The Quest for Optimal Sorting Networks

L. Cruz-Filipe¹ M. Codish² P. Schneider-Kamp¹

¹Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

²Ben-Gurion University of the Negev (Israel)

IMADA Colloquium August 19th, 2014

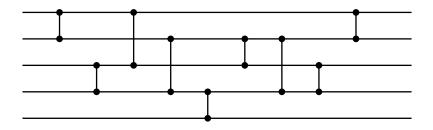
Outline

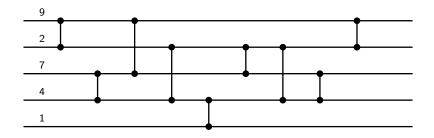
2 Reduction Techniques

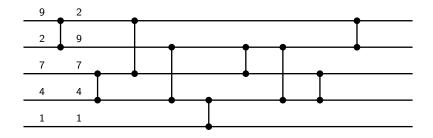


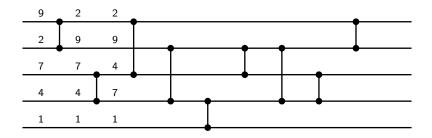
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

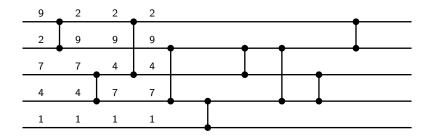
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





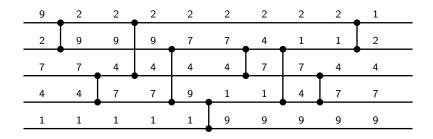






・ロト ・聞ト ・ヨト ・ヨト

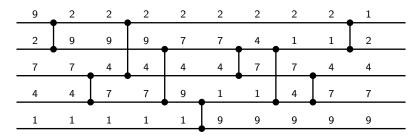
€ 990



・ロト ・聞ト ・ヨト ・ヨト

₹ 9 9 **9 0**

A sorting network



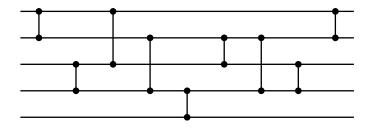
Size

This net has 5 channels and 9 comparators.

A sorting network

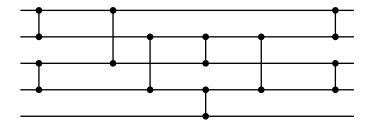
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A sorting network



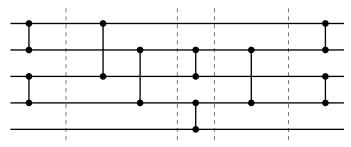
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A sorting network



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

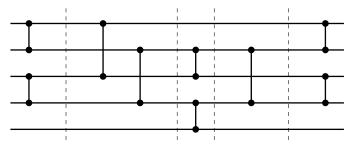
A sorting network



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A sorting network

Some of the comparisons may be performed in parallel:

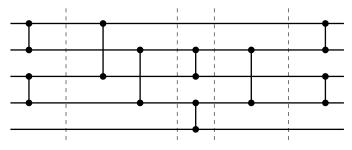


Depth

This net has 5 layers.

A sorting network

Some of the comparisons may be performed in parallel:



Depth

This net has 5 layers.

See Donald E. Knuth, *The Art of Computer Programming*, vol. 3 for more details

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Knuth 1973																
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
T _n	3	3	5	5	6	6	7 6	7 6	8 6	8 6	9 6	9 6	9 6	9 6	11 6	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Parberry 1991																
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
T _n	3	3	5	5	6	6	7	7	8 7	8 7	9 7	9 7	9 7	9 7	11 7	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Bundala & Závodný 2013															
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T _n	3	3	5	5	6	6	7	7	8	8	9	9	9	9	11 9

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
 - exploration of symmetries
 - fixed first layer
 - 200 hours of computation

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
 - exploration of symmetries
 - reduced set of two-layer prefixes
 - intensive SAT-solving

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
- These techniques do not scale for T_{17} $\approx 211 \times 10^6$ possibilities for each layer when n = 17
- These techniques are not directly applicable to the size problem
 36 possibilities for each comparator when n = 9, so
 36²⁴ ≈ 2.2 × 10³⁷ 24-comparator nets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline



Comparator networks

A comparator network C on n wires is a sequence of comparators (i, j) with $1 \le i < j \le n$.

The *output* of *C* on a sequence $\vec{x} = x_1 \dots x_n$ is denoted $C(\vec{x})$.

The set of binary outputs of C is outputs $(C) = \{C(\vec{x}) \mid x \in \{0,1\}^n\}.$

A comparator network C is a *sorting network* if $C(\vec{x})$ is sorted for every input \vec{x} .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Proof

The direct implication is straightforward. For the converse, consider all sequences with k or k + 1 zeros. If C sorts them all, then it must always place the (k + 1)-th smallest element of its input in the right place.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

"C is a sorting network on n channels" is co-NP (complete).

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let C and C' be comparator networks such that $outputs(C) \subseteq outputs(C')$. If C'; N is a sorting network, then so is C; N.

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

Proof

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{N} S$$
$$\stackrel{|\cap}{\longrightarrow} X' \xrightarrow{N} S$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

Corollary 1

There is a minimal-depth sorting network on *n* channels whose first layer contains $\left|\frac{n}{2}\right|$ comparators.

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

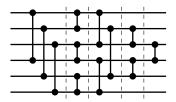
Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

Corollary 2

There is a minimal-depth sorting network on *n* channels whose first layer F_n contains the comparators (1, 2), (3, 4), (5, 6), &c.

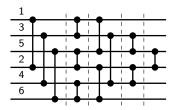
ヘロト ヘ週ト ヘヨト ヘヨト

æ



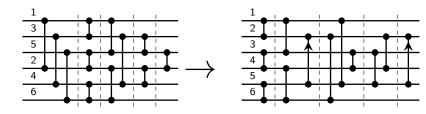
・ロト ・ 一 ト ・ モト ・ モト

æ.



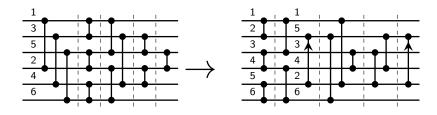
・ロト ・聞ト ・ヨト ・ヨト

æ

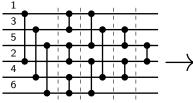


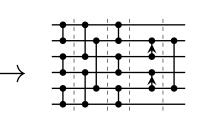
・ロト ・聞ト ・ヨト ・ヨト

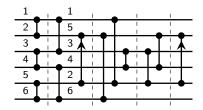
æ



Normalization



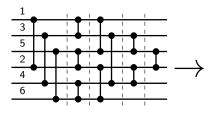


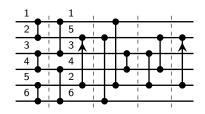


・ロト ・四ト ・ヨト ・ヨト

æ

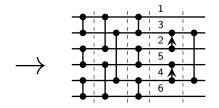
Normalization



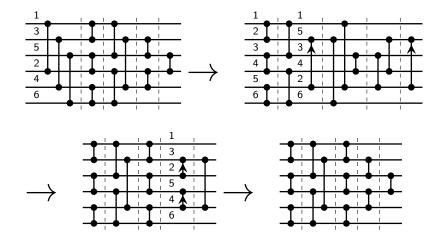


・ロト ・聞ト ・ヨト ・ヨト

æ



Normalization



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Equivalence

Equivalence of networks

Two standard networks C and C' are equivalent if there is a permutation π of 1..*n* such that C' can be obtained from C by renumbering its wires according to π and normalizing the result.

Permutations (Bundala & Závodný 2013)

Permuted output lemma

- C and C' are two-layer standard comparator networks;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

Permutations (Bundala & Závodný 2013)

Permuted output lemma

- C and C' are two-layer standard comparator networks;
- π is a permutation of 1..n mapping outputs(C) into outputs(C');
- C' can be extended to a sorting network;

then C can also be extended to a standard sorting network of the same depth.

Proof

$$\{0,1\}^{n} \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$$
$$\downarrow^{\pi} \\ \{0,1\}^{n} \xrightarrow{C'} X' \xrightarrow{N} S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Finding the value of T_{13}

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala & Závodný prove that it is enough to consider saturated networks.

- 日本 - 1 日本 - 1 日本 - 1 日本

Finding the value of T_{13}

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala & Závodný prove that it is enough to consider saturated networks.

Reflection

(Vertical) reflection of a comparator network produces a "dual" net: if input \vec{x} goes to \vec{y} , then \vec{xD} goes to \vec{yD} . A two-layer network can be extended to a sorting network of depth d iff the same holds for its reflection.

Finding the value of T_{13}

The strategy

- **(**) Generate all saturated two-layer networks with first layer F_{13} .
- ② Remove equivalent nets.
- Semove nets subsumed by others.
- Remove reflected nets.
- Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

Finding the value of T_{13}

The strategy

- **(**) Generate all saturated two-layer networks with first layer F_{13} .
- ② Remove equivalent nets.
- In the second second
- Remove reflected nets.
- Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

п	5	6	7	8	9	10	11	12	13
$ G_n $	26	76	232	764	2620	9496	35696	140152	568504
$ S_n $	10	51	74	513	700	6345	8174	93255	113008
$ G_n/\approx $	18	28	74	101	295	350	1134	1236	4288
$ S_n/\approx $	8		29		100		341		1155
red.	6	6	14	15	37	27	88	70	212
$ R_n $	4	5	8	12	22	21	28	50	118

And for higher *n*?

This approach does not scale.

Computing equivalence of nets is very expensive (and not working correctly).

Checking output subsumption is even worse (there are 2^n outputs, 2^{2^n} possible sets of outputs, and *n*! permutations).

Furthermore, $T_{13} = T_{14} = T_{15} = T_{16}$.

To go beyond these values, we need different techniques.

Outline

2 Reduction Techniques



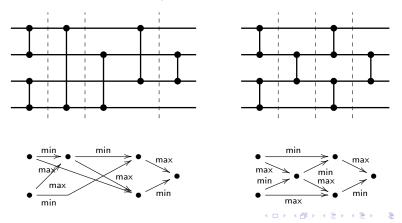
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

The general idea

Comparator networks can be represented by labeled graphs (Choi & Moon 2002), where each comparator is a node and there is an edge from v_i to v_j labeled min (max) if the minimum (maximum) output of v_i is an input to v_j .

The general idea

Comparator networks can be represented by labeled graphs (Choi & Moon 2002), where each comparator is a node and there is an edge from v_i to v_j labeled min (max) if the minimum (maximum) output of v_i is an input to v_j .



The general idea

Comparator networks can be represented by labeled graphs (Choi & Moon 2002), where each comparator is a node and there is an edge from v_i to v_j labeled min (max) if the minimum (maximum) output of v_i is an input to v_j .

Equivalence theorem

 $C \approx C'$ iff $\mathcal{G}_C \approx \mathcal{G}_{C'}$.

The general idea

Comparator networks can be represented by labeled graphs (Choi & Moon 2002), where each comparator is a node and there is an edge from v_i to v_j labeled min (max) if the minimum (maximum) output of v_i is an input to v_j .

Equivalence theorem

 $C \approx C'$ iff $\mathcal{G}_C \approx \mathcal{G}_{C'}$.

But we want to bypass graphs altogether. Can we find a way to generate a set ${\cal N}$ of nets such that:

- for every two-layer comparator network C with first layer F_n there is $C' \in \mathcal{N}$ such that $C \approx C'$;
- for every $C, C' \in \mathcal{N}$, $C \not\approx C'$;

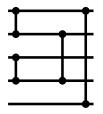
in an efficient way?

Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)

Word representation for two-layer networks

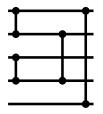
Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



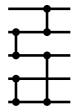
Head word: 01221

Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



Head word: 01221

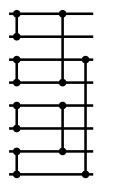


・ロト ・ 一下・ ・ モト・ ・ モト・

-

Word representation for two-layer networks

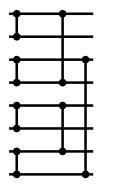
Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



Stick word: 21121212 21212112

Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



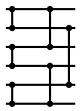
Stick word: 21121212 21212112

Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)

Word representation for two-layer networks

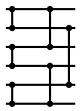
Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



Cycle word: 121221 122121 122112

Word representation for two-layer networks

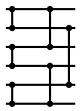
Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



Cycle word: **121221** 122121 122112

Word representation for two-layer networks

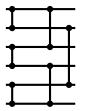
Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



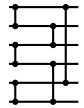
Cycle word: **121221** 122121 122112

Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)



Cycle word: **121221** 122121 122112



Word representation for two-layer networks

Idea: represent two layer-networks by words, corresponding to paths in their graphs. (But avoid graphs altogether.)

Every net generates a unique word, and every well-formed word generates a unique net. The functions net-to-word and word-to-net form an adjunction.

A regular language for words

Word ::= Head | Stick | Cycle Head ::= $0(12 + 21)^*$ Stick ::= $(12 + 21)^+$ Cycle ::= $12(12 + 21)^*(1 + 2)$

A regular language for words

Word ::= Head | Stick | Cycle
Head ::=
$$0(12 + 21)^*$$

Stick ::= $(12 + 21)^+$
Cycle ::= $12(12 + 21)^*(1 + 2)$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n.

A regular language for words

Word ::= Head | Stick | Cycle
Head ::=
$$0(12 + 21)^*$$

Stick ::= $(12 + 21)^+$
Cycle ::= $12(12 + 21)^*(1 + 2)$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n. Two-layer comparator networks can be represented by multi-sets of words. By choosing a canonical representation of multi-sets, we can easily generate exactly one representative for all two-layer networks with first layer F_n modulo equivalence.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Saturation, revisited [I]

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala & Závodný prove that it is enough to consider saturated networks.

We want a semantic characterization of saturation that is optimal.

Saturation, revisited [I]

Saturation

Saturation is a syntactic criterion for two-layer networks. Bundala & Závodný prove that it is enough to consider saturated networks.

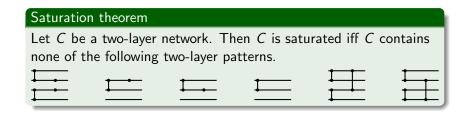
We want a semantic characterization of saturation that is optimal.

Saturation (better)

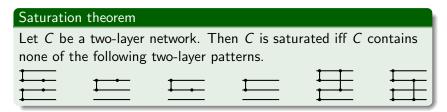
A comparator network *C* is *redundant* if there exists a network *C'* obtained from *C* by removing a comparator such that outputs(C') = outputs(C). A network *C* is *saturated* if it is non-redundant and every network *C'* obtained by adding a comparator to the last layer of *C* satisfies $outputs(C') \not\subseteq outputs(C)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Saturation, revisited [II]



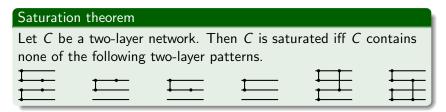
Saturation, revisited [II]



This is easily encoded in words.

```
Word ::= Head | Stick | Cycle
Head ::= 0(12 + 21)^*
Stick ::= (12 + 21)^+
Cycle ::= 12(12 + 21)^*(1 + 2)
```

Saturation, revisited [II]



This is easily encoded in words.

Word ::= Head | Stick | Cycle Head ::= 0 | eHead | oHead eHead ::= $0(12 + 21)^*12$ oHead ::= $0(12 + 21)^*21$ Stick ::= 12 | eStick | oStick oStick ::= $12(12 + 21)^+21$ eStick ::= $21(12 + 21)^+12$ Cycle ::= $12(12 + 21)^*(1 + 2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Saturation, revisited [III]

Multi-sets of words corresponding to saturated nets do not contain eWords and oWords.

We can again generate all saturated networks very efficiently for n up to 40.

Saturation, revisited [III]

Multi-sets of words corresponding to saturated nets do not contain eWords and oWords.

We can again generate all saturated networks very efficiently for n up to 40.

A similar technique eliminates nets that are (equivalent to) reflections of others.

This is more expensive because the test for cycles takes time proportional to the number of wires. However, the smallest asymmetric cycle has 12 wires, so for practical purposes this is not a problem.

Some numerology

п	5	6	7	8	9	10	11	12	13
G _n	26	76	232	764	2,620	9,496	35,696	140,152	568,504
$ S_n $	10	28	70	230	676	2,456	7,916	31,374	109,856
$ R(G_n) $	16	20	52	61	165	152	482	414	1,378
$ R(S_n) $	6	6	14	15	37	27	88	70	212
$ R_n $	4	5	8	12	22	21	28	50	117

п		14	15		16		17		18	
$ G_n $	2,3	90,480	10,349,536		46,206,736		211,799,312		997,313,824	
$ S_n $	4	67,716	1,759,422		7,968,204		31,922,840		152,664,200	
$ R(G_n) $		1,024	3,780		2,627		10,187		6,422	
$ R(S_n) $		136	494		323		1,149			651
$ R_n $		94	262		211		609			411
n 19		19	20	25		30	35		40	
R($S_n) $	2,632	1,478	30,3	312	64,168	1,604,7	790 2	2,792,966	_
6	R_n	1,367	894	15,4	169	34,486	806,7	710 1	1,429,836	_

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

2 Reduction Techniques

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Results

- Efficient generation of two-layer prefixes for comparator networks
- Representation can capture different important semantic properties
- Identified relevant sets of networks for open cases
- Bottleneck is now processing each relevant network