
Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Minimal-Size Sorting Networks for 9 and 10 Inputs

L. Cruz-Filipe1 M. Codish2 M. Frank2

P. Schneider-Kamp1

1Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

2Ben-Gurion University of the Negev (Israel)

Roskilde Universitet
June 18th, 2014

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Outline

1 Sorting Networks in a Nutshell

2 The Generate-and-Prune approach

3 Conclusions & Future Work

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Outline

1 Sorting Networks in a Nutshell

2 The Generate-and-Prune approach

3 Conclusions & Future Work

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

What are sorting networks?

Oblivious algorithms to sort a given number of inputs

Easy to implement at the hardware level

Intrinsically parallel

Two interesting optimization problems:

size (production cost)
depth (execution time)

See Donald E. Knuth, The Art of Computer Programming,
vol. 3 for more details

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

What are sorting networks?

Oblivious algorithms to sort a given number of inputs

Easy to implement at the hardware level

Intrinsically parallel

Two interesting optimization problems:

size (production cost)
depth (execution time)

See Donald E. Knuth, The Art of Computer Programming,
vol. 3 for more details

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

3

5

9

6

1

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

3

5

9

6

1

3

5

9

6

1

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

3

5

9

6

1

3

5

9

6

1

3

9

5

6

1

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

3

5

9

6

1

3

5

9

6

1

3

9

5

6

1

3

9

5

6

1

3

9

5

6

1

9

3

5

6

1

9

3

6

5

1

9

5

6

3

1

9

6

5

3

1

9

6

5

3

1

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

3

5

9

6

1

3

5

9

6

1

3

9

5

6

1

3

9

5

6

1

3

9

5

6

1

9

3

5

6

1

9

3

6

5

1

9

5

6

3

1

9

6

5

3

1

9

6

5

3

1

Size

This net has 5 channels and 9 comparators.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Knuth 1973

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sn ≤ 3 5 9 12 16 19 25 29 35 39 45 51 56 60
Sn ≥ 3 5 9 12 16 19 23 27 31 35 39 47 51 55
Tn ≤ 3 3 5 5 6 6 7 7 8 8 9 9 9 9
Tn ≥ 3 3 5 5 6 6 6 6 6 6 6 6 6 6

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Parberry 1991

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sn ≤ 3 5 9 12 16 19 25 29 35 39 45 51 56 60
Sn ≥ 3 5 9 12 16 19 23 27 31 35 39 47 51 55
Tn ≤ 3 3 5 5 6 6 7 7 8 8 9 9 9 9
Tn ≥ 3 3 5 5 6 6 7 7 7 7 7 7 7 7

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Bundala & Závodný 2013

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sn ≤ 3 5 9 12 16 19 25 29 35 39 45 51 56 60
Sn ≥ 3 5 9 12 16 19 23 27 31 35 39 47 51 55
Tn ≤ 3 3 5 5 6 6 7 7 8 8 9 9 9 9
Tn ≥ 3 3 5 5 6 6 7 7 8 8 9 9 9 9

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network
on n channels (Sn)?

The depth problem

What is the minimal number of layers on a sorting network on
n channels (Tn)?

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sn ≤ 3 5 9 12 16 19 25 29 35 39 45 51 56 60
Sn ≥ 3 5 9 12 16 19 25 29 33 37 41 45 49 53
Tn ≤ 3 3 5 5 6 6 7 7 8 8 9 9 9 9
Tn ≥ 3 3 5 5 6 6 7 7 8 8 9 9 9 9

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

These techniques are not directly applicable to the size
problem

CCFS (2014)

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

exploration of symmetries
fixed first layer
200 hours of computation

Bundala & Závodný (2013)

These techniques are not directly applicable to the size
problem

CCFS (2014)

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

exploration of symmetries
reduced set of two-layer prefixes
intensive SAT-solving

These techniques are not directly applicable to the size
problem

CCFS (2014)

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

These techniques are not directly applicable to the size
problem
36 possibilities for each layer when n = 9, so
3624 ≈ 2.2× 1037 24-comparator nets

CCFS (2014)

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

An exponential explosion

Upper bounds obtained by concrete examples (1960s)

Lower bounds obtained by mathematical arguments

HUGE number of nets

Parberry (1991)

Bundala & Závodný (2013)

These techniques are not directly applicable to the size
problem

CCFS (2014)

generate-and-prune
combine brute-force generation with optimal (?) reduction
compromise between time and space

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Outline

1 Sorting Networks in a Nutshell

2 The Generate-and-Prune approach

3 Conclusions & Future Work

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Comparator networks

A (generalized) comparator network C on n channels is a
sequence of pairs (i , j) (the comparators) such that
1 ≤ i 6= j ≤ n.

A standard comparator network C is a generalized comparator
network such that i < j for every comparator (i , j) ∈ C .

The output of comparator (i , j) on ~x = x1 . . . xn is ~x ′, where
x ′i = min(xi , xj), x ′j = max(xi , xj), and x ′k = xk for k 6= i , j .

The output of C on a sequence x1 . . . xn, is defined
inductively:

if C is empty, then C (x1 . . . xn) = x1 . . . xn;
if C is (i , j);C ′ then C (x1 . . . xn) = C ′((i , j)(x1 . . . xn)).

A comparator network C is a sorting network if C (~x) is sorted
for every input ~x .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C ′ with the same size and depth as C .

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

“C is a sorting network on n channels” is co-NP (complete).

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C ′ with the same size and depth as C .

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C ′ with the same size and depth as C .

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C ′ with the same size and depth as C .

We will only consider binary inputs and use generalized comparator
networks whenever needed.

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Well-known results

0–1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in
{0, 1}n.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard
sorting network C ′ with the same size and depth as C .

Output lemma (Parberry 1991)

Let C and C ′ be comparator networks such that
outputs(C) ⊆ outputs(C ′). If C ′;N is a sorting network, then so is
C ;N.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

C and C ′ are standard comparator networks of depth 2;

π is a permutation of 1..n mapping outputs(C) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

C and C ′ are standard comparator networks of depth 2;

π is a permutation of 1..n mapping outputs(C) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same depth.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

C and C ′ are standard comparator networks of equal size;

π is a permutation of 1..n mapping outputs(C) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same size.

We say that C � C ′ when π(outputs(C)) ⊆ outputs(C ′) for some
permutation π. Note that � is reflexive and transitive. Also, if C
is a sorting network, then C � C ′ for every other standard network
C ′ on the same number of channels.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

C and C ′ are standard comparator networks of equal size;

π is a permutation of 1..n mapping outputs(C) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same size.

We say that C � C ′ when π(outputs(C)) ⊆ outputs(C ′) for some
permutation π.

Note that � is reflexive and transitive. Also, if C
is a sorting network, then C � C ′ for every other standard network
C ′ on the same number of channels.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

C and C ′ are standard comparator networks of equal size;

π is a permutation of 1..n mapping outputs(C) into
outputs(C ′);

C ′ can be extended to a sorting network;

then C can also be extended to a standard sorting network of the
same size.

We say that C � C ′ when π(outputs(C)) ⊆ outputs(C ′) for some
permutation π. Note that � is reflexive and transitive. Also, if C
is a sorting network, then C � C ′ for every other standard network
C ′ on the same number of channels.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The algorithms (I)

Generate-and-prune

1 (Init) Set Rn
0 = {∅} and k = 0.

2 Repeat:

(Generate) Extend every net in Rn
k with one comparator in

every possible way. Let Nn
k+1 be the set of all results.

(Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of �. Let Rn

k+1 be the
resulting set.
Increase k .

until k > 1 and |Rn
k | = 1.

If |Rn
k | > 1, then there can be no sorting network of size k on n

channels. If the algorithm finishes with |Rn
k | = {C} and C is a

sorting network, then Sn = k .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The algorithms (I)

Generate-and-prune

1 (Init) Set Rn
0 = {∅} and k = 0.

2 Repeat:

(Generate) Extend every net in Rn
k with one comparator in

every possible way. Let Nn
k+1 be the set of all results.

(Prune) Keep only one element of each minimal equivalence
class w.r.t. the transitive closure of �. Let Rn

k+1 be the
resulting set.
Increase k .

until k > 1 and |Rn
k | = 1.

If |Rn
k | > 1, then there can be no sorting network of size k on n

channels. If the algorithm finishes with |Rn
k | = {C} and C is a

sorting network, then Sn = k .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The algorithms (II)

Generate (Input Rn
k ; output Nn

k+1)

(Init) Nn
k+1 = ∅, Cn = {(i , j) | 1 ≤ i < j ≤ n}

for C ∈ Rn
k and c ∈ Cn: Nn

k+1 = Nn
k+1 ∪ {C ; c}

Prune (Input Nn
k ; output Rn

k)

(Init) Rn
k = ∅

for C ∈ Nn
k do

for C ′ ∈ Rn
k : if (C ′ � C) then mark C

if (not marked(C)) then

for C ′ ∈ Rn
k : if (C � C ′) then Rn

k = Rn
k \ {C ′}

Rn
k = Rn

k ∪ {C}

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

The algorithms (II)

Generate (Input Rn
k ; output Nn

k+1)

(Init) Nn
k+1 = ∅, Cn = {(i , j) | 1 ≤ i < j ≤ n}

for C ∈ Rn
k and c ∈ Cn: Nn

k+1 = Nn
k+1 ∪ {C ; c}

Prune (Input Nn
k ; output Rn

k)

(Init) Rn
k = ∅

for C ∈ Nn
k do

for C ′ ∈ Rn
k : if (C ′ � C) then mark C

if (not marked(C)) then

for C ′ ∈ Rn
k : if (C � C ′) then Rn

k = Rn
k \ {C ′}

Rn
k = Rn

k ∪ {C}

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Some numerology

Rn
k 3 4 5 6 7 8
1 1 1 1 1 1 1
2 2 3 3 3 3 3
3 1 4 6 7 7 7
4 2 11 17 19 20
5 1 10 36 51 57
6 7 53 141 189
7 6 53 325 648
8 4 44 564 2,088
9 1 23 678 5,703

10 8 510 11,669
11 4 280 16,095
12 1 106 13,305
13 33 6,675
14 11 2,216
15 6 503
16 1 77
17 18
18 9
19 1

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i , j) is redundant w.r.t. C if xi ≤ xj for every
~x ∈ outputs(C).

Redundant comparators:

do nothing;

may not occur in minimal-size sorting networks;

are easy to detect;

can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i , j) is redundant w.r.t. C if xi ≤ xj for every
~x ∈ outputs(C).

Redundant comparators:

do nothing;

may not occur in minimal-size sorting networks;

are easy to detect;

can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Generate

Redundant comparators

A comparator (i , j) is redundant w.r.t. C if xi ≤ xj for every
~x ∈ outputs(C).

Redundant comparators:

do nothing;

may not occur in minimal-size sorting networks;

are easy to detect;

can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test
at generation time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

Lemma 1

If the number of sequences with k 1s in outputs(Ca) is greater
than that in outputs(Cb) for some k , then Ca 6� Cb.

This very simple test actually eliminates some 70% unsuccessful
subsumption tests!

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

Lemma 1

If the number of sequences with k 1s in outputs(Ca) is greater
than that in outputs(Cb) for some k , then Ca 6� Cb.

This very simple test actually eliminates some 70% unsuccessful
subsumption tests!

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in
the subsumption test.

Lemma 1

If the number of sequences with k 1s in outputs(Ca) is greater
than that in outputs(Cb) for some k , then Ca 6� Cb.

This very simple test actually eliminates some 70% unsuccessful
subsumption tests!

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (II)

“Where” sets

w(C , x , k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i .

Lemma 2

If for some |w(Ca, x , k)| > |w(Cb, x , k)| for some x and k , then
Ca 6� Cb.

Lemma 3

If π(outputs(Ca)) ⊆ outputs(Cb), then
π(w(Ca, x , k)) ⊆ w(Cb, x , k) for all x and k .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (II)

“Where” sets

w(C , x , k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i .

Lemma 2

If for some |w(Ca, x , k)| > |w(Cb, x , k)| for some x and k , then
Ca 6� Cb.

Lemma 3

If π(outputs(Ca)) ⊆ outputs(Cb), then
π(w(Ca, x , k)) ⊆ w(Cb, x , k) for all x and k .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Optimizing Prune (II)

“Where” sets

w(C , x , k) denotes the set of positions i such that there exists a
vector in outputs(C) containing k ones with x at position i .

Lemma 2

If for some |w(Ca, x , k)| > |w(Cb, x , k)| for some x and k , then
Ca 6� Cb.

Lemma 3

If π(outputs(Ca)) ⊆ outputs(Cb), then
π(w(Ca, x , k)) ⊆ w(Cb, x , k) for all x and k .

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Network representation

For efficiency, we store not only the comparator networks (seen as
sequences as comparators, but also their set of outputs:

each output is represented as an integer (the sequence “read”
as a binary number)

outputs are partitioned according to the number of 1s

each partition is annotated with its “where” sets

This data is computed at generation time, so that it will be readily
available every time it is needed for a subsumption test.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Network representation

For efficiency, we store not only the comparator networks (seen as
sequences as comparators, but also their set of outputs:

each output is represented as an integer (the sequence “read”
as a binary number)

outputs are partitioned according to the number of 1s

each partition is annotated with its “where” sets

This data is computed at generation time, so that it will be readily
available every time it is needed for a subsumption test.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for Sn
(n ≤ 8) could be checked in under one day.

n = 6: two seconds

n = 7: two minutes

n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20
years.
With a 288-core cluster available, the precise computation of S9
became feasible for the first time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for Sn
(n ≤ 8) could be checked in under one day.

n = 6: two seconds

n = 7: two minutes

n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20
years.

With a 288-core cluster available, the precise computation of S9
became feasible for the first time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (I)

With all these optimizations in place, the known values for Sn
(n ≤ 8) could be checked in under one day.

n = 6: two seconds

n = 7: two minutes

n = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20
years.
With a 288-core cluster available, the precise computation of S9
became feasible for the first time.

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (II)

Parallel-Generate

(Input Rn
k ; output Nn

k+1)

split Rn
k into sets R1, . . . ,Rp

for||p i ∈ {1, . . . , p} do
Si = Generate(Ri)

Nn
k+1 =

⊎
1≤i≤p Si ;

Generate

split merge

Rn
k

Nn
k+1Ri Si

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Parallelization (III)

Parallel-Prune (Input Nn
k ; output Rn

k)

split Nn
k into sets S1, . . . ,Sp

for||p i ∈ {1, . . . , p}: Si = Prune(Si)

for j ∈ {1, . . . , p} do
for||p−1 i 6= j : Si = Remove(Si ,Sj)

Rn
k =

⊎
1≤i≤p Si ;

Prune RemoveRemove RemoveRemove

split merge

Nn
k

Rn
k

Si Si Si Si Si Si

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Outline

1 Sorting Networks in a Nutshell

2 The Generate-and-Prune approach

3 Conclusions & Future Work

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Results & Future work

Exact values of S9 and S10

Technique may be adapted to settle higher values which are
still unknown

Algorithms may be useful for finding
smaller-than-currently-known networks

Further theoretical results may help proving optimality of best
known upper bounds

Sorting Networks in a Nutshell The Generate-and-Prune approach Conclusions & Future Work

Thank you!

	Sorting Networks in a Nutshell
	The Generate-and-Prune approach
	Conclusions & Future Work

