< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimizing the Search for Repairs from Active Integrity Constraints

Luís Cruz-Filipe

Escola Superior Náutica Infante D. Henrique / CMAF / LabMAg (Portugal)

University of Southern Denmark September 13th, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Problem

Databases typically pose conditions on data ("integrity constraints")...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Problem

Databases typically pose conditions on data ("integrity constraints")...

 \ldots but because of errors sometimes these conditions no longer hold.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Problem

Databases typically pose conditions on data ("integrity constraints")...

 \ldots but because of errors sometimes these conditions no longer hold.

Question

How can we repair a database that no longer satisfies its integrity constraints?

I	ntegr	itv	const	trai	nts
	meeg.		00115	ci ci ii	

Active integrity constraints

Parallellization and stratification

Conclusions

2 Active integrity constraints

Outline

- 2 Active integrity constraints
- 3 Parallellization and stratification

A database of family relations

Integrity constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A database of family relations

A database of family relations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A database of family relations

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can fix the problem automatically?

Inconsistency

 ${\sf siblingOf}({\sf John},{\sf Mary})$

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Can fix the problem automatically?

Inconsistency

 ${\sf siblingOf}({\sf John},{\sf Mary})$

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Solution

Add siblingOf(Mary, John)

Can fix the problem automatically?

Inconsistency

siblingOf(John, Mary)

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Solution

Add siblingOf(Mary, John)

... but is this so automatic?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can fix the problem automatically?

Inconsistency

 ${\sf siblingOf}({\sf John},{\sf Mary})$

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Solution

Add siblingOf(Mary, John)

... but is this so automatic?

Another solution

Remove siblingOf(John, Mary)

3 Parallellization and stratification

- ◆ ロ > ◆ 個 > ◆ 注 > ◆ 注 > ・ 注 ・ の へ (?)

Integrity constraints

Active integrity constraints

Parallellization and stratification

Conclusions

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Integrity constraints

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

- may express preferences
- may eliminate options

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Family relations, revisited

Integrity constraint

$\forall x \forall y. ((\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x)) \supset \bot)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Family relations, revisited

Integrity constraint

$$\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$$

Active integrity constraint

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset + siblingOf(y, x))$

Family relations, revisited

Integrity constraint

$$\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$$

Active integrity constraint

 $\forall x \forall y. ((\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x)) \supset + \mathsf{siblingOf}(y, x))$

Active integrity constraint

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset -siblingOf(x, y))$

Family relations, revisited

Integrity constraint

$$\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$$

Active integrity constraint

 $\forall x \forall y.((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset$ + siblingOf(y, x) | -siblingOf(x, y))

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset \alpha_1\mid \ldots\mid \alpha_k$$

where $\{\alpha_1^D, \ldots, \alpha_k^D\} \subseteq \{L_1, \ldots, L_m\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

where $\{\alpha_1^D, \ldots, \alpha_k^D\} \subseteq \{L_1, \ldots, L_m\}.$

A valid AIC

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

Active integrity constraints

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

where
$$\{\alpha_1^D, \ldots, \alpha_k^D\} \subseteq \{L_1, \ldots, L_m\}.$$

A valid AIC

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

An invalid AIC

 $\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x) \supset -\mathsf{siblingOf}(x, y) \mid +\mathsf{Parent}(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intuitive semantics of AICs

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Intuitive semantics of AICs

A generic AIC

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

• conjunction on the left ("body")

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Intuitive semantics of AICs

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Intuitive semantics of AICs

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication

Intuitive semantics of AICs

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication
- holds iff one of the *L*_{*i*}s fails (but...)

Intuitive semantics of AICs

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication
- holds iff one of the L_is fails (but...)
- $\{\alpha_1^D, \dots, \alpha_k^D\}$ are *updatable* literals

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Repairs

Definition (Caroprese et al., 2006)

Let \mathcal{I} be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set \mathcal{U} of update actions such that:
Repairs

Definition (Caroprese et al., 2006)

Let \mathcal{I} be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set \mathcal{U} of update actions such that:

 $\bullet \ \mathcal{U}$ consists of essential actions only

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Repairs

Definition (Caroprese et al., 2006)

Let \mathcal{I} be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set \mathcal{U} of update actions such that:

- $\bullet \ \mathcal{U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

Repairs

Definition (Caroprese et al., 2006)

Let \mathcal{I} be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set \mathcal{U} of update actions such that:

- $\bullet \ \mathcal{U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

(Beware of the notation.)

Repairs

Definition (Caroprese et al., 2006)

Let \mathcal{I} be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set \mathcal{U} of update actions such that:

- $\bullet \ \mathcal{U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Family relations, yet again

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Family relations, yet again

Inconsistency

siblingOf(John, Mary)

$$\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x) \supset + \mathsf{siblingOf}(y,x)$$

A repair

+siblingOf(Mary, John)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Family relations, yet again

Inconsistency

siblingOf(John, Mary)

$$\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x) \supset + \mathsf{siblingOf}(y, x)$$

Another repair

-siblingOf(John, Mary)

Family relations, yet again

Inconsistency

siblingOf(John, Mary)

$$siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$$

A weak repair

+siblingOf(Mary, John), +Parent(John)

Family relations, yet again

Inconsistency

siblingOf(John, Mary)

$$\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x) \supset + \mathsf{siblingOf}(y, x)$$

Not a weak repair

+siblingOf(Mary, John), -siblingOf(John, Mary)

Finding repairs

Algorithm

- **①** Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- 2 Compute $\mathcal{I} \circ \mathcal{U}$
- **③** Check if all AICs in η hold

Finding repairs

Algorithm

- Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- 2 Compute $\mathcal{I} \circ \mathcal{U}$
- $\textcircled{O} Check \text{ if all AICs in } \eta \text{ hold}$

Each step can be done in polynomial time on \mathcal{I} and η .

Finding repairs

Algorithm

- Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- 2 Compute $\mathcal{I} \circ \mathcal{U}$
- $\textcircled{O} Check \text{ if all AICs in } \eta \text{ hold}$

Each step can be done in polynomial time on \mathcal{I} and η .

Finding weak repairs is NP-complete.

Integrity constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Declarative semantics

The notion of repair ignores the head of the AIC.

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

• founded repairs take into account the actions in the head

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

- founded repairs take into account the actions in the head
- justified repairs avoid justification circles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Founded repairs (I)

Intuitively: if ${\cal U}$ is founded, then removing an action from ${\cal U}$ causes some AIC with that action in the head to be violated.

Founded repairs (I)

Intuitively: if ${\cal U}$ is founded, then removing an action from ${\cal U}$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions \mathcal{U} is founded w.r.t. \mathcal{I} and η if, for every $\alpha \in \mathcal{U}$, there is a rule $r \in \eta$ such that $\alpha \in \text{head}(r)$ and

 $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r.$

Founded repairs (I)

Intuitively: if ${\cal U}$ is founded, then removing an action from ${\cal U}$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions \mathcal{U} is founded w.r.t. \mathcal{I} and η if, for every $\alpha \in \mathcal{U}$, there is a rule $r \in \eta$ such that $\alpha \in \text{head}(r)$ and

 $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r.$

(Equivalent to the original definition.)

Founded repairs (I)

Intuitively: if ${\cal U}$ is founded, then removing an action from ${\cal U}$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions \mathcal{U} is founded w.r.t. \mathcal{I} and η if, for every $\alpha \in \mathcal{U}$, there is a rule $r \in \eta$ such that $\alpha \in \text{head}(r)$ and

 $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r.$

(Equivalent to the original definition.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs (II)

Example

Take $\mathcal{I} = \{a, b\}$ and

$$r_1:a$$
, not $b \supset -a$
 $r_2:$ not $a, b \supset -b$

 $r_3:a, \text{not } c \supset +c$

 $r_4:b$, not $c \supset +c$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Founded repairs (II)

Example

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1:a, \text{not } b \supset -a$$
 $r_3:a, \text{not } c \supset +c$ $r_2: \text{not } a, b \supset -b$ $r_4:b, \text{not } c \supset +c$

Then $\{+c\}$ is a founded repair,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Founded repairs (II)

Example

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1:a, \text{not } b \supset -a$$
 $r_3:a, \text{not } c \supset +c$ $r_2: \text{not } a, b \supset -b$ $r_4:b, \text{not } c \supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

Founded repairs (II)

Example

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1:a, \text{not } b \supset -a$$
 $r_3:a, \text{not } c \supset +c$ $r_2: \text{not } a, b \supset -b$ $r_4:b, \text{not } c \supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

In $\{-a, -b\}$ we have a *circularity of support*.

Founded repairs (II)

Example

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1:a, \operatorname{not} b \supset -a$$
 $r_3:a, \operatorname{not} c \supset +c$ $r_2:\operatorname{not} a, b \supset -b$ $r_4:b, \operatorname{not} c \supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

In $\{-a, -b\}$ we have a *circularity of support*.

It is a founded repair that is not justified.

Justified repairs

The definition is meant to avoid circularity of support.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take $\mathcal{I} = \{a, b\}$ and

 $r_1: a, b \supset -a$ $r_2: a, \text{not } b \supset -a$ $r_3: \text{not } a, b \supset -b$

Justified repairs

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take $\mathcal{I} = \{a, b\}$ and

 $r_1: a, b \supset -a$ $r_2: a, \text{not } b \supset -a$ $r_3: \text{not } a, b \supset -b$

Again $\{-a, -b\}$ is a founded repair that is not justified.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Deciding whether there is a founded weak repair for ${\mathcal I}$ and η is NP-complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Deciding whether there is a founded weak repair for ${\cal I}$ and η is NP-complete.

Deciding whether there is a founded repair for ${\mathcal I}$ and η is $\Sigma^2_P\text{-complete.}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Deciding whether there is a founded weak repair for ${\cal I}$ and η is NP-complete.

Deciding whether there is a founded repair for ${\mathcal I}$ and η is $\Sigma^2_P\text{-complete.}$

Deciding whether there is a justified (weak) repair for ${\mathcal I}$ and η is $\Sigma^2_P\text{-complete.}$

2 Active integrity constraints

4 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ● のへの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

Reduce the size of the problem by splitting the set of AICs into smaller sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Motivation

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

• do not lose repairs;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Motivation

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

- do not lose repairs;
- efficient combination of results.
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Independence

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \parallel r_2$, if the literals in their bodies do not share atoms.

Independence

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \perp r_2$, if the literals in their bodies do not share atoms. Two sets of AICs η_1 and η_2 are *independent*, $\eta_1 \perp \eta_2$, if $r_1 \perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

Independence

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \perp r_2$, if the literals in their bodies do not share atoms. Two sets of AICs η_1 and η_2 are *independent*, $\eta_1 \perp \eta_2$, if $r_1 \perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

• No attention to the heads of the rules.

Independence

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \perp r_2$, if the literals in their bodies do not share atoms. Two sets of AICs η_1 and η_2 are *independent*, $\eta_1 \perp \eta_2$, if $r_1 \perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

- No attention to the heads of the rules.
- Not affected by the database.

(日)、

ж

Independence vs. parallellization (I)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

э

Independence vs. parallellization (I)

Theorem

э

Independence vs. parallellization (I)

Theore<u>m</u>

ъ

Independence vs. parallellization (I)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η . Define \mathcal{U}_i as the set of actions in \mathcal{U} affecting literals in the bodies of rules in η_i , for i = 1, 2. Then:

• each U_i is a weak repair for \mathcal{I} and η_i ;

ъ

Independence vs. parallellization (I)

Theorem

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;

ъ

Independence vs. parallellization (I)

Theorem

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if \mathcal{U} is founded, then so is each \mathcal{U}_i ;

ъ

Independence vs. parallellization (I)

Theorem

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if \mathcal{U} is founded, then so is each \mathcal{U}_i ;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Independence vs. parallellization (I)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η . Define \mathcal{U}_i as the set of actions in \mathcal{U} affecting literals in the bodies of rules in η_i , for i = 1, 2. Then:

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if \mathcal{U} is founded, then so is each \mathcal{U}_i ;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Furthermore, if every action in \mathcal{U} affects a literal in the body of a rule in η , then $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Independence vs. parallellization (I)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η . Define \mathcal{U}_i as the set of actions in \mathcal{U} affecting literals in the bodies of rules in η_i , for i = 1, 2. Then:

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if \mathcal{U} is founded, then so is each \mathcal{U}_i ;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Furthermore, if every action in \mathcal{U} affects a literal in the body of a rule in η , then $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$. This hypothesis is (very) reasonable in practice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in \mathcal{U}_1$.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in U_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in U_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$. Therefore \mathcal{U}_1 is founded.

Independence vs. parallellization (II)

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that U_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$. Therefore \mathcal{U}_1 is founded.

This means that we can parallellize the search for repairs without losing solutions.

Independence vs. parallellization (III)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U}_i be weak repairs for \mathcal{I} and η_i , for i = 1, 2, such that all actions in \mathcal{U}_i affect a literal in the body of a rule in η_i .

Independence vs. parallellization (III)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \parallel \eta_2$; \mathcal{I} be a database; and \mathcal{U}_i be weak repairs for \mathcal{I} and η_i , for i = 1, 2, such that all actions in \mathcal{U}_i affect a literal in the body of a rule in η_i . Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Independence vs. parallellization (III)

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \parallel \eta_2$; \mathcal{I} be a database; and \mathcal{U}_i be weak repairs for \mathcal{I} and η_i , for i = 1, 2, such that all actions in \mathcal{U}_i affect a literal in the body of a rule in η_i . Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$. Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U;
- if each U_i is founded, then so is U_i ;
- if each U_i is justified, then so is U.

Integrity constraints

Active integrity constraints

Parallellization and stratification

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Independence vs. parallellization (IV)

The proof is similar.

Integrity constraints

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Independence vs. parallellization (IV)

The proof is similar.

This means that parallellization of the search does not add "new" (false) solutions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation $\underline{\mathbb{A}}^+.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation $\underline{\mathcal{M}}^+$. This is an equivalence relation.

Computing independent sets of AICs

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation \underline{M}^+ . This is an equivalence relation. The quotient set η/\underline{M}^+ is the finest partition of η in independent sets, and can be computed efficiently.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Precedence

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Precedence

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

• Reflexive relation.

Precedence

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

- Reflexive relation.
- $\langle n/\approx, \preceq \rangle$ is a partial order, where \preceq is the transitive closure of \prec and \approx is the induced equivalence relation.

Precedence

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

- Reflexive relation.
- $\langle n/\approx, \preceq \rangle$ is a partial order, where \preceq is the transitive closure of \prec and \approx is the induced equivalence relation.

(Similar to stratified negation in logic programming...)

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.
Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$. Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$. Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$. Define \mathcal{U}_i as the set of actions in \mathcal{U} in the head of a rule in η_i , for i = 1, 2.

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$. Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$. Define \mathcal{U}_i as the set of actions in \mathcal{U} in the head of a rule in η_i , for i = 1, 2. Then:

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$. Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$. Define \mathcal{U}_i as the set of actions in \mathcal{U} in the head of a rule in η_i , for i = 1, 2.

Then:

 U₁ is a weak repair for I and η₁ and U₂ is a weak repair for *I* ◦ U₁ and η₂;

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in \eta/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$. Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$. Define \mathcal{U}_i as the set of actions in \mathcal{U} in the head of a rule in η_i , for i = 1, 2.

Then:

- U_1 is a weak repair for I and η_1 and U_2 is a weak repair for $I \circ U_1$ and η_2 ;
- if \mathcal{U} is founded/justified, then so is each \mathcal{U}_i .

Conclusions

Precedence vs. stratification (II)

The proof is similar to the above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

• it may happen that ${\mathcal U}$ is a repair, but ${\mathcal U}_1$ and/or ${\mathcal U}_2$ are not;

Precedence vs. stratification (II)

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

- it may happen that ${\cal U}$ is a repair, but ${\cal U}_1$ and/or ${\cal U}_2$ are not;
- there may be a weak (founded, justified) repair U_1 for \mathcal{I} and η_1 that is not a subset of any weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Precedence vs. stratification (III)

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i .

Precedence vs. stratification (III)

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i . Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Precedence vs. stratification (III)

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i . Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$. Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U;
- if each U_i is founded/justified, then so is U.

Precedence vs. stratification (III)

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i . Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$. Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U_i ;
- if each U_i is founded/justified, then so is U.

The proof is similar.

- 2 Active integrity constraints
- 3 Parallellization and stratification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What we achieved...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What we achieved...

• Split a large problem in several smaller ones

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What we achieved...

- Split a large problem in several smaller ones
- Possibility of parallellization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What we achieved...

- Split a large problem in several smaller ones
- Possibility of parallellization
- Stratification relation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

... and what we still hope to do

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... and what we still hope to do

• (More) practical evaluation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

... and what we still hope to do

- (More) practical evaluation
- Prototype implementation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

... and what we still hope to do

- (More) practical evaluation
- Prototype implementation
- Generalizations of AICs outside the database world

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Thank you.