
Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Computing Repairs from Active Integrity
Constraints

L. Cruz-Filipe1,2,4 P. Engrácia1,2 G. Gaspar3,4 I. Nunes3,4

1Escola Superior Náutica Infante D. Henrique

2Centro de Matemática e Aplicações Fundamentais

3Faculty of Sciences, University of Lisbon

4Laboratory of Agent Modelling (LabMAg)

TASE 2013
July 3rd, 2013

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .

. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

A database of family relations

Consider a database with information on family relations.

Fact

siblingOf(John,Mary)

This database should also contain

Missing fact

siblingOf(Mary, John)

Integrity constraint (simple)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Can fix the problem automatically?

Inconsistency

siblingOf(John,Mary)

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Solution

Add siblingOf(Mary, John)

. . . but is this so automatic?

Another solution

Remove siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

may eliminate options

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ +siblingOf(y , x))

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ +siblingOf(y , x))

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ −siblingOf(x , y))

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, revisited

Integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃ ⊥)

Active integrity constraint

∀x∀y .((siblingOf(x , y) ∧ ¬siblingOf(y , x)) ⊃
+ siblingOf(y , x) | −siblingOf(x , y))

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

A valid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

An invalid AIC

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ −siblingOf(x , y) | +Parent(x)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Intuitive semantics of AICs

A generic AIC

L1, . . . , Lm ⊃ α1 | . . . | αk

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of (A)ICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

A repair

+siblingOf(Mary, John)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Another repair

−siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

A weak repair

+siblingOf(Mary, John),+Parent(John)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Family relations, yet again

Inconsistency

siblingOf(John,Mary)

siblingOf(x , y) ∧ ¬siblingOf(y , x) ⊃ +siblingOf(y , x)

Not a weak repair

+siblingOf(Mary, John),−siblingOf(John,Mary)

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC.

We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC. We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC. We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC. We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC. We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Where does the “active” part come in?

The notion of (weak) repair ignores the head of the AIC. We will
come back to that later.

At this stage, how can we find repairs?

Algorithm

1 Choose a set U of update actions (based on I)

2 Compute I ◦ U
3 Check if all AICs in η hold

Each step can be done in polynomial time on I and η.

Finding weak repairs is NP-complete.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅

2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n

the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Finding weak repairs is NP-complete, our version

Tree algorithm

Build a tree (the repair tree for I and η) as follows.

1 The root is ∅
2 For each consistent node n and rule r , if I ◦ n 6|= r , then:

for each action L in the body of r , n′ = n∪{LD} is a child of n
the edge from n to n′ is labeled by r

Lemma

This tree is finite.

Every consistent leaf is a weak repair for I and η.

Every repair for I and η corresponds to a leaf in the tree.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Optimizations

The repair tree can be significantly pruned, e.g. by identifying
nodes that correspond to the same set of actions.

Inconsistent nodes may also be left out.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Intuitively, if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Intuitively, if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Intuitively, if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

founded repairs take into account the actions in the head

justified repairs avoid justification circles

Intuitively, if U is founded, then removing an action from U causes
some AIC with that action in the head to be violated.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅
r3

}}

r4

!!
{+c} {+c}

{+c} is a founded repair

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅
r3

}}

r4

!!
{+c} {+c}

{+c} is a founded repair

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Computing founded repairs

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

Following the heads of the violated rules, we obtain:

∅
r3

}}

r4

!!
{+c} {+c}

{+c} is a founded repair

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Circularity of support I

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

But {−a,−b} is also a founded repair.

The problem is that in {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Circularity of support I

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

But {−a,−b} is also a founded repair.

The problem is that in {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Circularity of support I

Example

Take I = {a, b} and

r1 :a, not b ⊃ −a r3 :a, not c ⊃ +c

r2 :not a, b ⊃ −b r4 :b, not c ⊃ +c

But {−a,−b} is also a founded repair.

The problem is that in {−a,−b} we have a circularity of support.

It is a founded repair that is not justified.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Circularity of support II

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Circularity of support II

Too restrictive?

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Again {−a,−b} is a founded repair that is not justified.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.

The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees I

We can adapt the repair tree as follows.

Modified tree algorithm

Each node n is a pair of sets of repair actions Un,Jn.

The root of the tree is ∅, ∅.
The edges are labeled as before.

For each node n and rule r , if I ◦ Un 6|= r , then each α in the
head of r yields a descendant n′ of n with:

Un′ = Un ∪ {α} and Jn′ = (Jn ∪ {nup(r)}) \ Un.

If Un′ is inconsistent or Un′ ∩ (Jn′)D 6= ∅, then n′ is removed.

Motivation

Keep track of the non-updatable atoms in the rules that were used.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅
r1��

{−a}, {+b}
r3��

{−a,−b}, {+b}
×

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅
r1��

{−a}, {+b}
r3��

{−a,−b}, {+b}
×

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees II

Example

Take I = {a, b} and

r1 : a, b ⊃ −a r2 : a, not b ⊃ −a r3 : not a, b ⊃ −b

Corresponding justified repair tree:

∅, ∅
r1��

{−a}, {+b}
r3��

{−a,−b}, {+b}
×

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must be nodes in the

tree that do not correspond to justified (weak) repairs.

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete.

Therefore sometimes there must be nodes in the
tree that do not correspond to justified (weak) repairs.

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must be nodes in the

tree that do not correspond to justified (weak) repairs.

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Justified repair trees III

Theorem

Let U be a justified repair for I and η. Then there is a leaf n in
the justified repair tree for I and η such that Un = U .

Catch

Deciding whether there is a justified repair for I and η is
Σ2
P -complete. Therefore sometimes there must be nodes in the

tree that do not correspond to justified (weak) repairs.

Checking that a repair is justified is again NP-complete, so our
algorithm is (asymptotically) optimal.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al.

It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Normalized AICs

Definition

An AIC is normalized if its head only contains one action.

Lemma (Caroprese et al.)

If η is a set of normalized AICs, then existence of justified repairs
for I and η is NP-complete.

Theorem

If η is a set of normalized AICs, then every leaf of the justified
repair tree for I and η corresponds to a justified repair for I and η.

We also believe that our algorithm is nicer than the one given by
Caroprese et al. It was developed following the intuitive semantics
of AICs.

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints and repair trees

3 More complex repair trees

4 Conclusions

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

What we achieved. . .

Operational semantics for active integrity constraints

Tree algorithms for repairs and justified repairs

More fine-grained distinction between founded and justified
repairs

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

. . . and what we still hope to do

Optimization of the tree algorithms, through parallelization

Generalizations outside the database world

Integrity constraints Active integrity constraints and repair trees More complex repair trees Conclusions

Thank you.

	Integrity constraints
	Active integrity constraints and repair trees
	More complex repair trees
	Conclusions

