Proofs for Minimality of Sorting Networks by Logic Programming

L. Cruz-Filipe¹ M. Codish² M. Frank² P. Schneider-Kamp¹

¹Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

²Ben-Gurion University of the Negev (Israel)

CICLOPS-WLPE Workshop July 17th, 2014

2 The Generate-and-Prune Approach

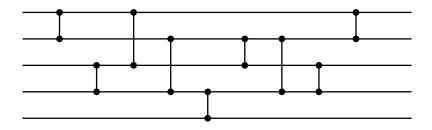
3 Parallelization

Outline

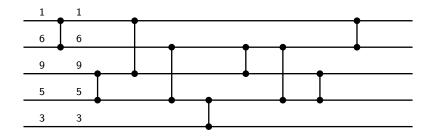
2 The Generate-and-Prune Approach

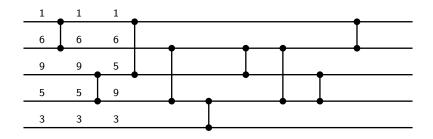
3 Parallelization

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙



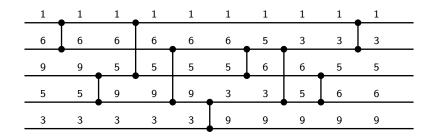






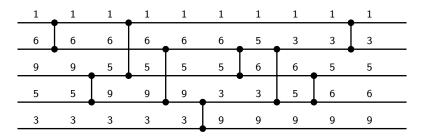
・ロト ・聞ト ・ヨト ・ヨト

€ 990



・ロト ・四ト ・ヨト ・ヨト

A sorting network



Size

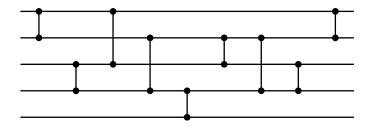
This net has 5 channels and 9 comparators.

A sorting network

Some of the comparisons may be performed in parallel:

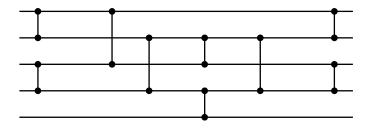
A sorting network

Some of the comparisons may be performed in parallel:



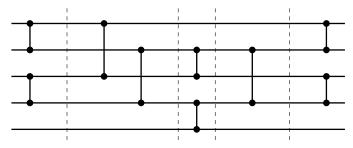
A sorting network

Some of the comparisons may be performed in parallel:



A sorting network

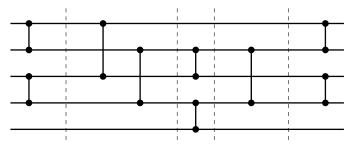
Some of the comparisons may be performed in parallel:



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A sorting network

Some of the comparisons may be performed in parallel:

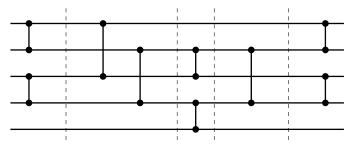


Depth

This net has 5 layers.

A sorting network

Some of the comparisons may be performed in parallel:



Depth

This net has 5 layers.

See Donald E. Knuth, *The Art of Computer Programming*, vol. 3 for more details

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Knuth 1973																
	n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
-	Sn	3	5	9	12	16	19	25	29		39	45	51 43	56 47	60	
-								23	27	31 8	35 8	<u> </u>	43	47	51 9	.
	T _n	3	3	5	5	6	6	6	6	о 6	0 6	9 6	9 6	9 6	-	
								Ĩ	Ŭ	Ũ	Ŭ	Ŭ	Ũ	Ũ	Ŭ	

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Parberry 1991															
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Sn	3	5	9	12	16	19	25 23	29 27		39 35		51 43	56 47	60 51	
T _n	3	3	5	5	6	6	7	7	8 7	8 7	9 7	9 7	9 7	9 7	

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Bundala & Závodný 2013															
п	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Sn	3	5	9	12	16	19	25 23	29 27	35 31	39 35	45 39	51 43	56 47	60 51	
T _n	3	3	5	5	6	6	7	7	8	8	9	9	9	9	

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

Codish, Cruz-Filipe, Frank & Schneider-Kamp (CCFS) 2014															
								10							
								29							
T _n	3	3	5	5	6	6	7	7	8	8	9	9	9	9	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

An exponential explosion

- Parberry (1991)
 - exploration of symmetries
 - fixed first layer
 - 200 hours of computation

An exponential explosion

- Parberry (1991)
- Bundala & Závodný (2013)
 - exploration of symmetries
 - reduced set of two-layer prefixes
 - intensive SAT-solving

An exponential explosion

- Parberry (1991)
- Bundala & Závodný (2013)
- Techniques not directly applicable to the size problem

36 possibilities for each comparator when n=9, so $36^{24} \approx 2.2 \times 10^{37}$ 24-comparator nets

2620 possibilities for each layer when n=9, so $2620^6 \approx 3.2 \times 10^{20}$ 6-layer networks

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An exponential explosion

- Parberry (1991)
- Bundala & Závodný (2013)
- Techniques not directly applicable to the size problem
- CCFS (2014)
 - generate-and-prune
 - combine brute-force generation with optimal (?) reduction
 - compromise between time and space

Outline

2 The Generate-and-Prune Approach

3 Parallelization

Comparator networks

- A (standard) comparator network C on n channels is a sequence of pairs (i, j) (the comparators) such that 1 ≤ i < j ≤ n.
- The *output* of C on a sequence \vec{x} is denoted $C(\vec{x})$.
- The set of outputs of C is outputs $(C) = \{C(\vec{x}) \mid \vec{x} \in \{0,1\}^n\}.$
- A comparator network C is a sorting network if all elements of outputs(C) are sorted.

Parallelization

Conclusions & Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Parallelization

Conclusions & Future Work

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

"C is a sorting network on n channels" is co-NP (complete).

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let C and C' be comparator networks such that $outputs(C) \subseteq outputs(C')$. If C'; N is a sorting network, then so is C; N.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let C and C' be comparator networks such that $outputs(C) \subseteq outputs(C')$. If C'; N is a sorting network, then so is C; N.

$$\{0,1\}^n \xrightarrow{C} X \\ |\cap \\ \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{N} S$$
$$\stackrel{|\cap}{\longrightarrow} \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

lf:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

$$\{0,1\}^n \xrightarrow{C} X \\ \downarrow^{\pi} \\ \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$$
$$\downarrow^{\pi} \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Permutations (Bundala & Závodný 2013)

Permuted output lemma (I)

If:

- C and C' are standard comparator networks of depth 2;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **depth**.

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$$
$$\downarrow^{\pi} \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

- C and C' are standard comparator networks of equal size;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **size**.

Permutations revisited (CCFS 2014)

Permuted output lemma (II)

If:

- C and C' are standard comparator networks of equal size;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same **size**.

We say that $C \leq C'$ when $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π .

The algorithms (I)

Generate-and-prune

) (Init) Set
$$R_0^n = \{\emptyset\}$$
 and $k = 0$.

2 Repeat:

- (Generate) Extend every net in Rⁿ_k with one comparator in every possible way. Let Nⁿ_{k+1} be the set of all results.
- (Prune) Keep only one element of each minimal equivalence class w.r.t. the transitive closure of ≤. Let Rⁿ_{k+1} be the resulting set.
- Increase k.

until k > 1 and $|R_k^n| = 1$.

(If C is a sorting network on n channels of size k, then $|R_k^n| = 1$.)

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The algorithms (II)

Generate (Input R_k^n ; output N_{k+1}^n)

• (Init)
$$N_{k+1}^n = \emptyset$$
, $C_n = \{(i,j) \mid 1 \le i < j \le n\}$

• for
$$C \in R_k^n$$
 and $c \in C_n$: $N_{k+1}^n = N_{k+1}^n \cup \{C; c\}$

The algorithms (II)

Generate (Input R_k^n ; output N_{k+1}^n)

• (Init)
$$N_{k+1}^n = \emptyset$$
, $C_n = \{(i, j) \mid 1 \le i < j \le n\}$

• for
$$C \in {\mathcal R}^n_k$$
 and $c \in {\mathcal C}_n$: ${\mathcal N}^n_{k+1} = {\mathcal N}^n_{k+1} \cup \{{\mathcal C}; c\}$

Prune (Input N_k^n ; output R_k^n)

• (Init)
$$R_k^n = \emptyset$$

• for
$$C \in N_k^n$$
 do

• for
$$C' \in R_k^n$$
: if $(C' \preceq C)$ then mark C

• for
$$C' \in R_k^n$$
: if $(C \preceq C')$ then $R_k^n = R_k^n \setminus \{C'\}$

•
$$R_k^n = R_k^n \cup \{C\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optimizing Generate

Redundant comparators

A comparator (i, j) is *redundant* w.r.t. C if $x_i \leq x_j$ for every $\vec{x} \in \text{outputs}(C)$.

Optimizing Generate

Redundant comparators

```
A comparator (i, j) is redundant w.r.t. C if x_i \leq x_j for every \vec{x} \in \text{outputs}(C).
```

Redundant comparators:

- do nothing;
- may not occur in minimal-size sorting networks;
- are easy to detect;
- can be avoided at generation time.

Optimizing Generate

Redundant comparators

```
A comparator (i, j) is redundant w.r.t. C if x_i \le x_j for every \vec{x} \in \text{outputs}(C).
```

Redundant comparators:

- do nothing;
- may not occur in minimal-size sorting networks;
- are easy to detect;
- can be avoided at generation time.

Generate is much faster than Prune, so it pays off to do this test at generation time.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in the subsumption test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in the subsumption test.

	ou	tputs(C	.a)		outputs(C_b)				
0000	0001	0011	0111	1111	0000	0001	0011	0111	1111
	0010	1100					0101		

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in the subsumption test.

	ou	tputs(C	La)		outputs(C_b)				
0000	0001	0011	0111	1111	0000	0001	0011	0111	1111
	0010	1100					0101		

A cardinality test shows that no permutation can map $\{0001, 0010\}$ into $\{0001\}$, so $C_a \not \leq C_b$. Such a test eliminates 70% of unsuccessful subsumptions.

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in the subsumption test.

	ou	tputs(C	La)		outputs(C_b)				
0000	0001	0011	0111	1111	0000	0001	0011	0111	1111
	0010	1100					0101		

A cardinality test shows that no permutation can map $\{0001, 0010\}$ into $\{0001\}$, so $C_a \not \leq C_b$. Such a test eliminates 70% of unsuccessful subsumptions.

Analysis of positions containing '1' shows that no permutation can map $\{0011, 1100\}$ into $\{0011, 0101\}$, so again $C_a \not\preceq C_b$. Such a test eliminates 30% of the remaining unsuccessful subsumptions.

Optimizing Prune

The big cost in Prune is searching for a candidate permutation in the subsumption test.

	ou	tputs(C	La)		outputs(C_b)				
0000	0001	0011	0111	1111	0000	0001	0011	0111	1111
	0010	1100					0101		

A cardinality test shows that no permutation can map $\{0001, 0010\}$ into $\{0001\}$, so $C_a \not \leq C_b$. Such a test eliminates 70% of unsuccessful subsumptions.

Analysis of positions containing '1' shows that no permutation can map $\{0011, 1100\}$ into $\{0011, 0101\}$, so again $C_a \not\preceq C_b$. Such a test eliminates 30% of the remaining unsuccessful subsumptions.

Also, this position analysis significantly restricts the search space of possible permutations.

Network representation

For efficiency, we store comparator networks with their sets of outputs:

- each output is represented as an integer
- outputs are partitioned according to the number of 1s
- each partition is annotated with its "where" sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Network representation

For efficiency, we store comparator networks with their sets of outputs:

- each output is represented as an integer
- outputs are partitioned according to the number of 1s
- each partition is annotated with its "where" sets

$$\begin{array}{c|c} \underline{\text{outputs}(C_a)} \\ \hline 0000 \\ 0001 \\ 0001 \\ 0011 \\ 1100 \\ 0111 \\ 1111 \\ \end{array} \qquad \begin{pmatrix} C_a, \langle \langle \{0\}, \{1, 2, 3, 4\}, \emptyset \} \rangle, \\ \langle \{8, 4\}, \{1, 2, 3, 4\}, \{3, 4\} \} \rangle, \\ \langle \{12, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4\} \} \rangle, \\ \langle \{14\}, \{1\}, \{2, 3, 4\} \} \rangle, \\ \langle \{15\}, \emptyset, \{1, 2, 3, 4\} \} \rangle \rangle \end{pmatrix}$$

Network representation

For efficiency, we store comparator networks with their sets of outputs:

- each output is represented as an integer
- outputs are partitioned according to the number of 1s
- each partition is annotated with its "where" sets

$$\begin{array}{c|c} \underline{outputs(C_a)} \\ \hline 0000 \\ 0001 \\ 0001 \\ 0011 \\ 1100 \\ 0111 \\ 1111 \\ \end{array} \qquad \begin{pmatrix} C_a, \langle \langle \{0\}, \{1, 2, 3, 4\}, \emptyset \} \rangle, \\ \langle \{8, 4\}, \{1, 2, 3, 4\}, \{3, 4\} \} \rangle, \\ \langle \{12, 3\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4\} \} \rangle, \\ \langle \{14\}, \{1\}, \{2, 3, 4\} \} \rangle, \\ \langle \{15\}, \emptyset, \{1, 2, 3, 4\} \} \rangle \rangle \end{pmatrix}$$

This data is computed at generation time, so that it will be readily available every time it is needed for a subsumption test.

Parallelization

Conclusions & Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What do we need to trust?

Sorting Networks in a Nutshell

Conclusions & Future Work

What do we need to trust?

```
%% iterates over partitioned set of outputs
carriesInto(_,[],_).
carriesInto(P,[t(P1,_,_)|Part1],[t(P2,_,_)|Part2]) :-
        mapsInto(P,P1,P2),
        carriesInto(P,Part1,Part2).
%% iterates over outputs
mapsInto(_,[],_).
mapsInto(P,[X|P1],P2) :- permuted(P,X,Y), member(Y,P2),
                         mapsInto(P,P1,P2).
%% applies permutation
permuted(P,N,M) :- permuted(P,0,N,0,M).
permuted([],_,_,M,M).
permuted([|P], I, N, K, M) :- position(N, I, 0), !,
                            I1 is I+1, permuted(P,I1,N,K,M).
permuted([J|P],I,N,K,M) :- K1 is K+2**J, I1 is I+1,
                            permuted(P,I1,N,K1,M).
```

Conclusions & Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some numerology

$\frac{R_k^n}{1}$	3	4	5	6	7	8
1	1	1	1	1	1	1
2 3	2	3	3	3	3	3
3	1	4	6	7	7	7
4		2	11	17	19	20
5		1	10	36	51	57
6			7	53	141	189
7			6	53	325	648
8			4	44	564	2,088
9			1	23	678	5,703
10				8	510	11,669
11				4	280	16,095
12				1	106	13,305
13					33	6,675
14					11	2,216
15					6	503
16					1	77
17						18
18						9
19						1

Outline

2 The Generate-and-Prune Approach

3 Parallelization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Parallelization (I)

With all these optimizations in place, the known values for S_n $(n \le 8)$ could be checked in under one day.

- *n* = 6: two seconds
- n = 7: two minutes
- *n* = 8: several hours

Parallelization (I)

With all these optimizations in place, the known values for S_n $(n \le 8)$ could be checked in under one day.

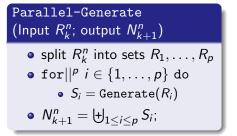
- *n* = 6: two seconds
- n = 7: two minutes
- *n* = 8: several hours

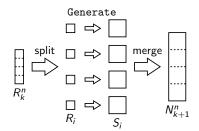
A rough estimate of the computation time for n = 9 yielded 10–20 years. With a 288-thread cluster available, the precise computation of S_9 became feasible for the first time.

Parallelization

Conclusions & Future Work

Parallelization (II)





Parallelization

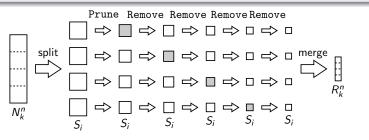
Conclusions & Future Work

Parallelization (III)

Parallel-Prune (Input N_k^n ; output R_k^n)

• split
$$N_k^n$$
 into sets S_1, \ldots, S_p
• for $||^p \ i \in \{1, \ldots, p\}$: $S_i = \text{Prune}(S_i)$
• for $j \in \{1, \ldots, p\}$ do
• for $||^{p-1} \ i \neq j$: $S_i = \text{Remove}(S_i, S_j)$

•
$$R_k^n = \biguplus_{1 \le i \le p} S_i;$$



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions empty files for synchronization

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions empty files for synchronization
 - distributed memory

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions empty files for synchronization
 - distributed memory read and write from shared file system

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions empty files for synchronization
 - distributed memory read and write from shared file system
 - limited disk space

- for reasonable number of threads p
 - parallel runtime dominated by computation
 - overhead of master-slave parallelization tolerable
- robustness over sophistication
 - round-robin strategy to distribute goals
 - busy waiting (aided by some sleeps)
 - goals distributed through shared file system
 - no instantiation of variables
 - all predicates must succeed
- practical challenges
 - race conditions empty files for synchronization
 - distributed memory read and write from shared file system
 - limited disk space use zlib for transparent (de-)compression

Master-Slave Parallelization - The Slave

```
%% launch multiple clients with given thread id range
slave(FirstThread, LastThread) :-
   findall(client(I), between(FirstThread, LastThread, I), Goals),
   NumThreads is LastThread - FirstThread + 1,
   concurrent (NumThreads, Goals, []).
%% client with thread id I
client(I) :-
   goal_files(I, GI, RI), exists_file(RI), !,
   see(GI), read(Goal), seen,
   (Goal = halt -> true; Goal),
   delete_file(RI), delete_file(GI),
   (Goal = halt -> true ; client(I)).
client(I) :- sleep(1), client(I).
%% helper
goal_files(I, GI, RI) :-
   name('goal', G), name('.', D), name(I,II), name('.ready', R),
   append([G, D, II], GIName),
   append(GIName, R, RIName),
   name(A.AName), name(B. BName).
```

Master-Slave Parallelization - The Master

```
%% distributed simplified variant of SWI-Prolog's concurrent/3
parallel(Procs, Goals) :- distribute(1, Procs, Goals).
distribute(_, Procs, []) :- !, wait(Procs).
distribute(I, Procs, Goals) :-
   goal_file_exists(I), !,
   I1 is I mod Procs + 1, distribute(I1, Procs, Goals).
distribute(I, Procs, [Goal | Goals]) :-
   goal_files(I, GI, RI),
   tell(GI), write_goal(Goal), told, tell(RI), told,
   distribute(I, Procs, Goals).
wait(0) :- !.
wait(I) :- goal_file_exists(I), !, sleep(1), wait(I).
wait(I) :- I1 is I-1, wait(I1).
%% helpers
write_goal(G) : - write_term(G, [quoted(true)]), writeln('.'),
goal_file_exists(I) :- goal_files(I, GI, _), exists_file(GI).
```

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wish List

- better support for distributed computing
 - Erlang / Akka style?
 - MPI support?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Wish List

- better support for distributed computing
 - Erlang / Akka style?
 - MPI support?
- better supoort for memory-intensive computations
 - file-backed data structures
 - distributed memory data structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Wish List

- better support for distributed computing
 - Erlang / Akka style?
 - MPI support?
- better supoort for memory-intensive computations
 - file-backed data structures
 - distributed memory data structures
- more transparent compression suport
 - built-in zlib-equivalents of see/1, seen/0, tell/1, told/0

Independent Java Verifier

- independent implementation of generate-and-prune
 - stupidly generate all comparator networks by nested for-loops
 - instead of search, use log file for pruning
 - check subsumptions in log before use
 - ensure acyclicity of reasoning
 - 205 lines of Java code

Independent Java Verifier

- independent implementation of generate-and-prune
 - stupidly generate all comparator networks by nested for-loops
 - instead of search, use log file for pruning
 - check subsumptions in log before use
 - ensure acyclicity of reasoning
 - 205 lines of Java code
- all 123,599,036 subsumptions for n = 9 verified
- generate-and-prune without search for n = 9 in 6 hours

Independent Java Verifier

- independent implementation of generate-and-prune
 - stupidly generate all comparator networks by nested for-loops
 - instead of search, use log file for pruning
 - check subsumptions in log before use
 - ensure acyclicity of reasoning
 - 205 lines of Java code
- all 123,599,036 subsumptions for n = 9 verified
- generate-and-prune without search for n = 9 in 6 hours
- verifier & logs available at: http://imada.sdu.dk/~petersk/sn/

Outline

2 The Generate-and-Prune Approach

3 Parallelization

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Results & Future work

- Exact values of S_9 and S_{10}
- Log-file that can be independently verified
- Technique may be adapted to settle higher values which are still unknown
- Algorithms may be useful for *finding* smaller-than-currently-known networks
- Further theoretical results may help proving optimality of best known upper bounds

Thank you!