Optimizing the Search for Repairs from Active Integrity Constraints

Luís Cruz-Filipe

Escola Superior Náutica Infante D. Henrique / CMAF / LabMAg

LabMAg Seminar September 18th, 2013

Active integrity constraints

- Active integrity constraints
- 2 Parallelization

- Active integrity constraints
- Parallelization
- Stratification

- Active integrity constraints
- 2 Parallelization
- Stratification
- 4 Conclusions

- Active integrity constraints
- 2 Parallelization
- Stratification
- 4 Conclusions

Motivation

Specify a constraint and propose possible solutions.

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

may express preferences

Motivation

Specify a constraint and propose possible solutions.

Works both ways:

- may express preferences
- may eliminate options

Example: family relations

Integrity constraint

 $\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Example: family relations

Integrity constraint

 $\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$

Active integrity constraint

 $\forall x \forall y. ((\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x)) \supset + \mathsf{siblingOf}(y,x))$

Integrity constraint

$$\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$$

Active integrity constraint

$$\forall x \forall y. ((\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x)) \supset + \mathsf{siblingOf}(y,x))$$

Active integrity constraint

$$\forall x \forall y. ((\mathsf{siblingOf}(x, y) \land \neg \mathsf{siblingOf}(y, x)) \supset -\mathsf{siblingOf}(x, y))$$

Example: family relations

Integrity constraint

$$\forall x \forall y. ((siblingOf(x, y) \land \neg siblingOf(y, x)) \supset \bot)$$

Active integrity constraint

$$\forall x \forall y. ((\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x)) \supset \\ + \mathsf{siblingOf}(y,x) \mid -\mathsf{siblingOf}(x,y))$$

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

where $\{\alpha_1^D, \ldots, \alpha_k^D\} \subseteq \{L_1, \ldots, L_m\}$.

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

where $\{\alpha_1^D, \dots, \alpha_k^D\} \subseteq \{L_1, \dots, L_m\}$.

A valid AIC

$$\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x) \supset + \mathsf{siblingOf}(y,x)$$

Definition (Flesca2004)

An Active integrity constraint is a formula of the form

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

where $\{\alpha_1^D, \ldots, \alpha_k^D\} \subseteq \{L_1, \ldots, L_m\}$.

A valid AIC

$$siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$$

An invalid AIC

 $\mathsf{siblingOf}(x,y) \land \neg \mathsf{siblingOf}(y,x) \supset -\mathsf{siblingOf}(x,y) \mid +\mathsf{Parent}(x)$

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

A generic AIC

$$L_1, \ldots, L_m \supset \alpha_1 \mid \ldots \mid \alpha_k$$

• conjunction on the left ("body")

$$L_1, \ldots, L_m \supset \alpha_1 \mid \ldots \mid \alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")

$$L_1, \ldots, L_m \supset \alpha_1 \mid \ldots \mid \alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication
- holds iff one of the *L_i*s fails (but...)

$$L_1,\ldots,L_m\supset\alpha_1\mid\ldots\mid\alpha_k$$

- conjunction on the left ("body")
- disjunction on the right ("head")
- semantics of (normal) implication
- holds iff one of the Lis fails (but...)
- $\{\alpha_1^D, \dots, \alpha_k^D\}$ are updatable literals

Definition (Caroprese et al., 2006)

Let $\mathcal I$ be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set $\mathcal U$ of update actions such that:

Definition (Caroprese et al., 2006)

Let $\mathcal I$ be a database and η be a set of (A)ICs. A *weak repair* for I and η is a consistent set $\mathcal U$ of update actions such that:

ullet ${\cal U}$ consists of essential actions only

Definition (Caroprese et al., 2006)

Let $\mathcal I$ be a database and η be a set of (A)ICs. A *weak repair* for $\mathit I$ and η is a consistent set $\mathcal U$ of update actions such that:

- \bullet $\,\mathcal{U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

Definition (Caroprese et al., 2006)

Let $\mathcal I$ be a database and η be a set of (A)ICs. A *weak repair* for $\mathit I$ and η is a consistent set $\mathcal U$ of update actions such that:

- ullet ${\cal U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

(Beware of the notation.)

Definition (Caroprese et al., 2006)

Let $\mathcal I$ be a database and η be a set of (A)ICs. A *weak repair* for $\mathit I$ and η is a consistent set $\mathcal U$ of update actions such that:

- ullet ${\cal U}$ consists of essential actions only
- $\mathcal{I} \circ \mathcal{U} \models \eta$

(Beware of the notation.)

Definition

A repair is a weak repair that is minimal w.r.t. inclusion.

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

A repair

+siblingOf(Mary, John)

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

Another repair

-siblingOf(John, Mary)

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

A weak repair

+siblingOf(Mary, John), +Parent(John)

Inconsistency

siblingOf(John, Mary)

 $siblingOf(x, y) \land \neg siblingOf(y, x) \supset + siblingOf(y, x)$

Not a weak repair

+siblingOf(Mary, John), -siblingOf(John, Mary)

Finding repairs

"Algorithm"

- **1** Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- **2** Compute $\mathcal{I} \circ \mathcal{U}$
- \odot Check if all AICs in η hold

Finding repairs

"Algorithm"

- **①** Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- ② Compute $\mathcal{I} \circ \mathcal{U}$
- **1** Check if all AICs in η hold

Each step can be done in polynomial time on \mathcal{I} and η .

Finding repairs

"Algorithm"

- ① Choose a set \mathcal{U} of update actions (based on \mathcal{I})
- ② Compute $\mathcal{I} \circ \mathcal{U}$
- **1** Check if all AICs in η hold

Each step can be done in polynomial time on \mathcal{I} and η .

Finding weak repairs is NP-complete.

Declarative semantics

The notion of repair ignores the head of the AIC.

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

• founded repairs take into account the actions in the head

Declarative semantics

The notion of repair ignores the head of the AIC.

Caroprese et al., 2006/2011

- founded repairs take into account the actions in the head
- justified repairs avoid justification circles

Intuitively: if $\mathcal U$ is founded, then removing an action from $\mathcal U$ causes some AIC with that action in the head to be violated.

Intuitively: if $\mathcal U$ is founded, then removing an action from $\mathcal U$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions $\mathcal U$ is founded w.r.t. $\mathcal I$ and η if, for every $\alpha \in \mathcal U$, there is a rule $r \in \eta$ such that $\alpha \in \operatorname{head}(r)$ and

$$\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$$
.

Intuitively: if $\mathcal U$ is founded, then removing an action from $\mathcal U$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions $\mathcal U$ is founded w.r.t. $\mathcal I$ and η if, for every $\alpha \in \mathcal U$, there is a rule $r \in \eta$ such that $\alpha \in \mathsf{head}(r)$ and

$$\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r.$$

(This is the original definition, which was abandoned and rediscovered.)

Intuitively: if $\mathcal U$ is founded, then removing an action from $\mathcal U$ causes some AIC with that action in the head to be violated.

Definition

A set of update actions $\mathcal U$ is founded w.r.t. $\mathcal I$ and η if, for every $\alpha \in \mathcal U$, there is a rule $r \in \eta$ such that $\alpha \in \mathsf{head}(r)$ and

$$\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r.$$

(This is the original definition, which was abandoned and rediscovered.)

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Example

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1: a, \text{ not } b \supset -a$$

$$r_2$$
:not $a, b \supset -b$

$$r_3: a, \text{ not } c \supset +c$$

$$r_4:b$$
, not $c\supset +c$

Example

Take $\mathcal{I} = \{a, b\}$ and

 $r_1:a$, not $b\supset -a$

 $r_3: a, \text{ not } c \supset +c$

 r_2 :not $a, b \supset -b$

 $r_4:b$, not $c\supset +c$

Then $\{+c\}$ is a founded repair,

Example

Take $\mathcal{I} = \{a, b\}$ and

$$r_1: a$$
, not $b \supset -a$

$$r_3: a, \text{ not } c \supset +c$$

$$r_2$$
:not $a, b \supset -b$

$$r_4:b$$
, not $c\supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

Example

Take $\mathcal{I} = \{a, b\}$ and

$$r_1: a, \text{ not } b\supset -a$$

$$r_3: a, \text{ not } c \supset +c$$

$$r_2$$
:not $a, b \supset -b$

$$r_4:b$$
, not $c\supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

In $\{-a, -b\}$ we have a circularity of support.

Example

Take $\mathcal{I} = \{a, b\}$ and

$$r_1:a$$
, not $b\supset -a$

$$r_3: a, \text{ not } c \supset +c$$

$$r_2$$
:not $a, b \supset -b$

$$r_4:b$$
, not $c\supset +c$

Then $\{+c\}$ is a founded repair, but so is $\{-a, -b\}$.

In $\{-a, -b\}$ we have a *circularity of support*.

It is a founded repair that is not justified.

The definition is meant to avoid circularity of support.

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take
$$\mathcal{I} = \{a, b\}$$
 and

$$r_1: a, b\supset -a$$

$$r_1: a, b \supset -a$$
 $r_2: a, \text{ not } b \supset -a$ $r_3: \text{ not } a, b \supset -b$

$$r_3$$
: not $a, b \supset -b$

The definition is meant to avoid circularity of support.

It is not intuitive and there is no motivation in the references.

Too restrictive?

Take $\mathcal{I} = \{a, b\}$ and

$$r_1: a, b\supset -a$$
 $r_2: a, \text{ not } b\supset -a$ $r_3: \text{ not } a, b\supset -b$

Again $\{-a, -b\}$ is a founded repair that is not justified.

Complexity

Deciding whether there is a founded weak repair for ${\mathcal I}$ and η is NP-complete.

Complexity

Deciding whether there is a founded weak repair for ${\mathcal I}$ and η is NP-complete.

Deciding whether there is a founded repair for ${\mathcal I}$ and η is $\Sigma^2_P\text{-complete}.$

Complexity

Deciding whether there is a founded weak repair for $\mathcal I$ and η is NP-complete.

Deciding whether there is a founded repair for ${\mathcal I}$ and η is $\Sigma^2_P\text{-complete}.$

Deciding whether there is a justified (weak) repair for $\mathcal I$ and η is Σ^2_P -complete.

Stratification

Outline

- Active integrity constraints
- Parallelization

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

do not lose repairs;

Reduce the size of the problem by splitting the set of AICs into smaller sets.

Goals:

- do not lose repairs;
- efficient combination of results.

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \parallel r_2$, if the literals in their bodies do not share atoms.

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \parallel r_2$, if the literals in their bodies do not share atoms.

Two sets of AICs η_1 and η_2 are *independent*, $\eta_1 \perp \!\!\! \perp \eta_2$, if $r_1 \perp \!\!\! \perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \parallel r_2$, if the literals in their bodies do not share atoms.

Two sets of AICs η_1 and η_2 are independent, $\eta_1 \perp \!\!\!\perp \eta_2$, if $r_1 \perp \!\!\!\perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

• No attention to the heads of the rules.

Definition

Two AICs r_1 and r_2 are *independent*, $r_1 \parallel r_2$, if the literals in their bodies do not share atoms.

Two sets of AICs η_1 and η_2 are independent, $\eta_1 \perp \!\!\!\perp \eta_2$, if $r_1 \perp \!\!\!\perp r_2$ for every $r_1 \in \eta_1$ and $r_2 \in \eta_2$.

- No attention to the heads of the rules.
- Not affected by the database.

Example

Consider the following AICs:

$$r_1: a, \text{ not } b \supset -a$$
 $r_2: b, c \supset -c$ $r_3: d \supset -d$

$$r_2:b,c\supset -c$$

$$r_3:d\supset -d$$

Example

Consider the following AICs:

$$r_1: a, \text{ not } b\supset -a$$
 $r_2: b, c\supset -c$ $r_3: d\supset -d$

$$r_2:b,c\supset -c$$

$$r_3: d\supset -d$$

Then $\{r_1, r_2\} \perp \!\!\! \perp \{r_3\}$.

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i=1,2.

Then:

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

• each U_i is a weak repair for \mathcal{I} and η_i ;

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if U is founded, then so is each U_i;

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

- each U_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if U is founded, then so is each U_i;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

- each \mathcal{U}_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if U is founded, then so is each U_i;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Furthermore, if every action in \mathcal{U} affects a literal in the body of a rule in η , then $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and η .

Define U_i as the set of actions in U affecting literals in the bodies of rules in η_i , for i = 1, 2.

Then:

- each \mathcal{U}_i is a weak repair for \mathcal{I} and η_i ;
- if \mathcal{U} is a repair, then so is each \mathcal{U}_i ;
- if U is founded, then so is each U_i;
- if \mathcal{U} is justified, then so is each \mathcal{U}_i .

Furthermore, if every action in \mathcal{U} affects a literal in the body of a rule in η , then $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$. This hypothesis is (very) reasonable in practice.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if \mathcal{U} is minimal, then so must \mathcal{U}_1 and \mathcal{U}_2 be.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$. Therefore \mathcal{U}_1 is founded.

Proof (sketch).

Given $r_1 \in \eta_1$ and $r_2 \in \eta_2$, changing the logical values of literals in the body of r_1 cannot affect the semantics of r_2 and vice-versa. This implies that \mathcal{U}_i is a weak repair for \mathcal{I} and η_i .

This also implies that, if $\mathcal U$ is minimal, then so must $\mathcal U_1$ and $\mathcal U_2$ be.

For foundedness, take $\alpha \in \mathcal{U}_1$. Since \mathcal{U} is founded, there is a rule $r \in \eta$ such that $\mathcal{I} \circ (\mathcal{U} \setminus \{\alpha\}) \not\models r$. Necessarily $r \in \eta_1$ and $\mathcal{I} \circ (\mathcal{U}_1 \setminus \{\alpha\}) \not\models r$. Therefore \mathcal{U}_1 is founded.

This means that we can parallelize the search for repairs without losing solutions.

Example

Let $\mathcal{I} = \{a, b, c, d\}$ and consider the following set of AICs η :

$$r_1: a, \text{ not } b \supset -a$$
 $r_2: b, c \supset -c$ $r_3: d \supset -d$

$$r_2:b,c\supset -c$$

$$r_3: d\supset -d$$

Example

Let $\mathcal{I} = \{a, b, c, d\}$ and consider the following set of AICs η :

$$r_1: a, \text{ not } b\supset -a$$
 $r_2: b, c\supset -c$ $r_3: d\supset -d$

Then $\mathcal{U} = \{-c, -d\}$ is a founded repair for \mathcal{I} and η .

Example

Let $\mathcal{I} = \{a, b, c, d\}$ and consider the following set of AICs η :

$$r_1: a, \text{ not } b\supset -a$$
 $r_2: b, c\supset -c$ $r_3: d\supset -d$

Then $\mathcal{U} = \{-c, -d\}$ is a founded repair for \mathcal{I} and η .

Since $\eta_1 = \{r_1, r_2\}$ and $\eta_2 = \{r_3\}$ are independent, the theorem guarantees that $\mathcal{U}_1 = \{-c\}$ and $\mathcal{U}_2 = \{-d\}$ are founded repairs for \mathcal{I} and η_1 or η_2 , respectively.

Theorem

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; $\mathcal I$ be a database; and $\mathcal U_i$ be weak repairs for $\mathcal I$ and η_i , for i=1,2, such that all actions in $\mathcal U_i$ affect a literal in the body of a rule in η_i .

Theorem

Let $\eta=\eta_1\cup\eta_2$ with $\eta_1\perp\!\!\!\!\perp \eta_2$; $\mathcal I$ be a database; and $\mathcal U_i$ be weak repairs for $\mathcal I$ and η_i , for i=1,2, such that all actions in $\mathcal U_i$ affect a literal in the body of a rule in η_i .

Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

$\mathsf{Theorem}$

Let $\eta = \eta_1 \cup \eta_2$ with $\eta_1 \perp \!\!\! \perp \eta_2$; $\mathcal I$ be a database; and $\mathcal U_i$ be weak repairs for $\mathcal I$ and η_i , for i=1,2, such that all actions in $\mathcal U_i$ affect a literal in the body of a rule in η_i .

Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U_i ;
- if each U_i is founded, then so is U;
- if each U_i is justified, then so is U.

The proof is similar.

The proof is similar.

This means that parallelization of the search does not add "new" (false) solutions.

The previous results generalize to several independent sets of AICs.

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation $\underline{\mathbb{A}}$ of dependence.

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation $\underline{\mathbb{A}}$ of dependence. This relation is reflexive and symmetric.

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation \mathcal{L} of dependence. This relation is reflexive and symmetric. Therefore its transitive closure \mathcal{L}^+ is an equivalence relation.

The previous results generalize to several independent sets of AICs.

In order to split a set η into independent sets, consider the relation Δ of dependence. This relation is reflexive and symmetric. Therefore its transitive closure Δ ⁺ is an equivalence relation. The

quotient set $^{\eta}/_{\text{AL}^+}$ is the finest partition of η in independent sets, and can be computed efficiently.

Outline

- Active integrity constraints
- Stratification

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

Reflexive relation.

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

- Reflexive relation.
- $\langle ^{\eta}/_{\approx}, \preceq \rangle$ is a partial order, where \preceq is the transitive closure of \prec and \approx is the induced equivalence relation.

Definition

AIC r_1 precedes AIC r_2 , $r_1 \prec r_2$, if some action in the head of r_1 affects a literal in the body of r_2 .

- Reflexive relation.
- $\langle ^{\eta}/_{\approx}, \preceq \rangle$ is a partial order, where \preceq is the transitive closure of \prec and \approx is the induced equivalence relation.

(Similar to stratified negation in logic programming...)

Example

Consider the following set of AICs η .

$$r_1:a,b\supset -a$$

$$r_3$$
: not $a, c, d \supset -c \mid -d$

$$r_2: a, \text{ not } b, c \supset +b$$

$$r_4:b,d,e\supset -e$$

Example

Consider the following set of AICs η .

$$r_1:a,b\supset -a$$

$$r_3$$
: not $a, c, d \supset -c \mid -d$

$$r_2: a, \text{ not } b, c \supset +b$$

$$r_4:b,d,e\supset -e$$

The precedence relation is summarized in the following diagram.

Stratification

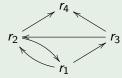
Example

Consider the following set of AICs η .

$$r_1:a,b\supset -a$$
 $r_3:\text{not }a,c,d\supset -c\mid -d$

 $r_2: a, \text{ not } b, c \supset +b$ $r_4: b, d, e \supset -e$

The precedence relation is summarized in the following diagram.

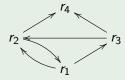


Example

Consider the following set of AICs η .

$$r_1:a,b\supset -a$$
 $r_3: \text{not } a,c,d\supset -c\mid -d$
 $r_2:a, \text{ not } b,c\supset +b$ $r_4:b,d,e\supset -e$

The precedence relation is summarized in the following diagram.



The equivalence classes are $\eta_1 = \{r_1, r_2, r_3\}$ and $\eta_2 = \{r_4\}$.

Precedence vs. stratification (I)

Theorem

Active integrity constraints

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Precedence vs. stratification (I)

Theorem

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Assume that every action in $\mathcal U$ occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Theorem

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Define U_i as the set of actions in U in the head of a rule in η_i , for i = 1, 2.

Theorem

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Define U_i as the set of actions in U in the head of a rule in η_i , for i = 1, 2.

Then:

$\mathsf{Theorem}$

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Define U_i as the set of actions in U in the head of a rule in η_i , for i = 1, 2.

Then:

• \mathcal{U}_1 is a weak repair for \mathcal{I} and η_1 and \mathcal{U}_2 is a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ;

$\mathsf{Theorem}$

Let $\eta_1, \eta_2 \in {}^{\eta}/_{\approx}$ with $\eta_1 \prec \eta_2$; \mathcal{I} be a database; and \mathcal{U} be a weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Assume that every action in \mathcal{U} occurs in the head of a rule in $\eta_1 \cup \eta_2$.

Define U_i as the set of actions in U in the head of a rule in η_i , for i = 1, 2.

Then:

- \mathcal{U}_1 is a weak repair for \mathcal{I} and η_1 and \mathcal{U}_2 is a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ;
- if \mathcal{U} is founded/justified, then so is each \mathcal{U}_i .

The proof is similar to the above.

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

• it may happen that \mathcal{U} is a repair, but \mathcal{U}_1 and/or \mathcal{U}_2 are not;

The proof is similar to the above.

This allows us to sequentialize the search for repairs.

However, some results do not hold:

- ullet it may happen that ${\cal U}$ is a repair, but ${\cal U}_1$ and/or ${\cal U}_2$ are not;
- there may be a weak (founded, justified) repair \mathcal{U}_1 for \mathcal{I} and η_1 that is not a subset of any weak repair for \mathcal{I} and $\eta_1 \cup \eta_2$.

Example

Let $\mathcal{I} = \emptyset$ and consider the following active integrity constraints.

$$r_1$$
: not $a \supset +a$ r_2 : not $b, c \supset +b$ r_3 : b , not $c \supset +c$ r_4 : a , not b , not c , $d \supset -d$ r_5 : a , not b , not c , not $d \supset +d$

Example

Let $\mathcal{I} = \emptyset$ and consider the following active integrity constraints.

$$r_1$$
: not $a \supset +a$ r_2 : not $b, c \supset +b$ r_3 : b , not $c \supset +c$ r_4 : a , not b , not $c, d \supset -d$ r_5 : a , not b , not c , not $d \supset +d$

Taking
$$\eta_1 = \{r_1, r_2, r_3\}$$
 and $\eta_2 = \{r_4, r_5\}$, one has $\eta_1 \prec \eta_2$.

Stratification

Precedence vs. stratification (III)

Example

Let $\mathcal{I} = \emptyset$ and consider the following active integrity constraints.

$$r_1$$
: not $a \supset +a$ r_2 : not $b, c \supset +b$ r_3 : b , not $c \supset +c$ r_4 : a , not b , not $c, d \supset -d$ r_5 : a , not b , not c , not $d \supset +d$

Taking $\eta_1 = \{r_1, r_2, r_3\}$ and $\eta_2 = \{r_4, r_5\}$, one has $\eta_1 \prec \eta_2$. Furthermore, $\{+a\}$ and $\{+a, +b, +c\}$ are weak repairs for $\mathcal I$ and η_1 , the first of which is a repair.

Stratification

Example

Let $\mathcal{I} = \emptyset$ and consider the following active integrity constraints.

$$r_1$$
: not $a \supset +a$ r_2 : not $b, c \supset +b$ r_3 : b , not $c \supset +c$ r_4 : a , not b , not $c, d \supset -d$ r_5 : a , not b , not c , not $d \supset +d$

Taking $\eta_1 = \{r_1, r_2, r_3\}$ and $\eta_2 = \{r_4, r_5\}$, one has $\eta_1 < \eta_2$. Furthermore, $\{+a\}$ and $\{+a,+b,+c\}$ are weak repairs for \mathcal{I} and η_1 , the first of which is a repair. However, the only repair for \mathcal{I} and $\eta_1 \cup \eta_2$ is $\{+a, +b, +c\}$.

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i .

Theorem

Let η_1 , η_2 and \mathcal{I} be as before; \mathcal{U}_1 be a weak repair for \mathcal{I} and η_1 ; \mathcal{U}_2 be a weak repair for $\mathcal{I} \circ \mathcal{U}_1$ and η_2 ; such that every action in \mathcal{U}_i occurs in the head of a rule in η_i .

Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Theorem

Let η_1 , η_2 and $\mathcal I$ be as before; $\mathcal U_1$ be a weak repair for $\mathcal I$ and η_1 ; $\mathcal U_2$ be a weak repair for $\mathcal I \circ \mathcal U_1$ and η_2 ; such that every action in $\mathcal U_i$ occurs in the head of a rule in η_i .

Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U;
- if each U_i is founded/justified, then so is U.

Theorem

Let η_1 , η_2 and $\mathcal I$ be as before; $\mathcal U_1$ be a weak repair for $\mathcal I$ and η_1 ; $\mathcal U_2$ be a weak repair for $\mathcal I \circ \mathcal U_1$ and η_2 ; such that every action in $\mathcal U_i$ occurs in the head of a rule in η_i .

Define $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2$.

Then:

- \mathcal{U} is a weak repair for \mathcal{I} and η ;
- if each U_i is a repair, then so is U_i ;
- if each U_i is founded/justified, then so is U.

The proof is similar.

- Active integrity constraints
- 2 Parallelization
- Stratification
- 4 Conclusions

Conclusions

What we achieved...

• Split a large problem in several smaller ones

What we achieved...

- Split a large problem in several smaller ones
- Possibility of parallelization

What we achieved...

- Split a large problem in several smaller ones
- Possibility of parallelization
- Stratification relation

... and what we still hope to do

...and what we still hope to do

• (More) practical evaluation

...and what we still hope to do

- (More) practical evaluation
- Prototype implementation

...and what we still hope to do

- (More) practical evaluation
- Prototype implementation
- Generalizations of AICs outside the database world

Thank you.