
Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Efficient Repair of Inconsistent Databases

Lúıs Cruz-Filipe

Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)
LabMAg (Portugal)

FoIKS 2014
March 5th, 2014

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .

. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The Problem

Databases typically pose conditions on data (“integrity
constraints”). . .
. . . but because of errors sometimes these conditions no longer
hold.

Question

How can we repair a database that no longer satisfies its integrity
constraints?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

A typical company database

A set of integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃

salary(X ,Y), salary(X ,Z),X 6= Z ⊃

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

A typical company database

A set of integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃

salary(X ,Y), salary(X ,Z),X 6= Z ⊃

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Can we fix the problem automatically?

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Possible solutions

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

U3 = {+insured(′john′,′ basic′),+salary(′john′,′ 0′),

− salary(′john′,′ 500′)}

. . . but how automatic is this?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Can we fix the problem automatically?

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Possible solutions

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

U3 = {+insured(′john′,′ basic′),+salary(′john′,′ 0′),

− salary(′john′,′ 500′)}

. . . but how automatic is this?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Can we fix the problem automatically?

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Possible minimal solutions

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

U3 = {+insured(′john′,′ basic′),+salary(′john′,′ 0′),

− salary(′john′,′ 500′)}

. . . but how automatic is this?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Can we fix the problem automatically?

An inconsistent database

{employee(′john′), salary(′john′,′ 500′), onLeave(′john′)}

Possible minimal solutions

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

U3 = {+insured(′john′,′ basic′),+salary(′john′,′ 0′),

− salary(′john′,′ 500′)}

. . . but how automatic is this?

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Historical background

This problem has been around since the 70s.

Beeri & Vardi, 1981: Classification of integrity constraints
into universal, tuple-generating and equality-generating
dependencies.

Abiteboul, 1988: Seminal paper clearly identifying the
problem and definining it as one of the great challenges in
databases. Three main change operations: addition, deletion
and modification of facts.

Eiter1992: Deciding whether a database can be repaired is
typically Π2

p- or co-Σ2
P -complete.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Historical background

This problem has been around since the 70s.

Beeri & Vardi, 1981: Classification of integrity constraints
into universal, tuple-generating and equality-generating
dependencies.

Abiteboul, 1988: Seminal paper clearly identifying the
problem and definining it as one of the great challenges in
databases. Three main change operations: addition, deletion
and modification of facts.

Eiter1992: Deciding whether a database can be repaired is
typically Π2

p- or co-Σ2
P -complete.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Historical background

This problem has been around since the 70s.

Beeri & Vardi, 1981: Classification of integrity constraints
into universal, tuple-generating and equality-generating
dependencies.

Abiteboul, 1988: Seminal paper clearly identifying the
problem and definining it as one of the great challenges in
databases. Three main change operations: addition, deletion
and modification of facts.

Eiter1992: Deciding whether a database can be repaired is
typically Π2

p- or co-Σ2
P -complete.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Historical background

This problem has been around since the 70s.

Beeri & Vardi, 1981: Classification of integrity constraints
into universal, tuple-generating and equality-generating
dependencies.

Abiteboul, 1988: Seminal paper clearly identifying the
problem and definining it as one of the great challenges in
databases. Three main change operations: addition, deletion
and modification of facts.

Eiter1992: Deciding whether a database can be repaired is
typically Π2

p- or co-Σ2
P -complete.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Criteria for restricting repairs

Winslett, 1990: Minimality of change – every repair should be
a minimal set of changes, i.e. no proper subset of itself
suffices.

Przymusinski & Turner, 1997: Common-sense law of inertia –
every repair should change only things that really must be
changed, so no ad-hoc changes.

Flesca et al., 2004: Active integrity constraints – every
integrity constraint should specify what actions are allowed to
repair it.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Criteria for restricting repairs

Winslett, 1990: Minimality of change – every repair should be
a minimal set of changes, i.e. no proper subset of itself
suffices.

Przymusinski & Turner, 1997: Common-sense law of inertia –
every repair should change only things that really must be
changed, so no ad-hoc changes.

Flesca et al., 2004: Active integrity constraints – every
integrity constraint should specify what actions are allowed to
repair it.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Criteria for restricting repairs

Winslett, 1990: Minimality of change – every repair should be
a minimal set of changes, i.e. no proper subset of itself
suffices.

Przymusinski & Turner, 1997: Common-sense law of inertia –
every repair should change only things that really must be
changed, so no ad-hoc changes.

Flesca et al., 2004: Active integrity constraints – every
integrity constraint should specify what actions are allowed to
repair it.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Allows one to:

express preferences among repairs

eliminate options in the search for repairs

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Active integrity constraints

Motivation

Specify a constraint and propose possible solutions.

Allows one to:

express preferences among repairs

eliminate options in the search for repairs

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Original integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃

salary(X ,Y), salary(X ,Z),X 6= Z ⊃

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ + insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ + salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ − salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ − salary(X ,Y)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ + insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ + salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ − salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ − salary(X ,Y)

No longer a solution

U1 = {−employee(′john′)}

U2 = {+insured(′john′,′ basic′),−onLeave(′john′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ + insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ + salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ − salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ − salary(X ,Y)

Possible solution

U3 = {+insured(′john′,′ basic′),

+ salary(′john′,′ 0′),−salary(′john′,′ 500′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Formal definition

Definition (Flesca2004)

An active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

Intuitive semantics:

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Formal definition

Definition (Flesca2004)

An active integrity constraint is a formula of the form

L1, . . . , Lm ⊃ α1 | . . . | αk

where {αD
1 , . . . , α

D
k } ⊆ {L1, . . . , Lm}.

Intuitive semantics:

conjunction on the left (“body”)

disjunction on the right (“head”)

semantics of (normal) implication

holds iff one of the Li s fails (but. . .)

{αD
1 , . . . , α

D
k } are updatable literals

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Repairs

Definition (Caroprese et al., 2006)

Let I be a database and η be a set of AICs. A weak repair for I
and η is a consistent set U of update actions such that:

U consists of essential actions only

I ◦ U |= η

A repair is a weak repair that is minimal w.r.t. inclusion.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Founded and justified repairs

Intuitively: if U is founded, then removing an action α from U
causes some AIC with α in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs can exhibit circularity of support, so Caroprese et
al. introduced justified repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Founded and justified repairs

Intuitively: if U is founded, then removing an action α from U
causes some AIC with α in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs can exhibit circularity of support, so Caroprese et
al. introduced justified repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Founded and justified repairs

Intuitively: if U is founded, then removing an action α from U
causes some AIC with α in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs can exhibit circularity of support, so Caroprese et
al. introduced justified repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Founded and justified repairs

Intuitively: if U is founded, then removing an action α from U
causes some AIC with α in the head to be violated.

Definition

A set of update actions U is founded w.r.t. I and η if, for every
α ∈ U , there is a rule r ∈ η such that α ∈ head(r) and

I ◦ (U \ {α}) 6|= r .

Definition

A (weak) repair that is founded is called a founded (weak) repair.

Founded repairs can exhibit circularity of support, so Caroprese et
al. introduced justified repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Complexity

Deciding whether. . .

there is a for a DB is

weak repair NP-complete
repair NP-complete

founded weak repair NP-complete
founded repair Σ2

P -complete
justified weak repair Σ2

P -complete
justified repair Σ2

P -complete

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Definition

Two (A)ICs r1 and r2 are independent, r1 |= r2, if the literals in
their bodies do not share atoms.
Two sets of (A)ICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Definition

Two (A)ICs r1 and r2 are independent, r1 |= r2, if the literals in
their bodies do not share atoms.
Two sets of (A)ICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Motivation

Reduce the size of the problem by splitting the set of AICs into
smaller sets.

Goals:

do not lose repairs;

efficient combination of results.

Definition

Two (A)ICs r1 and r2 are independent, r1 |= r2, if the literals in
their bodies do not share atoms.
Two sets of (A)ICs η1 and η2 are independent, η1 |= η2, if r1 |= r2
for every r1 ∈ η1 and r2 ∈ η2.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ +salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ −salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ −salary(X ,Y)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a *-repair, then so is each Ui .
Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2.

This last hypothesis is (very) reasonable in practice.
This means that we can parallelize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a *-repair, then so is each Ui .
Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2.

This last hypothesis is (very) reasonable in practice.

This means that we can parallelize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (I)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and U be a weak
repair for I and η.
Define Ui as the set of actions in U affecting literals in the bodies
of rules in ηi , for i = 1, 2.
Then:

each Ui is a weak repair for I and ηi ;

if U is a *-repair, then so is each Ui .
Furthermore, if every action in U affects a literal in the body of a
rule in η, then U = U1 ∪ U2.

This last hypothesis is (very) reasonable in practice.
This means that we can parallelize the search for repairs without
losing solutions.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (II)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a *-repair, then so is U .

Thus parallelization does not add “new” (false) solutions.
These results generalize to several independent sets of AICs.
A stronger notion of independence can be defined if only founded
or justified (weak) repairs are sought.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (II)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a *-repair, then so is U .

Thus parallelization does not add “new” (false) solutions.

These results generalize to several independent sets of AICs.
A stronger notion of independence can be defined if only founded
or justified (weak) repairs are sought.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (II)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a *-repair, then so is U .

Thus parallelization does not add “new” (false) solutions.
These results generalize to several independent sets of AICs.

A stronger notion of independence can be defined if only founded
or justified (weak) repairs are sought.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Independence vs. parallelization (II)

Theorem

Let η = η1 ∪ η2 with η1 |= η2; I be a database; and Ui be weak
repairs for I and ηi , for i = 1, 2, such that all actions in Ui affect a
literal in the body of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a *-repair, then so is U .

Thus parallelization does not add “new” (false) solutions.
These results generalize to several independent sets of AICs.
A stronger notion of independence can be defined if only founded
or justified (weak) repairs are sought.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ +salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ −salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ −salary(X ,Y)

Possible solution

U3 = {+insured(′john′,′ basic′)}
∪ {+salary(′john′,′ 0′),−salary(′john′,′ 500′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, revisited

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ +salary(X ,′ 0′)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ −salary(X ,′ 0′)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ −salary(X ,Y)

Possible solution

U3 = {+insured(′john′,′ basic′)}
∪ {+salary(′john′,′ 0′),−salary(′john′,′ 500′)}

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence

Definition

AIC r1 affects AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence

Definition

AIC r1 affects AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence

Definition

AIC r1 affects AIC r2, r1 ≺ r2, if some action in the head of r1
affects a literal in the body of r2.

Reflexive relation.

〈η/≈,�〉 is a partial order, where � is the transitive closure of
≺ and ≈ is the induced equivalence relation.

(Similar to stratified negation in logic programming. . .)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

The company database, modified

Active integrity constraints

employee(X),¬insured(X ,′ basic′) ⊃ +insured(X ,′ basic′)

employee(X), onLeave(X),¬salary(X ,′ 0′) ⊃ −onLeave(X)

employee(X), salary(X ,′ 0′),¬onLeave(X) ⊃ +onLeave(X)

salary(X ,Y), salary(X ,Z),X 6= Z ⊃ −salary(X ,Y)

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

This allows us to sequentialize the search for repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence vs. stratification (I)

Theorem

Let η1, η2 ∈ η/≈ with η1 ≺ η2; I be a database; and U be a weak
repair for I and η1 ∪ η2.
Assume that every action in U occurs in the head of a rule in
η1 ∪ η2.
Define Ui as the set of actions in U in the head of a rule in ηi , for
i = 1, 2.
Then:

U1 is a weak repair for I and η1 and U2 is a weak repair for
I ◦ U1 and η2;

if U is founded/justified, then so is each Ui .

This allows us to sequentialize the search for repairs.

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Precedence vs. stratification (II)

Theorem

Let η1, η2 and I be as before; U1 be a weak repair for I and η1;
U2 be a weak repair for I ◦ U1 and η2; such that every action in Ui
occurs in the head of a rule in ηi , and define U = U1 ∪ U2.
Then:

U is a weak repair for I and η;

if each Ui is a repair, then so is U ;

if each Ui is founded/justified, then so is U .

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Outline

1 Integrity constraints

2 Active integrity constraints

3 Parallelization and stratification

4 Conclusions

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallelization

Stratification relation

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

What we achieved. . .

Split a large problem in several smaller ones

Possibility of parallelization

Stratification relation

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

. . . and what we still hope to do

(More) practical evaluation

Prototype implementation

Integrity constraints Active integrity constraints Parallelization and stratification Conclusions

Thank you.

	Integrity constraints
	Active integrity constraints
	Parallelization and stratification
	Conclusions

