Minimal-Size Sorting Networks for 9 and 10 Inputs

L. Cruz-Filipe¹ M. Codish² M. Frank² P. Schneider-Kamp¹

¹Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

²Ben-Gurion University of the Negev (Israel)

Roskilde Universitet June 18th, 2014

Conclusions & Future Work

Outline

2 The Generate-and-Prune approach

★□> ★圖> ★目> ★目> 目 のQQ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

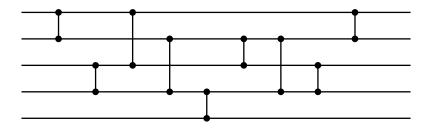
What are sorting networks?

- Oblivious algorithms to sort a given number of inputs
- Easy to implement at the hardware level
- Intrinsically parallel
- Two interesting optimization problems:
 - size (production cost)
 - depth (execution time)

What are sorting networks?

- Oblivious algorithms to sort a given number of inputs
- Easy to implement at the hardware level
- Intrinsically parallel
- Two interesting optimization problems:
 - size (production cost)
 - depth (execution time)
- See Donald E. Knuth, *The Art of Computer Programming*, vol. 3 for more details

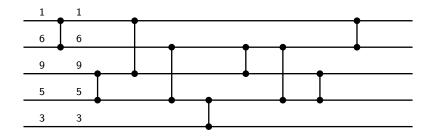
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



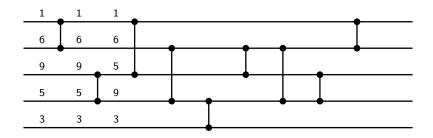
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

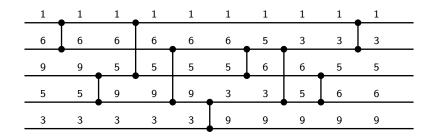


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

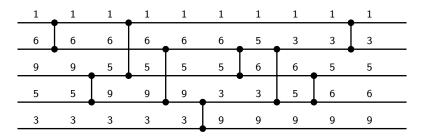


€ 900

・ロト ・聞ト ・ヨト ・ヨト



A sorting network



Size

This net has 5 channels and 9 comparators.

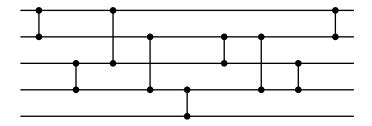
A sorting network

Some of the comparisons may be performed in parallel:

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

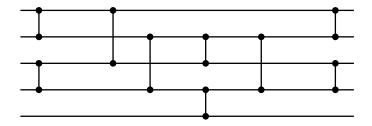
A sorting network

Some of the comparisons may be performed in parallel:



A sorting network

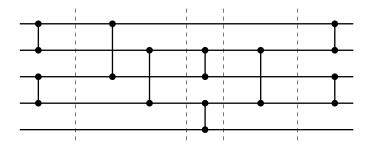
Some of the comparisons may be performed in parallel:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

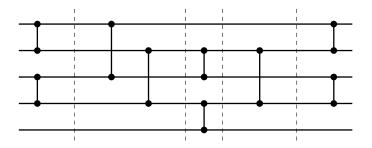
A sorting network

Some of the comparisons may be performed in parallel:



A sorting network

Some of the comparisons may be performed in parallel:



Depth

This net has 5 layers.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Knuth 1973														
п	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$S_n \leq$	3	5	9	12	16	19	25	29	35	39	45	51	56	60
$S_n \ge$	3	5	9	12	16	19	23	27	31	35	39	47	51	55
$T_n \leq$	3	3	5	5	6	6	7	7	8	8	9	9	9	9
$T_n \ge$	3	3	5	5	6	6	6	6	6	6	6	6	6	6

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

F	Parberry 1991														
	n	3	4	5	6	7	8	9	10	11	12	13	14	15	16
_	$S_n \leq$	3	5	9	12	16	19	25	29	35	39	45	51	56	60
	$S_n \ge$	3	5	9	12	16	19	23	27	31	35	39	47	51	55
	$T_n \leq$	3	3	5	5	6	6	7	7	8	8	9	9	9	9
	$T_n \ge$	3	3	5	5	6	6	7	7	7	7	7	7	7	7

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Bundala & Závodný 2013														
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$S_n \leq$	3	5	9	12	16	19	25	29	35	39	45	51	56	60
$S_n \ge$	3	5	9	12	16	19	23	27	31	35	39	47	51	55
$T_n \leq$	3	3	5	5	6	6	7	7	8	8	9	9	9	9
$T_n \ge$	3	3	5	5	6	6	7	7	8	8	9	9	9	9

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014														
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$S_n \leq$	3	5	9	12	16	19	25	29	35	39	45	51	56	60
$S_n \leq S_n \geq$												45	-	53
$ \begin{array}{c} T_n \leq \\ T_n \geq \end{array} $	3	3	5	5	6	6	7	7	8	8	9	9	9	9
$T_n \ge$	3	3	5	5	6	6	7	7	8	8	9	9	9	9

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
 - exploration of symmetries
 - fixed first layer
 - 200 hours of computation

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
 - exploration of symmetries
 - reduced set of two-layer prefixes
 - intensive SAT-solving

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
- These techniques are not directly applicable to the size problem

36 possibilities for each layer when n=9, so $36^{24}\approx 2.2\times 10^{37}$ 24-comparator nets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
- These techniques are not directly applicable to the size problem
- CCFS (2014)
 - generate-and-prune
 - combine brute-force generation with optimal (?) reduction
 - compromise between time and space

Outline

2 The Generate-and-Prune approach

Comparator networks

- A (generalized) comparator network C on n channels is a sequence of pairs (i, j) (the comparators) such that 1 ≤ i ≠ j ≤ n.
- A standard comparator network C is a generalized comparator network such that i < j for every comparator (i, j) ∈ C.
- The *output* of comparator (i, j) on $\vec{x} = x_1 \dots x_n$ is \vec{x}' , where $x'_i = \min(x_i, x_j)$, $x'_j = \max(x_i, x_j)$, and $x'_k = x_k$ for $k \neq i, j$.
- The *output* of *C* on a sequence $x_1 \dots x_n$, is defined inductively:
 - if C is empty, then $C(x_1 \dots x_n) = x_1 \dots x_n$;
 - if C is (i,j); C' then $C(x_1...x_n) = C'((i,j)(x_1...x_n))$.
- A comparator network C is a *sorting network* if $C(\vec{x})$ is sorted for every input \vec{x} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

"C is a sorting network on n channels" is co-NP (complete).

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard sorting network C' with the same size and depth as C.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard sorting network C' with the same size and depth as C.

We will only consider binary inputs and use generalized comparator networks whenever needed.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Standardization theorem (Knuth 1973)

If C is a generalized sorting network, then there is a standard sorting network C' with the same size and depth as C.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

lf:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **depth**.

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

- C and C' are standard comparator networks of equal size;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **size**.

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

- C and C' are standard comparator networks of equal size;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **size**.

We say that $C \leq C'$ when $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π .

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

- C and C' are standard comparator networks of equal size;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **size**.

We say that $C \leq C'$ when $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π . Note that \leq is reflexive and transitive. Also, if C is a sorting network, then $C \leq C'$ for every other standard network C' on the same number of channels.

The algorithms (I)

Generate-and-prune

- (Init) Set $R_0^n = \{\emptyset\}$ and k = 0.
- 2 Repeat:
 - (Generate) Extend every net in Rⁿ_k with one comparator in every possible way. Let Nⁿ_{k+1} be the set of all results.
 - (Prune) Keep only one element of each minimal equivalence class w.r.t. the transitive closure of ≤. Let Rⁿ_{k+1} be the resulting set.
 - Increase k.

until k > 1 and $|R_k^n| = 1$.

The algorithms (I)

Generate-and-prune

- (Init) Set $R_0^n = \{\emptyset\}$ and k = 0.
- 2 Repeat:
 - (Generate) Extend every net in R_k^n with one comparator in every possible way. Let N_{k+1}^n be the set of all results.
 - (Prune) Keep only one element of each minimal equivalence class w.r.t. the transitive closure of ≤. Let Rⁿ_{k+1} be the resulting set.
 - Increase k.

until k > 1 and $|R_k^n| = 1$.

If $|R_k^n| > 1$, then there can be no sorting network of size k on n channels. If the algorithm finishes with $|R_k^n| = \{C\}$ and C is a sorting network, then $S_n = k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The algorithms (II)

Generate (Input R_k^n ; output N_{k+1}^n)

• (Init)
$$N_{k+1}^n = \emptyset$$
, $C_n = \{(i,j) \mid 1 \le i < j \le n\}$

• for
$$C \in R_k^n$$
 and $c \in C_n$: $N_{k+1}^n = N_{k+1}^n \cup \{C; c\}$

The algorithms (II)

Generate (Input R_k^n ; output N_{k+1}^n)

• (Init)
$$N_{k+1}^n = \emptyset$$
, $C_n = \{(i,j) \mid 1 \le i < j \le n\}$

• for
$$C \in {{\it R}_k^n}$$
 and $c \in {\it C_n}$: ${\it N_{k+1}^n} = {\it N_{k+1}^n} \cup \{C; c\}$

Prune (Input N_k^n ; output R_k^n)

• (Init)
$$R_k^n = \emptyset$$

• for
$$C \in N_k^n$$
 do

• for
$$C' \in R_k^n$$
: if $(C' \preceq C)$ then mark C

• for
$$C' \in R_k^n$$
: if $(C \preceq C')$ then $R_k^n = R_k^n \setminus \{C'\}$

•
$$R_k^n = R_k^n \cup \{C\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Some numerology

$\frac{R_k^n}{1}$	3	4	5	6	7	8
1	1	1	1	1	1	1
2 3	2	3	3	3	3	3
3	1	4	6	7	7	7
4		2	11	17	19	20
5		1	10	36	51	57
6			7	53	141	189
7			6	53	325	648
8			4	44	564	2,088
9			1	23	678	5,703
10				8	510	11,669
11				4	280	16,095
12				1	106	13,305
13					33	6,675
14					11	2,216
15					6	503
16					1	77
17						18
18						9
19						1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Optimizing Generate

Redundant comparators

A comparator (i, j) is *redundant* w.r.t. C if $x_i \le x_j$ for every $\vec{x} \in \text{outputs}(C)$.

Optimizing Generate

Redundant comparators

```
A comparator (i, j) is redundant w.r.t. C if x_i \le x_j for every \vec{x} \in \text{outputs}(C).
```

Redundant comparators:

- do nothing;
- may not occur in minimal-size sorting networks;
- are easy to detect;
- can be avoided at generation time.

Optimizing Generate

Redundant comparators

```
A comparator (i, j) is redundant w.r.t. C if x_i \le x_j for every \vec{x} \in \text{outputs}(C).
```

Redundant comparators:

- do nothing;
- may not occur in minimal-size sorting networks;
- are easy to detect;
- can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test at generation time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in the subsumption test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in the subsumption test.

Lemma 1

If the number of sequences with k 1s in outputs(C_a) is greater than that in outputs(C_b) for some k, then $C_a \not\leq C_b$.

Optimizing Prune (I)

The big cost in Prune is searching for a candidate permutation in the subsumption test.

Lemma 1

If the number of sequences with k 1s in outputs(C_a) is greater than that in outputs(C_b) for some k, then $C_a \not\preceq C_b$.

This very simple test actually eliminates some 70% unsuccessful subsumption tests!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optimizing Prune (II)

"Where" sets

w(C, x, k) denotes the set of positions *i* such that there exists a vector in outputs(*C*) containing *k* ones with *x* at position *i*.

Optimizing Prune (II)

"Where" sets

w(C, x, k) denotes the set of positions *i* such that there exists a vector in outputs(*C*) containing *k* ones with *x* at position *i*.

Lemma 2

If for some $|w(C_a, x, k)| > |w(C_b, x, k)|$ for some x and k, then $C_a \not\preceq C_b$.

Optimizing Prune (II)

"Where" sets

w(C, x, k) denotes the set of positions *i* such that there exists a vector in outputs(*C*) containing *k* ones with *x* at position *i*.

Lemma 2

If for some $|w(C_a, x, k)| > |w(C_b, x, k)|$ for some x and k, then $C_a \not\preceq C_b$.

Lemma 3

If $\pi(\operatorname{outputs}(C_a)) \subseteq \operatorname{outputs}(C_b)$, then $\pi(w(C_a, x, k)) \subseteq w(C_b, x, k)$ for all x and k.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Network representation

For efficiency, we store not only the comparator networks (seen as sequences as comparators, but also their set of outputs:

- each output is represented as an integer (the sequence "read" as a binary number)
- outputs are partitioned according to the number of 1s
- each partition is annotated with its "where" sets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Network representation

For efficiency, we store not only the comparator networks (seen as sequences as comparators, but also their set of outputs:

- each output is represented as an integer (the sequence "read" as a binary number)
- outputs are partitioned according to the number of 1s
- each partition is annotated with its "where" sets

This data is computed at generation time, so that it will be readily available every time it is needed for a subsumption test.

Parallelization (I)

With all these optimizations in place, the known values for S_n $(n \le 8)$ could be checked in under one day.

- n = 6: two seconds
- n = 7: two minutes
- n = 8: several hours

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Parallelization (I)

With all these optimizations in place, the known values for S_n $(n \le 8)$ could be checked in under one day.

- n = 6: two seconds
- n = 7: two minutes
- *n* = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20 years.

Parallelization (I)

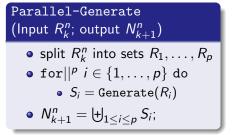
With all these optimizations in place, the known values for S_n $(n \le 8)$ could be checked in under one day.

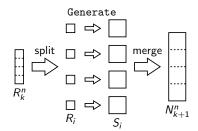
- n = 6: two seconds
- n = 7: two minutes
- *n* = 8: several hours

A rough estimate of the computation time for n = 9 yielded 10–20 years.

With a 288-core cluster available, the precise computation of S_9 became feasible for the first time.

Parallelization (II)



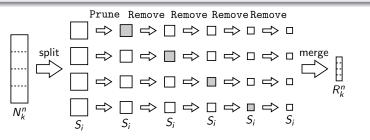


Parallelization (III)

Parallel-Prune (Input N_k^n ; output R_k^n)

• split
$$N_k^n$$
 into sets S_1, \ldots, S_p
• for $||^p \ i \in \{1, \ldots, p\}$: $S_i = \text{Prune}(S_i)$
• for $j \in \{1, \ldots, p\}$ do
• for $||^{p-1} \ i \neq j$: $S_i = \text{Remove}(S_i, S_j)$

•
$$R_k^n = \biguplus_{1 \le i \le p} S_i;$$



Outline

2 The Generate-and-Prune approach

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Results & Future work

- Exact values of S_9 and S_{10}
- Technique may be adapted to settle higher values which are still unknown
- Algorithms may be useful for *finding* smaller-than-currently-known networks
- Further theoretical results may help proving optimality of best known upper bounds

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Thank you!