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The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .

. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?
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A typical company database

A set of integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}
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Can we fix the problem automatically?

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Possible solutions

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

U3 = {+insured(′john′,′ basic′),+salary(′john′,′ 0′),

− salary(′john′,′ 500′)}

. . . but how automatic is this?
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Historical background

This problem has been around since the 70s.

Beeri & Vardi, 1981: Classification of integrity constraints
into universal, tuple-generating and equality-generating
dependencies.

Abiteboul, 1988: Seminal paper clearly identifying the
problem and definining it as one of the great challenges in
databases. Three main change operations: addition, deletion
and modification of facts.

Eiter1992: Deciding whether a database can be repaired is
typically Π2

p- or co-Σ2
P -complete.
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Criteria for restricting repairs

Winslett, 1990: Minimality of change – every repair should be
a minimal set of changes, i.e. no proper subset of itself
suffices.

Przymusinski & Turner, 1997: Common-sense law of inertia –
every repair should change only things that really must be
changed, so no ad-hoc changes.

Flesca et al., 2004: Active integrity constraints – every
integrity constraint should specify what actions are allowed to
repair it.
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Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Allows one to:

express preferences among repairs

eliminate options in the search for repairs
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The company database, revisited

Original integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃
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The company database, revisited

Active integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃ + insured(X ,′ basic′)

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃ + salary(X ,′ 0′)

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃ − salary(X ,′ 0′)

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃ − salary(X ,Y )
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Formal definition

Definition (Flesca2004)

An active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

Intuitive semantics:

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . . )

{αD
1 , . . . , α

D
k } are updatable literals
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Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of AICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

A repair is a weak repair that is minimal w.r.t. inclusion.
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Founded and justified repairs

Intuitively: if U is founded, then removing an action α from U
causes some AIC with α in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs can exhibit circularity of support, so Caroprese et
al. introduced justified repairs.
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Complexity

Deciding whether. . .

there is a for a DB is

weak repair NP-complete
repair NP-complete

founded weak repair NP-complete
founded repair Σ2

P -complete
justified weak repair Σ2

P -complete
justified repair Σ2

P -complete
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Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Definition

Two (A)ICs r1 and r2 are independent, r1 |= r2, if the literals in
their bodies do not share atoms.
Two sets of (A)ICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.
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The company database, revisited

Active integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃ +salary(X ,′ 0′)

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃ −salary(X ,′ 0′)

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃ −salary(X ,Y )
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Independence vs. parallelization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a *-repair, then so is each Ui .
Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2.

This last hypothesis is (very) reasonable in practice.
This means that we can parallelize the search for repairs without
losing solutions.
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Independence vs. parallelization (II)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a *-repair, then so is U .

Thus parallelization does not add “new” (false) solutions.
These results generalize to several independent sets of AICs.
A stronger notion of independence can be defined if only founded
or justified (weak) repairs are sought.
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The company database, revisited

Active integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃ +salary(X ,′ 0′)

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃ −salary(X ,′ 0′)

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃ −salary(X ,Y )

Possible solution

U3 = {+insured(′john′,′ basic′)}
∪ {+salary(′john′,′ 0′),−salary(′john′,′ 500′)}
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Precedence

Definition

AIC r1 affects AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . . )
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The company database, modified

Active integrity constraints

employee(X ),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X ), onLeave(X ),¬salary(X ,′ 0′) ⊃ −onLeave(X )

employee(X ), salary(X ,′ 0′),¬onLeave(X ) ⊃ +onLeave(X )

salary(X ,Y ), salary(X ,Z ),X 6= Z ⊃ −salary(X ,Y )
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Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

This allows us to sequentialize the search for repairs.
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Precedence vs. stratification (II)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .



Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions



Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallelization

Stratification relation
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. . . and what we still hope to do

(More) practical evaluation

Prototype implementation
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Thank you.
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