The Quest for Optimal Sorting Networks

L. Cruz-Filipe ${ }^{1} \quad$ M. Codish ${ }^{2} \quad$ P. Schneider-Kamp ${ }^{1}$
${ }^{1}$ Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)
${ }^{2}$ Ben-Gurion University of the Negev (Israel)

> SYNASC
> September 23rd, 2014

Outline

(1) Sorting Networks in a Nutshell

(2) Reduction Techniques

(3) A Symbolical Approach

4 Conclusions \& Future Work

A sorting network

Size

This net has 5 channels and 9 comparators.

A sorting network

Some of the comparisons may be performed in parallel:

A sorting network

Some of the comparisons may be performed in parallel:

A sorting network

Some of the comparisons may be performed in parallel:

A sorting network

Some of the comparisons may be performed in parallel:

A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.
See Donald E. Knuth, The Art of Computer Programming, vol. 3 for more details

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network on n channels $\left(S_{n}\right)$?

The depth problem

What is the minimal number of layers on a sorting network on n channels (T_{n})?

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network on n channels $\left(S_{n}\right)$?

The depth problem

What is the minimal number of layers on a sorting network on n channels (T_{n})?

Knuth 1973

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T_{n}	3	3	5	5	6	6	7	7	8	8	9	9	9	9	11
							6	6	6	6	6	6	6	6	6

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network on n channels $\left(S_{n}\right)$?

The depth problem

What is the minimal number of layers on a sorting network on n channels (T_{n})?

Parberry 1991

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T_{n}	3	3	5	5	6	6	$\mathbf{7}$	$\mathbf{7}$	8	8	9	9	9	9	11
									$\mathbf{7}$						

The optimization problems

The size problem

What is the minimal number of comparators on a sorting network on n channels $\left(S_{n}\right)$?

The depth problem

What is the minimal number of layers on a sorting network on n channels (T_{n})?

Bundala \& Závodný 2013

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17														
T_{n}	3	3	5	5	6	6	7	7	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$
$\mathbf{9}$														

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- exploration of symmetries
- fixed first layer
- 200 hours of computation

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala \& Závodný (2013)
- exploration of symmetries
- reduced set of two-layer prefixes
- intensive SAT-solving

An exponential explosion

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala \& Závodný (2013)
- These techniques do not scale for T_{17} $\approx 211 \times 10^{6}$ possibilities for each layer when $n=17$
- These techniques are not directly applicable to the size problem
36 possibilities for each comparator when $n=9$, so $36^{24} \approx 2.2 \times 10^{37} 24$-comparator nets

Outline

(1) Sorting Networks in a Nutshell

(2) Reduction Techniques
(3) A Symbolical Approach

4 Conclusions \& Future Work

Comparator networks

A comparator network C on n wires is a sequence of comparators (i, j) with $1 \leq i<j \leq n$.

The output of C on a sequence $\vec{x}=x_{1} \ldots x_{n}$ is denoted $C(\vec{x})$.

The set of binary outputs of C is outputs $(C)=\left\{C(\vec{x}) \mid x \in\{0,1\}^{n}\right\}$.

A comparator network C is a sorting network if $C(\vec{x})$ is sorted for every input \vec{x}.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$.
" C is a sorting network on n channels" is co-NP (complete).

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$.

Output lemma (Parberry 1991)

Let C and C^{\prime} be comparator networks such that outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$. If $C^{\prime} ; N$ is a sorting network, then so is C; N.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$.

Output lemma (Parberry 1991)

Let C and C^{\prime} be comparator networks such that outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$. If $C^{\prime} ; N$ is a sorting network, then so is C; N.

Proof

$$
\begin{aligned}
& \{0,1\}^{n} \xrightarrow{C} X \\
& \text { | } X \\
& \{0,1\}^{n} \xrightarrow{C^{\prime}} X^{\prime} \xrightarrow{N} S
\end{aligned}
$$

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$.

Output lemma (Parberry 1991)

Let C and C^{\prime} be comparator networks such that outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$. If $C^{\prime} ; N$ is a sorting network, then so is C; N.

Corollary

There is a minimal-depth sorting network on n channels whose first layer F_{n} contains the comparators $(1,2),(3,4),(5,6), \& c$.

Finding the value of T_{13}

The strategy
(1) Generate all saturated two-layer networks with first layer F_{13}. Saturated: syntactic notion we can impose to reduce candidates.

Finding the value of T_{13}

The strategy

(1) Generate all saturated two-layer networks with first layer F_{13}.
(2) Remove equivalent nets.

Equivalent: up to "renaming" of channels.

Finding the value of T_{13}

The strategy

(1) Generate all saturated two-layer networks with first layer F_{13}.
(2) Remove equivalent nets.
(3) Remove some more nets.

Semantic criteria can be used to eliminate candidates.

Finding the value of T_{13}

The strategy

(1) Generate all saturated two-layer networks with first layer F_{13}.
(2) Remove equivalent nets.
(3) Remove some more nets.
(4) Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

Finding the value of T_{13}

The strategy

(1) Generate all saturated two-layer networks with first layer F_{13}.
(2) Remove equivalent nets.
(3) Remove some more nets.
(4) Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

n	5	6	7	8	9	10	11	12	13
$\left\|G_{n}\right\|$	26	76	232	764	2620	9496	35696	140152	568504
$\left\|S_{n}\right\|$	10	51	74	513	700	6345	8174	93255	113008
$\left\|G_{n} / \approx\right\|$	18	28	74	101	295	350	1134	1236	4288
$\left\|S_{n} / \approx\right\|$	8		29		100		341		1155
red.	6	6	14	15	37	27	88	70	212
$\left\|R_{n}\right\|$	4	5	8	12	22	21	28	50	118

And for higher n ?

This approach does not scale.

Computing equivalence of nets is very expensive (and not working correctly).

Reducing the set of candidates requires iterating over 2^{n} outputs and n ! permutations.

Furthermore, $T_{13}=T_{14}=T_{15}=T_{16}$.

To go beyond these values, we need different techniques.

Outline

(1) Sorting Networks in a Nutshell

(2) Reduction Techniques

(3) A Symbolical Approach

4 Conclusions \& Future Work

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Head word:
01221

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Head word:
01221

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word:
21121212
21212112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word:
21121212
21212112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word:
21121212
21212112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word:
121221
122121
122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

> Cycle word:
> $\mathbf{1 2 1 2 2 1}$
> 122121
> 122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

> Cycle word:
> $\mathbf{1 2 1 2 2 1}$
> 122121
> 122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word:
121221
122121
122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.
Every net generates a unique word, and every well-formed word generates a unique net. The functions net-to-word and word-to-net form an adjunction.

A regular language for words

$$
\begin{aligned}
& \text { Word }::=\text { Head } \mid \text { Stick } \mid \text { Cycle } \\
& \text { Head }::=0(12+21)^{*} \\
& \text { Stick }::=(12+21)^{+} \\
& \text {Cycle }::=12(12+21)^{*}(1+2)
\end{aligned}
$$

A regular language for words

$$
\begin{aligned}
& \text { Word }::=\text { Head } \mid \text { Stick } \mid \text { Cycle } \\
& \text { Head }::=0(12+21)^{*} \\
& \text { Stick }::=(12+21)^{+} \\
& \text {Cycle }::=12(12+21)^{*}(1+2)
\end{aligned}
$$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n.

A regular language for words

$$
\begin{aligned}
& \text { Word }::=\text { Head } \mid \text { Stick } \mid \text { Cycle } \\
& \text { Head }::=0(12+21)^{*} \\
& \text { Stick }::=(12+21)^{+} \\
& \text {Cycle }::=12(12+21)^{*}(1+2)
\end{aligned}
$$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n. Two-layer comparator networks can be represented by multi-sets of words. By choosing a canonical representation of multi-sets, we can easily generate exactly one representative for all two-layer networks with first layer F_{n} modulo equivalence.

Saturation

Saturation

A comparator network C is redundant if there exists a network C^{\prime} obtained from C by removing a comparator such that outputs $\left(C^{\prime}\right)=$ outputs (C).
A network C is saturated if it is non-redundant and every network C^{\prime} obtained by adding a comparator to the last layer of C satisfies outputs $\left(C^{\prime}\right) \nsubseteq$ outputs (C).

Saturation

Saturation

A comparator network C is redundant if there exists a network C^{\prime} obtained from C by removing a comparator such that outputs $\left(C^{\prime}\right)=$ outputs (C).
A network C is saturated if it is non-redundant and every network C^{\prime} obtained by adding a comparator to the last layer of C satisfies outputs $\left(C^{\prime}\right) \nsubseteq$ outputs (C).

Saturation theorem

Let C be a two-layer network. Then C is saturated iff C contains none of the following two-layer patterns.

Optimizations

It is easy to restrict the grammar above to generate only multi-sets of words corresponding to saturated nets.

We can again generate all saturated networks very efficiently for n up to 40 .

A similar technique encodes other syntactic criteria.

Some numerology

n	5	6	7	8	9	10	11	12	13
$\left\|G_{n}\right\|$	26	76	232	764	2,620	9,496	35,696	140,152	568,504
$\left\|S_{n}\right\|$	10	28	70	230	676	2,456	7,916	31,374	109,856
$\left\|R\left(G_{n}\right)\right\|$	16	20	52	61	165	152	482	414	1,378
$\left\|R\left(S_{n}\right)\right\|$	6	6	14	15	37	27	88	70	212
$\left\|R_{n}\right\|$	4	5	8	12	22	21	28	50	117

n	14	15	16	17	18
$\left\|G_{n}\right\|$	$2,390,480$	$10,349,536$	$46,206,736$	$211,799,312$	$997,313,824$
$\left\|S_{n}\right\|$	467,716	$1,759,422$	$7,968,204$	$31,922,840$	$152,664,200$
$\left\|R\left(G_{n}\right)\right\|$	1,024	3,780	2,627	10,187	6,422
$\left\|R\left(S_{n}\right)\right\|$	136	494	323	1,149	651
$\left\|R_{n}\right\|$	94	262	211	609	411

n	19	20	25	30	35	40
$\left\|R\left(S_{n}\right)\right\|$	2,632	1,478	30,312	64,168	$1,604,790$	$2,792,966$
$\left\|R_{n}\right\|$	1,367	894	15,469	34,486	806,710	$1,429,836$

Outline

(1) Sorting Networks in a Nutshell

(2) Reduction Techniques

(3) A Symbolical Approach

4 Conclusions \& Future Work

Results

- Efficient generation of two-layer prefixes for comparator networks
- Representation can capture different important semantic properties
- Identified relevant sets of networks for open cases
- Bottleneck is now processing each relevant network

