c3,≡,d3
◇

◇
AB2 :

c4,≡,d4
◇

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Insight #1

An implementation will consist of several subprocesses running in
parallel.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

COMPONENTS

BA: BookingAgent

initBA�init: s=INIT ∧ rec1=false ∧ rec2=false

initBA�term: s=DONE

PROVIDES

CR: Customer

REQUIRES

AA1: AirlineAgent

triggerAA1�trigger: BA.Flight1 ?
AA2: AirlineAgent

triggerAA2�trigger: BA.Flight2 ?

USES

DB: EmployeeDB

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

BUSINESS ROLE BookingAgent is

INTERACTION

rcv Travel

emp: employee
fl: flightData

s&r EmployeeTStatus

emp: employee
� cl: travelClass

(...)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

ORCHESTRATION

local s: [INIT, DBQUERY, WAIT, DONE]
e:employee, f:flightData, tc:travelClass
p1:price, rec1:boolean, f1:flight
p2:price, rec2:boolean, f2:flight

transition GetData

triggeredBy Travel
guardedBy s=INIT
effects e=Travel.emp ∧ f=Travel.fl ∧

s’=DBQUERY

sends EmployeeTStatus ∧
EmployeeTStatus.emp=e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

transition BookFlight

triggeredBy EmployeeTStatus�
guardedBy s=DBQUERY
effects tc=EmployeeTStatus.trav ∧ s’=WAIT

sends Flight1 ∧ Flight2 ∧
Flight1.flD=f ∧ Flight1.cl=tc ∧
Flight2.flD=f ∧ Flight2.cl=tc

transition FlightAnsweri (i = 1,2)

triggeredBy Flighti�

guardedBy s=WAIT ∧ ¬reci

effects reci=true ∧ pi=Flighti.pr ∧
fi=Flighti.fl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

transition ClientCallBacki (i = 1,2)

triggeredBy
guardedBy s=WAIT ∧ rec1 ∧ rec2 ∧ pi < p3−i

effects S=DONE

sends Cancel3−i ∧ ClientCallBack ∧
ClientCallBack.fl=fi ∧ Booki

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Insight #2

A correct implementation of a component allows as semantics the
transition system specifying its behaviour.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

LAYER PROTOCOL EmployeeDB is

INTERACTION

r&s EmployeeTStatus

emp: employee
� cl: travelClass

BEHAVIOUR

initiallyEnabled EmployeeTStatus ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Insight #3

The system depends upon another service running in the context.
This protocol specifies the type of that service.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

BUSINESS PROTOCOL Customer is

INTERACTION

s&r TravelRequest

emp: employee
fd: flightData

� fl: flight
BEHAVIOUR

initiallyEnabled TravelRequest ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

BUSINESS PROTOCOL AirlineAgent is

INTERACTION

r&s FlightDetails

data: flightData
class: TravelClass

� resp: response
pr: price

rcv Book
rcv Cancel

BEHAVIOUR

initiallyEnabled FlightDetails ?

FlightCallBack ! enables Book ? until Cancel ?

FlightCallBack ! enables Cancel ? until Book ?

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Insight #4

Business protocols are implemented as session endpoints.
The type of a correct implementation should somehow be related
to the behaviour specified in the protocol.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

CR: Customer c1 CB d1 BA: BookingAgent

s&r TravelRequest S1 R1 rcv Travel

from i1 ≡ i1 emp
fd i2 i2 fl

S2 snd ClientCallBack

� fl o1 ≡ o1 fl

BA: BookingAgent c2 BD d2 DB: EmployeeDB

s&r EmployeeTStatus S1 R1 r&s EmployeeTStatus

emp i1 ≡ i1 emp
� trav o1 o1 � cl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

CR: Customer c1 CB d1 BA: BookingAgent

s&r TravelRequest S1 R1 rcv Travel

from i1 ≡ i1 emp
fd i2 i2 fl

S2 snd ClientCallBack

� fl o1 ≡ o1 fl

BA: BookingAgent c2 BD d2 DB: EmployeeDB

s&r EmployeeTStatus S1 R1 r&s EmployeeTStatus

emp i1 ≡ i1 emp
� trav o1 o1 � cl

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

AA1: AirlineAgent c3 AB1 d3 BA: BookingAgent

r&s FlightDetails R1 S1 s&r Flight1

data i1 i1 flD
class i2 ≡ i2 cl

� resp o1 o1 � fl
pr o2 o2 pr

rcv Book R2 ≡ S2 snd Book1

rcv Cancel R3 ≡ S3 snd Cancel1

Wire AB2 is similar.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

AA1: AirlineAgent c3 AB1 d3 BA: BookingAgent

r&s FlightDetails R1 S1 s&r Flight1

data i1 i1 flD
class i2 ≡ i2 cl

� resp o1 o1 � fl
pr o2 o2 pr

rcv Book R2 ≡ S2 snd Book1

rcv Cancel R3 ≡ S3 snd Cancel1

Wire AB2 is similar.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is not the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is not the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is not the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Simplification is not the key

Simplification: assume wires do not have any computational
content: they just change some names.

Idea: encode the name changes in the remaining processes, forget
the wire.

Wrong insight

Wires are coded in the implementation of the remaining blocks.

There’s some unpleasant arbitrariness here. . .

All wires have some computational content. . . these ones do!

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

How about...?

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

How about...?

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

How about...?

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

How about...?

Can we see a wire as a process?

A (simple) wire reads messages from one endpoint and posts them
at the other endpoint.

A (simple) wire passes messages across contexts.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

Insight #5

Wires are processes just like other components.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Visual description
Interfaces
Protocols
Wires

What have we learned?

Components yield processes.

Wires yield processes.

Other protocols require existence of processes with specific
behaviour (type).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Messages and names

Definition

A renaming function is an injective mapping σ ∶ L1 → L2 between
two sets of CC labels.

Henceforth we will assume a canonical renaming function that
takes SRML event name M in module X to the CC label X M.
So e.g. message Flight1 in module BA becomes label
BA Flight1 .
Observe that and � are two different events assigned to the
same message in SRML, but in CC they are just syntactic symbols.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Messages and names

Definition

A renaming function is an injective mapping σ ∶ L1 → L2 between
two sets of CC labels.

Henceforth we will assume a canonical renaming function that
takes SRML event name M in module X to the CC label X M.
So e.g. message Flight1 in module BA becomes label
BA Flight1 .
Observe that and � are two different events assigned to the
same message in SRML, but in CC they are just syntactic symbols.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Messages and names

Definition

A renaming function is an injective mapping σ ∶ L1 → L2 between
two sets of CC labels.

Henceforth we will assume a canonical renaming function that
takes SRML event name M in module X to the CC label X M.
So e.g. message Flight1 in module BA becomes label
BA Flight1 .
Observe that and � are two different events assigned to the
same message in SRML, but in CC they are just syntactic symbols.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Messages and names

Definition

A renaming function is an injective mapping σ ∶ L1 → L2 between
two sets of CC labels.

Henceforth we will assume a canonical renaming function that
takes SRML event name M in module X to the CC label X M.
So e.g. message Flight1 in module BA becomes label
BA Flight1 .
Observe that and � are two different events assigned to the
same message in SRML, but in CC they are just syntactic symbols.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Messages and names

Definition

A renaming function is an injective mapping σ ∶ L1 → L2 between
two sets of CC labels.

Henceforth we will assume a canonical renaming function that
takes SRML event name M in module X to the CC label X M.
So e.g. message Flight1 in module BA becomes label
BA Flight1 .
Observe that and � are two different events assigned to the
same message in SRML, but in CC they are just syntactic symbols.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1

2 1

2

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1

2 1

2

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,
there exists a sequencialization α1, . . . , αk of its sends

messages such that P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′, where α is an

action triggering the transition when it exists.
2 1

2

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,

P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′.

2 For every action α ≠ τ , if P
αÐ→ Q, then:

1

2

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,

P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′.

2 For every action α ≠ τ , if P
αÐ→ Q, then:

1 there exists a transition in O triggeredBy α whose guardedBy
condition holds in s;

2

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,

P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′.

2 For every action α ≠ τ , if P
αÐ→ Q, then:

1 there exists a transition in O triggeredBy α whose guardedBy
condition holds in s;

2 for every such transition, there exist a sequencialization of its

sends messages such that Q
α1Ð→ ⋯ αkÐ→ P ′;

3

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,

P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′.

2 For every action α ≠ τ , if P
αÐ→ Q, then:

1 there exists a transition in O triggeredBy α whose guardedBy
condition holds in s;

2 Q
α1Ð→ ⋯ αkÐ→ P ′

3 if Q
α1Ð→ ⋯ αnÐ→, then α1, . . . , αk are a sequencialization of the

sends messages of such a transition for some k ≤ n.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

An orchestration O and a process P are synchronized at state s if:

1 For every transition whose guardedBy condition holds in s,

P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′.

2 For every action α ≠ τ , if P
αÐ→ Q, then:

1 there exists a transition in O triggeredBy α whose guardedBy
condition holds in s;

2 Q
α1Ð→ ⋯ αkÐ→ P ′

3 if Q
α1Ð→ ⋯ αnÐ→, then α1, . . . , αk are a sequencialization of the

sends messages of such a transition for some k ≤ n.

All messages are received/sent in the here direction.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

If P and O are synchronized at state s, then the possible evolutions
of s and P according to O are defined as follows.

If P
τÐ→ P ′, then ⟨s,P ′⟩ is a possible evolution of ⟨s,P⟩.

For every transition whose guardedBy condition holds in s
and every sequencialization α1, . . . , αk of its sends messages

such that P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′ (where α is an action

triggering the transition when it exists), the pair ⟨s ′,P ′⟩
(where s ′ is obtained by applying the effects of the transition
to s) is a possible evolution of ⟨s,P⟩.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

If P and O are synchronized at state s, then the possible evolutions
of s and P according to O are defined as follows.

If P
τÐ→ P ′, then ⟨s,P ′⟩ is a possible evolution of ⟨s,P⟩.

For every transition whose guardedBy condition holds in s
and every sequencialization α1, . . . , αk of its sends messages

such that P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′ (where α is an action

triggering the transition when it exists), the pair ⟨s ′,P ′⟩
(where s ′ is obtained by applying the effects of the transition
to s) is a possible evolution of ⟨s,P⟩.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

If P and O are synchronized at state s, then the possible evolutions
of s and P according to O are defined as follows.

If P
τÐ→ P ′, then ⟨s,P ′⟩ is a possible evolution of ⟨s,P⟩.

For every transition whose guardedBy condition holds in s
and every sequencialization α1, . . . , αk of its sends messages

such that P
τÐ→∗ αÐ→? α1Ð→ ⋯ αkÐ→ P ′ (where α is an action

triggering the transition when it exists), the pair ⟨s ′,P ′⟩
(where s ′ is obtained by applying the effects of the transition
to s) is a possible evolution of ⟨s,P⟩.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

Orchestration O can simulate process P from state s if O and
P are synchronized at state s and if O can simulate P ′ from s ′

for every possible evolution ⟨s ′,P ′⟩ of P from s according to O.

Process P implements orchestration O if O can simulate P
from any initial state of O.

Process ρB(P) implements component B with orchestration O
if P implements O.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

Orchestration O can simulate process P from state s if O and
P are synchronized at state s and if O can simulate P ′ from s ′

for every possible evolution ⟨s ′,P ′⟩ of P from s according to O.

Process P implements orchestration O if O can simulate P
from any initial state of O.

Process ρB(P) implements component B with orchestration O
if P implements O.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

Orchestration O can simulate process P from state s if O and
P are synchronized at state s and if O can simulate P ′ from s ′

for every possible evolution ⟨s ′,P ′⟩ of P from s according to O.

Process P implements orchestration O if O can simulate P
from any initial state of O.

Process ρB(P) implements component B with orchestration O
if P implements O.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Definition

Orchestration O can simulate process P from state s if O and
P are synchronized at state s and if O can simulate P ′ from s ′

for every possible evolution ⟨s ′,P ′⟩ of P from s according to O.

Process P implements orchestration O if O can simulate P
from any initial state of O.

Process ρB(P) implements component B with orchestration O
if P implements O.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Example

in ↓ Travel (e,f).

out ↓ EmployeeTStatus (e).
in ↓ EmployeeTStatus� (tc).

out ↓ Flight1 (f,tc).

out ↓ Flight2 (f,tc).
(

(in ↓ Flight1� (p1,f1).out ↓ Done)∣
(in ↓ Flight2� (p2,f2).out ↓ Done)∣
(in ↓ Done.in ↓ Done.
if (p1 < p2) then

(out ↓ ClientCallBack (f1).out ↓ Book1 ().out ↓ Cancel2 ())

else (out ↓ ClientCallBack (f2).out ↓ Book2 ().out ↓ Cancel1 ())
))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Types in the Conversation Calculus

SRML separates behaviour from location.

Restriction to non-recursive behavioural types:

Message types M consist of:

a polarity !, ? or τ ;

a direction ↑, ↓ or ←;

an event from the SRML specification;

the (atomic) types of its arguments.

B ∶∶= 0 [] M.B [] B ∣ B [] ⊕{M.B; . . . ; M.B} [] &{M.B; . . . ; M.B}

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Behaviour trees

A type in the Conversation Calculus generates a tree of possible
traces, containing all sequences of messages allowed by that type.

A node n in that tree may satisfy the following formulas:

event e is satisfied (n ⊧ e)

event e is enabled (n ⊧ en(e))

event e is enabled until e′ (n ⊧ en(e)Ue′)

event e is ensured (n ⊧◇e)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Allowed behaviours in SRML

For event e, allow E to be either e? or e!. SP stands for a
sequence of E1, . . . ,Ek .

ϕ ∶∶=initiallyEnabled e? [] E enables e? []
[] E enables e? until E [] SP ensures e!

Discarding events is not capturable in CC.

Comparison of terms cannot be analyzed from the type.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Explicit behaviours

SRML assumes implicit behaviour associated with some message
types.

Definition

The explicit behaviour associated to an SRML behaviour B is
obtained by adding to B the formulas:

(e ? ensures e�!) for every r&s message e

(e ! enables e�?) for every s&r message e

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Compliance

A behavioural type B complies with an SRML behavioural
formula ϕ in the following situations.

B ⊧initiallyEnabled e?

if ε ⊧TB
en(e?) with ε the root of TB

B ⊧a enables e?

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)
B ⊧a enables e? until b

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)Ub

B ⊧a ensures e!

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

(◇e!)

A behavioural type B complies with an SRML behaviour B if
B ⊧ ϕ for every formula ϕ in B’s explicit behaviour.Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Compliance

A behavioural type B complies with an SRML behavioural
formula ϕ in the following situations.

B ⊧initiallyEnabled e?

if ε ⊧TB
en(e?) with ε the root of TB

B ⊧a enables e?

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)
B ⊧a enables e? until b

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)Ub

B ⊧a ensures e!

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

(◇e!)

A behavioural type B complies with an SRML behaviour B if
B ⊧ ϕ for every formula ϕ in B’s explicit behaviour.Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Compliance

A behavioural type B complies with an SRML behavioural
formula ϕ in the following situations.

B ⊧initiallyEnabled e?

if ε ⊧TB
en(e?) with ε the root of TB

B ⊧a enables e?

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)
B ⊧a enables e? until b

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

en(e?)Ub

B ⊧a ensures e!

if for all n ∈ TB , if n ⊧TB
a then n ⊧TB

(◇e!)

A behavioural type B complies with an SRML behaviour B if
B ⊧ ϕ for every formula ϕ in B’s explicit behaviour.Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Minimal compliance

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Minimal compliance

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Minimal compliance

Two extra conditions:

no spurious behaviour;

all communication is along the right direction: “there” for
PROVIDES/REQUIRES interfaces, “up” for USES.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Example: airline protocol

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

{FlightDetails ?}
?FlightDetails

{FlightDetails�!}
!FlightDetails�

{Book ?,Cancel ?}
?Book

nnnnnnnnnnnnn
?Cancel

PPPPPPPPPPPPP

∅ ∅
Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Example: airline protocol

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

{FlightDetails ?}
?FlightDetails

{FlightDetails�!}
!FlightDetails�

{Book ?,Cancel ?}
?Book

nnnnnnnnnnnnn
?Cancel

PPPPPPPPPPPPP

∅ ∅
Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Example: airline protocol

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

{FlightDetails ?}
?FlightDetails

{FlightDetails�!}
!FlightDetails�

{Book ?,Cancel ?}
?Book

nnnnnnnnnnnnn
?Cancel

PPPPPPPPPPPPP

∅ ∅
Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Simple wires just relay messages.

Wires to the orchestrator are implemented at the other endpoint,
following its protocol, and relay their messages to the
orchestrator’s context.

Wires between two non-orchestrators are implemented at both
endpoints and relay their messages to the orchestrators’ context,
using the wire’s name as identifier.

Wires between orchestrators consist simply of the parallel
composition of all messages being relayed.

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

Recall the protocol at the REQUIRES interface.

BA ≜?← FlightDetails (D,C).!← FlightDetails�(R,P).
&{?← Book (); ?← Cancel ()}

Wire AB1, connecting this interface to the orchestrator, becomes

in ↑ BA Flight1 (data,class).

out ← AA1 FlightDetails (data,class).
in ← AA1 FlightDetails� (resp,pr).
out ↑ BA Flight1� (resp,pr).

((in ↑ BA Book1 ().out ← AA1 Book ())
+

(in ↑ BA Cancel1 ().out ← AA1 Cancel ()))

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

How everything fits

Assume:

P implements the wire ends at the PROVIDES interface;

Ci implement the orchestrators;

Ui implement wire ends at each used module;

Ri have the form instance Pi ▶ Si ⇐ Qi , where Pi provides
service Si being invoked at REQUIRES interface i with wire
ends Si .

The implementation is

defService ⇐ (P ∣ C1 ∣ ⋯ ∣ Ck ∣ U1 ∣ ⋯ ∣ Um ∣ R1 ∣ ⋯ ∣ Rn)

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Message names
Orchestrations
Protocols and types
Wires
Plugging it all together

The nice part

Applying this to our example yields almost the process that had
been defined directly.

Both processes are equivalent (one would hope bisimilar).

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

So what?

For the specification

Realizable specification

No deadlock

For the implementation

Soundness

Inherits properties proved abstractly

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

Basics
A formal specification in SRML

Putting everything together
Conclusions

Future work

More formal proofs of some technical details

Actually write a paper. . .

Lúıs Cruz-Filipe Services: when specification meets implementation

	Motivation
	Outline
	
	Basics
	
	
	
	

	A formal specification in SRML
	
	
	
	

	Putting everything together
	
	
	
	
	

	Conclusions

