▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Description Logics, Rules and Multi-Context Systems

Luís Cruz-Filipe (joint work with R. Henriques and I. Nunes)

Escola Superior Náutica Infante D. Henrique / CMAF / LabMAg

LPAR-19 December 18th, 2013

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(M)dl-programs

(M)dl-programs

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- 1 Combinations of reasoning systems
- (M)dl-programs
- 3 Multi-context systems
- 4 Correspondence

- 1 Combinations of reasoning systems
- (M)dl-programs
- 3 Multi-context systems
- 4 Correspondence

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Outline				

1 Combinations of reasoning systems

(M)dl-programs

3 Multi-context systems

4 Correspondence

5 Conclusions

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Motivation

- Proliferation of software for reasoning
- Technology reuse
- Capitalize on domain-specific technology

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

- Proliferation of software for reasoning
- Technology reuse
- Capitalize on domain-specific technology

Particular problem: combining description logics and rules

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Two main approaches

Homogeneous systems

New language including all desired features

- "Easy" to understand
- Require specific technology

Two main approaches

Homogeneous systems

New language including all desired features

- "Easy" to understand
- Require specific technology

Heterogeneous systems

Several components of *different* kinds.

- Harder to understand
- Rely on communication/interface
- Highly modular

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Combining description logics with rules

- (M)dl-programs
- HEX-programs
- Multi-context systems
- MKNF

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Combining description logics with rules

- (M)dl-programs
- HEX-programs
- Multi-context systems
- MKNF

Correspondence results:

- (M)dl-programs \subsetneq HEX-programs (trivial)
- $\bullet~\mathrm{Hex}\text{-}\mathsf{programs}$ and MCSs incomparable
- $\mathsf{MKNF} \subseteq \mathsf{MCS}$
- (M)dl-programs \subsetneq MCSs

1 Combinations of reasoning systems

(M)dl-programs

3 Multi-context systems

4 Correspondence

5 Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Syntax & semantics

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Syntax & semantics

(日)、

э

Syntax & semantics

Semantics

Herbrand models (with constants from the knowledge bases)

- Minimal models
- Answer-sets
- Well-founded semantics

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Example				

Example

 Σ_1 is a travel ontology, Σ_2 is a wine ontology

 $wineDest(X) \leftarrow DL_2[; Region](X)$ wineDest(Stellenbosch) \leftarrow wineDest(Sydney) \leftarrow

 $\operatorname{overnight}(X) \leftarrow DL_1[; \operatorname{hasAccommodation}](X, Y)$ $\operatorname{oneDayTrip}(X) \leftarrow DL_1[\operatorname{Destination} \uplus \operatorname{wineDest}; \operatorname{Destination}](X),$ $\operatorname{not} \operatorname{overnight}(X)$

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1 Combinations of reasoning systems
- (M)dl-programs
- 3 Multi-context systems
- 4 Correspondence
- **5** Conclusions

Logic

A *logic* is the language underlying a context, specifying its syntax and "semantics":

- $L = \langle KB, BS, ACC \rangle$
 - *KB* is the set of *knowledge bases*
 - BS is the set of belief sets
 - ACC : $KB \rightarrow 2^{BS}$ assigns acceptable belief sets to knowledge bases

Syntax (I)

Logic

A *logic* is the language underlying a context, specifying its syntax and "semantics":

- $L = \langle KB, BS, ACC \rangle$
 - *KB* is the set of *knowledge bases*
 - BS is the set of belief sets
 - ACC : $KB \rightarrow 2^{BS}$ assigns acceptable belief sets to knowledge bases

Examples: Reiter's default logic; FOL; logic programs; description logics; . . .

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Syntax (II)				

Context

A *context* is a specific knowledge base in a given logic: $C = \langle L, kb, br \rangle$

- L is a logic
- kb is a particular knowledge base
- br is a set of bridge rules connecting C to other contexts

Context

A *context* is a specific knowledge base in a given logic: $C = \langle L, kb, br \rangle$

- L is a logic
- kb is a particular knowledge base
- br is a set of bridge rules connecting C to other contexts

A bridge rule:

$$\mathsf{p} \leftarrow (i_1:q_i), \ldots, (i_n:q_n), \mathsf{not}\; (i_{n+1},q_{n+1}), \ldots, \mathsf{not}\; (i_m,q_m)$$

where i_k are context identifiers (numbers) and q_k are elements of belief sets in the corresponding context

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multi-context system

A Multi-context system (MCS) is a set of contexts whose bridge rules connect to contexts in the same set: $M = \langle C_1, \ldots, C_n \rangle$ and all context identifiers in bridge rules are numbers ranging from 1 to n.

Multi-context system

A *Multi-context system* (MCS) is a set of contexts whose bridge rules connect to contexts in the same set: $M = \langle C_1, \ldots, C_n \rangle$ and all context identifiers in bridge rules are numbers ranging from 1 to *n*.

Technically: non-monotonic heterogenous multi-context systems

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Semantics				

A belief state is a set of belief sets, one for each context.

A *belief state* is a set of belief sets, one for each context.

An *equilibrium* is a belief state such that that each belief set is acceptable w.r.t. the knowledge base of that context extended with the input from that context's bridge rules, given the belief state.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A *belief state* is a set of belief sets, one for each context.

An *equilibrium* is a belief state such that that each belief set is acceptable w.r.t. the knowledge base of that context extended with the input from that context's bridge rules, given the belief state.

Same idea as that of models of logic programming.

- Minimal equilibria
- Grounded equilibria
- Well-founded equilibria

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
Outline				

- 1 Combinations of reasoning systems
- (M)dl-programs
- 3 Multi-context systems
- 4 Correspondence

MCSs were proposed as a generalization of dl-programs, but there are some differences.

- No logic program (where do the rules go?)
- Many local "views" of the knowledge base vs only global changes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

MCSs were proposed as a generalization of dl-programs, but there are some differences.

- No logic program (where do the rules go?)
- Many local "views" of the knowledge base vs only global changes

Example

$$\begin{split} & \text{wineDest}(X) \leftarrow DL_2[; \text{Region}](X) \\ & \text{overnight}(X) \leftarrow DL_1[; \text{hasAccommodation}](X, Y) \\ & \text{oneDayTrip}(X) \leftarrow DL_1[\text{Destination} \uplus \text{ wineDest}; \text{Destination}](X), \\ & \text{not overnight}(X) \end{split}$$

• Define a context C₀ containing the purely logical part of the logic program.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Define a context C₀ containing the purely logical part of the logic program.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define contexts C^j_i for each knowledge base Σ_i and each distinct input context in dl-atoms querying Σ_i.

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
ldea				

- Define a context C₀ containing the purely logical part of the logic program.
- Define contexts C^j_i for each knowledge base Σ_i and each distinct input context in dl-atoms querying Σ_i.
- The logic underlying each C^j_i defines ACC(kb) as the (singleton set containing the) set of logical consequences of kb.

(日) (同) (三) (三) (三) (○) (○)

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions
ldea				

- Define a context C₀ containing the purely logical part of the logic program.
- Define contexts C^j_i for each knowledge base Σ_i and each distinct input context in dl-atoms querying Σ_i.
- The logic underlying each C^j_i defines ACC(kb) as the (singleton set containing the) set of logical consequences of kb.

(日) (同) (三) (三) (三) (○) (○)

• Rules with dl-atoms become bridge rules.

Example (cont'd)

Example

 Σ_1 is a travel ontology, Σ_2 is a wine ontology

wineDest(X) $\leftarrow DL_2$ [; Region](X) wineDest(Stellenbosch) \leftarrow wineDest(Sydney) \leftarrow

overnight(X) $\leftarrow DL_1$ [; hasAccommodation](X, Y) oneDayTrip(X) $\leftarrow DL_1$ [Destination \uplus wineDest; Destination](X), not overnight(X)

Our example

- C_1^1 : travel ontology with no bridge rules
- C_1^2 : travel ontology with bridge rule

 $Destination(X) \leftarrow (0 : wineDest(X))$

- C_2 : wine ontology with no bridge rules
- C₀: the logic program

 $\begin{aligned} \mathsf{wineDest}(\mathsf{Stellenbosch}) \leftarrow \\ \mathsf{wineDest}(\mathsf{Sydney}) \leftarrow \end{aligned}$

with bridge rules

wineDest(X) \leftarrow (2 : Region(X)) overnight(X) \leftarrow (1¹ : hasAccommodation(X, Y)) oneDayTrip(X) \leftarrow (1² : Destination(X)), (0 : not overnight(X))

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

At the semantic level

Belief state S induced by interpretation I for the logic program

Theorem

- S is equilibrium (for the MCS) iff I is a model (of the Mdl-program)
- S is minimal iff I is minimal
- S is grounded iff I is answer-set
- S is well-founded iff I is well-founded

- (M)dl-programs

nce Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mdl-programs vs Multi-context systems

- Strictly included
- Equivalence of semantics
- Portability of results

Combinations of reasoning systems	(M)dl-programs	Multi-context systems	Correspondence	Conclusions

Thank you.