< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Quest for Optimal Sorting Networks

L. Cruz-Filipe¹ M. Codish² P. Schneider-Kamp¹

¹Dept. Mathematics and Computer Science, Univ. Southern Denmark (Denmark)

²Ben-Gurion University of the Negev (Israel)

SYNASC September 23rd, 2014

Outline

2 Reduction Techniques

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

・ロト ・聞ト ・ヨト ・ヨト

€ 990

・ロト ・聞ト ・ヨト ・ヨト

A sorting network

Size

This net has 5 channels and 9 comparators.

A sorting network

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A sorting network

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A sorting network

A sorting network

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

A sorting network

Some of the comparisons may be performed in parallel:

Depth

This net has 5 layers.

See Donald E. Knuth, *The Art of Computer Programming*, vol. 3 for more details

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Knut	:h 1	973													
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T _n	3	3	5	5	6	6	7 6	7 6	8 6	8 6	9 6	9 6	9 6	9 6	11 6

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Parb	erry	19	91												
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T _n	3	3	5	5	6	6	7	7	8 7	8 7	9 7	9 7	9 7	9 7	11 7

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

The optimization problems

The size problem

What is the minimal number of *comparators* on a sorting network on *n* channels (S_n) ?

The depth problem

What is the minimal number of *layers* on a sorting network on n channels (T_n) ?

Bundala & Závodný 2013															
n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T _n	3	3	5	5	6	6	7	7	8	8	9	9	9	9	11 9

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
 - exploration of symmetries
 - fixed first layer
 - 200 hours of computation

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
 - exploration of symmetries
 - reduced set of two-layer prefixes
 - intensive SAT-solving

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Upper bounds obtained by concrete examples (1960s)
- Lower bounds obtained by mathematical arguments
- HUGE number of nets
- Parberry (1991)
- Bundala & Závodný (2013)
- These techniques do not scale for T_{17} $\approx 211 \times 10^6$ possibilities for each layer when n = 17
- These techniques are not directly applicable to the size problem
 36 possibilities for each comparator when n = 9, so
 36²⁴ ≈ 2.2 × 10³⁷ 24-comparator nets

Outline

Comparator networks

A comparator network C on n wires is a sequence of comparators (i, j) with $1 \le i < j \le n$.

The *output* of *C* on a sequence $\vec{x} = x_1 \dots x_n$ is denoted $C(\vec{x})$.

The set of binary outputs of C is outputs $(C) = \{C(\vec{x}) \mid x \in \{0,1\}^n\}.$

A comparator network C is a *sorting network* if $C(\vec{x})$ is sorted for every input \vec{x} .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

"C is a sorting network on n channels" is co-NP (complete).

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let C and C' be comparator networks such that $outputs(C) \subseteq outputs(C')$. If C'; N is a sorting network, then so is C; N.

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that outputs(*C*) \subseteq outputs(*C'*). If *C'*; *N* is a sorting network, then so is *C*; *N*.

Proof

$$\{0,1\}^n \xrightarrow{C} X \\ |\cap \\ \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

Well-known results

0-1 lemma (Knuth 1973)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$.

Output lemma (Parberry 1991)

Let *C* and *C'* be comparator networks such that $outputs(C) \subseteq outputs(C')$. If *C'*; *N* is a sorting network, then so is *C*; *N*.

Corollary

There is a minimal-depth sorting network on *n* channels whose first layer F_n contains the comparators (1, 2), (3, 4), (5, 6), &c.

Finding the value of T_{13}

The strategy

Generate all saturated two-layer networks with first layer F₁₃.
 Saturated: syntactic notion we can impose to reduce candidates.

Finding the value of T_{13}

- **(**) Generate all saturated two-layer networks with first layer F_{13} .
- Remove equivalent nets.
 Equivalent: up to "renaming" of channels.

Finding the value of T_{13}

- **(**) Generate all saturated two-layer networks with first layer F_{13} .
- ② Remove equivalent nets.
- Remove some more nets.
 Semantic criteria can be used to eliminate candidates.

Finding the value of T_{13}

- **①** Generate all saturated two-layer networks with first layer F_{13} .
- Remove equivalent nets.
- 8 Remove some more nets.
- Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

Finding the value of T_{13}

- **①** Generate all saturated two-layer networks with first layer F_{13} .
- Remove equivalent nets.
- 8 Remove some more nets.
- Use a SAT-solver to find out if the remaining nets can be extended to a sorting network.

п	5	6	7	8	9	10	11	12	13
$ G_n $	26	76	232	764	2620	9496	35696	140152	568504
$ S_n $	10	51	74	513	700	6345	8174	93255	113008
$ G_n/\approx $	18	28	74	101	295	350	1134	1236	4288
$ S_n/\approx $	8		29		100		341		1155
red.	6	6	14	15	37	27	88	70	212
$ R_n $	4	5	8	12	22	21	28	50	118

And for higher *n*?

This approach does not scale.

Computing equivalence of nets is very expensive (and not working correctly).

Reducing the set of candidates requires iterating over 2^n outputs and n! permutations.

Furthermore, $T_{13} = T_{14} = T_{15} = T_{16}$.

To go beyond these values, we need different techniques.

Outline

2 Reduction Techniques

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Head word: 01221

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Head word: 01221

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word: 21121212 21212112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word: 21121212 21212112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Stick word: 21121212 21212112

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word: 121221 122121 122121 122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word: 121221 122121 122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word: 121221 122121 122112

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Cycle word: 121221 122121 122112

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Word representation for two-layer networks

General idea

Represent two layer networks abstracting from the channel names.

Every net generates a unique word, and every well-formed word generates a unique net. The functions net-to-word and word-to-net form an adjunction.

A regular language for words

Word ::= Head | Stick | Cycle Head ::= $0(12 + 21)^*$ Stick ::= $(12 + 21)^+$ Cycle ::= $12(12 + 21)^*(1 + 2)$

A regular language for words

Word ::= Head | Stick | Cycle
Head ::=
$$0(12 + 21)^*$$

Stick ::= $(12 + 21)^+$
Cycle ::= $12(12 + 21)^*(1 + 2)$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n.

A regular language for words

Word ::= Head | Stick | Cycle
Head ::=
$$0(12 + 21)^*$$

Stick ::= $(12 + 21)^+$
Cycle ::= $12(12 + 21)^*(1 + 2)$

Generating all words and filtering to obtain only the lexicographically smallest is very easy for the relevant values of n. Two-layer comparator networks can be represented by multi-sets of words. By choosing a canonical representation of multi-sets, we can easily generate exactly one representative for all two-layer networks with first layer F_n modulo equivalence.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Saturation

Saturation

A comparator network *C* is *redundant* if there exists a network *C'* obtained from *C* by removing a comparator such that outputs(C') = outputs(C). A network *C* is *saturated* if it is non-redundant and every network *C'* obtained by adding a comparator to the last layer of *C* satisfies $outputs(C') \not\subseteq outputs(C)$.

Saturation

Saturation

A comparator network *C* is *redundant* if there exists a network *C'* obtained from *C* by removing a comparator such that outputs(C') = outputs(C). A network *C* is *saturated* if it is non-redundant and every network *C'* obtained by adding a comparator to the last layer of *C* satisfies $outputs(C') \not\subseteq outputs(C)$.

Saturation theorem

Let C be a two-layer network. Then C is saturated iff C contains none of the following two-layer patterns.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizations

It is easy to restrict the grammar above to generate only multi-sets of words corresponding to saturated nets.

We can again generate all saturated networks very efficiently for n up to 40.

A similar technique encodes other syntactic criteria.

Some numerology

п	5	6	7	8	9	10	11	12	13
$ G_n $	26	76	232	764	2,620	9,496	35,696	140,152	568,504
$ S_n $	10	28	70	230	676	2,456	7,916	31,374	109,856
$ R(G_n) $	16	20	52	61	165	152	482	414	1,378
$ R(S_n) $	6	6	14	15	37	27	88	70	212
$ R_n $	4	5	8	12	22	21	28	50	117

п	14		15		16		17		18	
$ G_n $	2,3	90,480	10,349,536		46,206,736		211,799,312		997,313,824	
$ S_n $	4	67,716	1,759,422		7,968,204		31,922,840) 152,66	4,200
$ R(G_n) $		1,024	3,780		2,627		10,187		,	6,422
$ R(S_n) $		136	494		323		1,149)	651
$ R_n $		94	262			211		609)	411
r	n		20	2	5	30	35		40	
R($ R(S_n) $		1,478 30,		312	64,168	1,604,790		2,792,966	5
R	$ R_n $ 1,367		894 15,4		69 34,486		806,710 1		1,429,836	

Outline

2 Reduction Techniques

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Results

- Efficient generation of two-layer prefixes for comparator networks
- Representation can capture different important semantic properties
- Identified relevant sets of networks for open cases
- Bottleneck is now processing each relevant network