twenty-five comparators is optimal when sorting nine inputs (and twenty-nine for ten)
luís cruz-filipe ${ }^{1} \quad$ michael codish ${ }^{2}$
michael frank ${ }^{2}$ peter schneider-kamp ${ }^{1}$
${ }^{1}$ department of mathematics and computer science university of southern denmark
${ }^{2}$ department of computer science
ben-gurion university of the negev, israel
ictai 2014
november 10th, 2014

outline

sorting
networks in a
nutshell

encoding the size problem in

conclusions $\&$
future work
a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

size this net has 5 channels and 9 comparators
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators
depth this net has 5 layers

a sorting network

size this net has 5 channels and 9 comparators
depth this net has 5 layers
more info see d.e. knuth, the art of computer programming, vol. 3

the optimization problems

the optimal size problem
the optimal depth problem
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

the optimization problems

the optimal size problem
the optimal depth problem
knuth 1973
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	25 23	29 27
t_{n}	0	1	3	3	5	5	6	6	7 6	7 6
			11	12	13	14	15	16		
			s_{n}	35	39	45	51	56	60	
			31	35	39	43	47	51		
			8	8	9	9	9	9		
			t_{n}	6	6	6	6	6	6	

the optimization problems

the optimal size problem
the optimal depth problem
parberry 1991
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?
$\left.\begin{array}{c|cccccccccc}n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline s_{n} & 0 & 1 & 3 & 5 & 9 & 12 & 16 & 19 & \begin{array}{c}25 \\ 23\end{array} & 29 \\ & & & & & & \\ t_{n} & 0 & 1 & 3 & 3 & 5 & 5 & 6 & 6 & \mathbf{7} & \mathbf{7}\end{array}\right]$

the optimization problems

the optimal size problem
the optimal depth problem
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	25 23	29
t_{n}	0	1	3	3	5	5	6	6	7	7
	n	11	12	13	14	15	16			
			s_{n}	35	39	45	51	56	60	
			31	35	39	43	47	51		

the optimization problems

the optimal size problem
the optimal depth problem
our
contribution
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	25	29
t_{n}	0	1	3	3	5	5	6	6	7	7
					11	12	13	14	15	16
			s_{n}	35	39	45	51	56	60	
			33	37	41	45	49	53		

- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
parberry 1991
- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
bundala ${ }^{6}$
závodný 2013
- reduced set of two-layer prefixes
- intensive sat-solving
parberry 1991
- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
bundala ${ }^{6}$
závodný 2013
- reduced set of two-layer prefixes
- intensive sat-solving
however... techniques not directly applicable to the size problem

an exponential explosion

parberry 1991

- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
bundala ${ }^{6}$ závodný 2013
- reduced set of two-layer prefixes
- intensive sat-solving
however... techniques not directly applicable to the size problem
9 channels 2620 possibilities for each layer (depth) $\rightsquigarrow 2620^{6} \approx 3.2 \times 10^{20}$ 6-layer networks

9 channels 36 possibilities for each comparator
(size) $\rightsquigarrow 36^{24} \approx 2.2 \times 10^{37}$ 24-comparator networks

outline

sorting networke in a nutshell

encoding the size problem in
sat
conclusions \mathcal{E}
future work

comparator networks

comparator network
output
binary outputs
the set of binary outputs of C is outputs $(C)=\left\{C(\vec{x}) \mid x \in\{0,1\}^{n}\right\}$
sorting network a comparator network C is a sorting network if $C(\vec{x})$ is sorted for every input \vec{X}

comparator networks

comparator network
output
binary outputs
sorting network

0-1 lemma
(knuth 1973)
a comparator network C on n channels is a sequence of comparators (i, j) with $1 \leq i<j \leq n$
$C(\vec{x})$ denotes the output of C on $\vec{x}=x_{1} \ldots x_{n}$ the set of binary outputs of C is outputs $(C)=\left\{C(\vec{x}) \mid x \in\{0,1\}^{n}\right\}$
a comparator network C is a sorting network if $C(\vec{x})$ is sorted for every input \vec{x}
C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$

comparator networks

comparator network
output
binary outputs
sorting network

0-1 lemma (knuth 1973)
a comparator network C on n channels is a sequence of comparators (i, j) with $1 \leq i<j \leq n$
$C(\vec{x})$ denotes the output of C on $\vec{x}=x_{1} \ldots x_{n}$ the set of binary outputs of C is outputs $(C)=\left\{C(\vec{x}) \mid x \in\{0,1\}^{n}\right\}$
a comparator network C is a sorting network if $C(\vec{x})$ is sorted for every input \vec{x}
C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$
" C is a sorting network on n channels" is co-NP (complete)
sat encoding

$$
\begin{gathered}
\text { Network }=\left\langle\mathrm{c}\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \ldots, \mathrm{c}\left(\mathrm{I}_{k}, \mathrm{~J}_{k}\right)\right\rangle \\
\operatorname{valid}_{n, k}(\text { Network })=\bigwedge_{i=1}^{k} \begin{array}{c}
\text { new_int }\left(\mathrm{I}_{i}, 1, n\right) \\
\wedge \text { new_int }\left(\mathrm{J}_{i}, 1, n\right) \\
\wedge \text { int_lt }\left(\mathrm{I}_{i}, \mathrm{~J}_{i}\right)
\end{array}
\end{gathered}
$$

sat encoding

Network $=\left\langle c\left(I_{1}, J_{1}\right), \ldots, c\left(I_{k}, J_{k}\right)\right\rangle$ $\operatorname{valid}_{n, k}$ (Network)

sat encoding

$$
\begin{gathered}
\text { Network }=\left\langle\mathrm{c}\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \ldots, \mathrm{c}\left(\mathrm{I}_{k}, \mathrm{~J}_{k}\right)\right\rangle \\
\operatorname{valid}_{n, k}(\text { Network }) \\
\varphi_{\mathrm{I}, \mathrm{~J}}(\vec{x}, \vec{y})=\bigwedge_{1 \leq i<j \leq n} \rightarrow\left(\left(y_{i} \leftrightarrow x_{i} \wedge x_{j}\right) \wedge\left(y_{j} \leftrightarrow x_{i} \vee x_{j}\right)\right) \\
\text { int_eq }(\mathrm{I}, i) \wedge \text { int_eq }(\mathrm{J}, j) \\
\psi_{\mathrm{I}, \mathrm{~J}}(\vec{x}, \vec{y})=\bigwedge_{i=1}^{n} \rightarrow\left(y_{i} \leftrightarrow x_{i}\right)
\end{gathered}
$$

sat encoding

$$
\begin{aligned}
& \text { Network }=\left\langle c\left(I_{1}, J_{1}\right), \ldots, c\left(I_{k}, J_{k}\right)\right\rangle \\
& \operatorname{valid}_{n, k} \text { (Network) } \\
& \begin{array}{l}
\varphi_{\mathrm{I}, \mathrm{~J}}(\vec{x}, \vec{y})=\bigwedge_{1 \leq i<j \leq n} \xrightarrow{\text { int_eq }(\mathrm{I}, i) \wedge \text { int_eq }((\mathrm{J}, j)} \boldsymbol{(y _ { i } \leftrightarrow x _ { i } \wedge x _ { j }) \wedge (y _ { j } \leftrightarrow x _ { i } \vee x _ { j }))} \\
\psi_{\mathrm{I}, \mathrm{~J}}(\vec{x}, \vec{y})=\bigwedge_{i=1}^{n} \rightarrow\left(y_{i} \leftrightarrow x_{i}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}_{0}=\vec{b}, \quad \vec{x}_{k}=\operatorname{sort}(\vec{b})
\end{aligned}
$$

sat encoding

> Network $=\left\langle\mathrm{c}\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \ldots, \mathrm{c}\left(\mathrm{I}_{k}, \mathrm{~J}_{k}\right)\right\rangle$ valid $_{n, k}$ (Network) $\quad \operatorname{sorts}_{n, k}$ (Network, $\left.\vec{b}\right)$
sat encoding

$$
\begin{aligned}
\text { Network }= & \left\langle\mathrm{c}\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \ldots, \mathrm{c}\left(\mathrm{I}_{k}, \mathrm{~J}_{k}\right)\right\rangle \\
\operatorname{valid}_{n, k}(\text { Network }) & \operatorname{sorts}_{n, k}(\text { Network, } \vec{b}) \\
\operatorname{sorter}_{n, k}(\text { Network }) & =\operatorname{valid}_{n, k}(\text { Network }) \\
& \wedge \bigwedge_{\vec{b} \in\{0,1\}^{n}} \operatorname{sorts}_{n, k}(\text { Network }, \vec{b})
\end{aligned}
$$

sat encoding

$$
\begin{aligned}
\text { Network }= & \left\langle\mathrm{c}\left(\mathrm{I}_{1}, \mathrm{~J}_{1}\right), \ldots, \mathrm{c}\left(\mathrm{I}_{k}, \mathrm{~J}_{k}\right)\right\rangle \\
\operatorname{valid}_{n, k}(\text { Network }) & \operatorname{sorts}_{n, k}(\text { Network, } \vec{b}) \\
\operatorname{sorter}_{n, k}(\text { Network }) & =\operatorname{valid}_{n, k}(\text { Network }) \\
& \wedge \bigwedge_{\vec{b} \in\{0,1\}^{n}} \operatorname{sorts}_{n, k}(\text { Network }, \vec{b})
\end{aligned}
$$

this is compiled with the bee constraint compiler into a cnf formula $\Psi(n, k)$
$\Psi(n, k)$ is satisfiable iff there is a sorting network on n channels with k comparators

practical evaluation

	optimal sorting networks (sat)				
n	k	bee	\#clauses	\#vars	sat
4	5	0.18	1916	486	0.01
5	9	1.03	10159	2550	0.03
6	12	4.55	35035	8433	2.45
7	16	21.68	114579	26803	16.70
8	19	82.93	321445	73331	∞
9	25	452.55	977559	219950	∞

	smaller networks (unsat)				
n	k	bee	\#clauses	\#vars	sat
4	4	0.15	1480	356	0.01
5	8	0.90	8963	2221	1.27
6	11	3.99	32007	7657	242.02
7	15	19.04	107227	25000	∞
8	18	73.34	304145	69221	∞
9	24	406.67	937773	210715	∞

(times in seconds, timeout $=1$ week)
divide and conquer
main idea divide the "big" sat problem into smaller problems
divide and conquer
main idea consider
divide the "big" sat problem into smaller problems all possible choices for the first ℓ comparators in

$$
\text { Network }=\left\langle c\left(I_{1}, J_{1}\right), \ldots, c\left(I_{k}, J_{k}\right)\right\rangle
$$

divide and conquer

main idea consider all possible choices for the first ℓ comparators in

$$
\text { Network }=\left\langle c\left(I_{1}, J_{1}\right), \ldots, c\left(I_{k}, J_{k}\right)\right\rangle
$$

find
"minimal" set \mathcal{F} of choices for $\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}$ such that

$$
\Psi_{n, k} \text { is satisfiable iff } \bigvee_{f \in \mathcal{F}} \Psi_{n, k, f} \text { is satisfiable }
$$

where $f=\left\langle\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}\right\rangle$

divide and conquer

main idea consider all possible choices for the first ℓ comparators in

$$
\text { Network }=\left\langle c\left(I_{1}, J_{1}\right), \ldots, c\left(I_{k}, J_{k}\right)\right\rangle
$$

find
"minimal" set \mathcal{F} of choices for $\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}$ such that

$$
\Psi_{n, k} \text { is satisfiable iff } \bigvee_{f \in \mathcal{F}} \Psi_{n, k, f} \text { is satisfiable }
$$

where $f=\left\langle\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}\right\rangle$
reduce the size of \mathcal{F} using symmetry-breaking techniques

breaking symmetry $i / i i$

output lemma (parberry 1991)

- $\quad C$ and C^{\prime} are comparator networks
- outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$
if $C^{\prime} ; N$ is a sorting network, then so is $C ; N$

breaking symmetry $i / i i$

output lemma (parberry 1991)

- $\quad C$ and C^{\prime} are comparator networks
- outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$
if $C^{\prime} ; N$ is a sorting network, then so is $C ; N$

$$
\begin{aligned}
& \{0,1\}^{n} \xrightarrow{C} \begin{array}{l}
\text { } \\
\text { |n } \\
\{0,1\}^{n} \xrightarrow{C^{\prime}} X^{\prime} \xrightarrow{N} S
\end{array}
\end{aligned}
$$

breaking symmetry $i / i i$

output lemma (parberry 1991)

- $\quad C$ and C^{\prime} are comparator networks
- outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$
if $C^{\prime} ; N$ is a sorting network, then so is $C ; N$

$$
\begin{aligned}
& \{0,1\}^{n} \xrightarrow{C} X \xrightarrow{N} S \\
& \{0,1\}^{n} \xrightarrow{C^{\prime}} X^{\prime} \xrightarrow{N} S
\end{aligned}
$$

breaking symmetry ii/ii

permuted
output lemma (bundala \& Závodný 2013)
C and C^{\prime} comparator networks of depth 2

- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π C^{\prime} can be extended to a sorting network then C can also be extended to a sorting network of depth 2

breaking symmetry ii/ii

permuted
output lemma
(bundala \& Závodný 2013)

- C and C^{\prime} comparator networks of depth 2
- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π
- C^{\prime} can be extended to a sorting network then C can also be extended to a sorting network of depth 2

$$
\begin{aligned}
&\{0,1\}^{n} \xrightarrow{C} X \\
& \stackrel{{ }^{\vee}}{ } \\
&\{0,1\}^{n} \\
& \\
& C^{\prime} X^{\prime} \xrightarrow{N}
\end{aligned}
$$

breaking symmetry ii/ii

permuted
output lemma
(bundala \& Závodný 2013)

- C and C^{\prime} comparator networks of depth 2
- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π
- C^{\prime} can be extended to a sorting network then C can also be extended to a sorting network of depth 2

$$
\begin{aligned}
& \{0,1\}^{n} \xrightarrow{C} X \xrightarrow{\mid \pi} \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S) \\
& \{0,1\}^{n} \xrightarrow{C^{\prime}} X^{\prime} \xrightarrow{\prime} \xrightarrow{N} S
\end{aligned}
$$

breaking symmetry ii/ii

permuted
output lemma
(bundala \&s Závodný 2013)

- C and C^{\prime} comparator networks of depth 2
- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π
- $\quad C^{\prime}$ can be extended to a sorting network then C can also be extended to a sorting network of depth 2

breaking symmetry ii/ii

permuted
output lemma (generalized)

- $\quad C$ and C^{\prime} comparator networks of equal size
- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π
- $\quad C^{\prime}$ can be extended to a sorting network then C can also be extended to a sorting network of the same size

breaking symmetry ii/ii

permuted
output lemma (generalized)

- C and C^{\prime} comparator networks of equal size
- π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π C^{\prime} can be extended to a sorting network then C can also be extended to a sorting network of the same size
subsumption $C \preceq C^{\prime}$ when

$$
\pi(\text { outputs }(C)) \subseteq \text { outputs }\left(C^{\prime}\right)
$$

for some permutation π
the generate-and-prune approach
init set $R_{0}^{n}=\{\emptyset\}$ and $k=0$
repeat until $k>1$ and $\left|R_{k}^{n}\right|=1$
generate construct N_{k+1}^{n} by extending each net in R_{k}^{n} by one comparator in all possible ways
prune construct R_{k+1}^{n} from N_{k+1}^{n} by keeping only one element of each minimal equivalence class w.r.t. the transitive closure of \preceq
step increase k
the generate-and-prune approach
init set $R_{0}^{n}=\{\emptyset\}$ and $k=0$
repeat until $k>1$ and $\left|R_{k}^{n}\right|=1$
generate construct N_{k+1}^{n} by extending each net in R_{k}^{n} by one comparator in all possible ways
prune construct R_{k+1}^{n} from N_{k+1}^{n} by keeping only one element of each minimal equivalence class w.r.t. the transitive closure of \preceq step increase k
termination condition
if C is a sorting network on n channels of size k, then $\left|R_{k}^{n}\right|=1$

optimizations

- only generate networks when the extra comparator does something
- prove and implement criteria for when subsumption will fail
- restrict the search space of possible permutations
- optimize data structures
- parallelize to 288 nodes
some numerology

n	s_{n}	largest $\left\|N_{k}^{n}\right\|$	largest $\left\|R_{k}^{n}\right\|$	execution time
3	3	2	2	~ 0
4	5	12	4	~ 0
5	9	65	11	~ 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	$18,420,674$	914,444	16 years

some numerology

n	s_{n}	largest $\left\|N_{k}^{n}\right\|$	largest $\left\|R_{k}^{n}\right\|$	execution time
3	3	2	2	~ 0
4	5	12	4	~ 0
5	9	65	11	~ 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	$18,420,674$	914,444	16 years

parallel runtime for $n=9$: 3 weeks

n	s_{n}	largest $\left\|N_{k}^{n}\right\|$	largest $\left\|R_{k}^{n}\right\|$	execution time
3	3	2	2	~ 0
4	5	12	4	~ 0
5	9	65	11	~ 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	$18,420,674$	914,444	16 years

parallel runtime for $n=9$: 3 weeks
the hard part going "over the peak" consumes most execution time

collaboration is the key
find "minimal" set \mathcal{F} of choices for $\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}$ such that

$$
\Psi_{n, k} \text { is satisfiable iff } \bigvee_{f \in \mathcal{F}} \Psi_{n, k, f} \text { is satisfiable }
$$

where $f=\left\langle\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}\right\rangle$
"minimal" set \mathcal{F} of choices for $\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}$ such that

$$
\Psi_{n, k} \text { is satisfiable iff } \bigvee_{f \in \mathcal{F}} \Psi_{n, k, f} \text { is satisfiable }
$$

where $f=\left\langle\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}\right\rangle$
taking $\mathcal{F}=R_{11}^{9}$ gives 188,730 independent problems that can be solved in parallel - which is much faster than letting the original program terminate
"minimal" set \mathcal{F} of choices for $\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}$ such that

$$
\Psi_{n, k} \text { is satisfiable iff } \bigvee_{f \in \mathcal{F}} \Psi_{n, k, f} \text { is satisfiable }
$$

where $f=\left\langle\mathrm{I}_{1}, \mathrm{~J}_{1}, \ldots, \mathrm{I}_{\ell}, \mathrm{J}_{\ell}\right\rangle$
taking $\mathcal{F}=R_{11}^{9}$ gives 188,730 independent problems that can be solved in parallel - which is much faster than letting the original program terminate
different values of k give different total running times

outline

sorting networks in a nutshell
encoding the size problem in sat
conclusions \mathfrak{G} future work

results \mathfrak{E} future work

- exact values of s_{9} and s_{10}
- technique may be adapted to settle higher values which are still unknown
- algorithms may be useful for finding smaller-than-currently-known networks
- further theoretical results may help proving optimality of best known upper bounds

