twenty-five comparators is optimal when sorting nine inputs (and twenty-nine for ten)

$\frac{|\text{uis cruz-filipe}^1 \quad \text{michael codish}^2}{\text{michael frank}^2 \quad \text{peter schneider-kamp}^1}$

¹department of mathematics and computer science university of southern denmark

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

²department of computer science ben-gurion university of the negev, israel

ictai 2014 november 10th, 2014

outline

(中) (문) (문) (문) (문)

sorting networks in a nutshell

encoding the size problem in sat

conclusions & future work

・ロト ・聞ト ・ヨト ・ヨト

æ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 *channels* and 9 *comparators*

size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 channels and 9 comparatorsdepth this net has 5 layers

the optimal size problem

the optimal depth problem what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

the optimal size problem

the optimal depth problem what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$-\frac{5_{n}}{2} = \frac{5_{n}}{2} =$	_
7 7	
+ 0 1 3 3 5 5 6 6 ' '	_
1 0 1 0 0 0 0 0 0 0	
n 11 12 13 14 15 16	
35 39 45 51 56 60	_
S_n 31 35 39 43 47 51	
+ 8 8 9 9 9 9	_
$ \iota_n 6 6 6 6 6 6$	

knuth 1973

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

the optimal size problem

the optimal depth problem what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

n	1	2	3	4	5	6	7	8	9	10
	0	1	З	Б	0	12	16	10	25	29
5 _n	0	Т	5	5	9	12	10	19	23	27
tn	0	1	3	3	5	5	6	6	7	7
			п	11	12		13	14	15	16
				35	39		45	51	56	60
			s _n	31	35		39	43	47	51
	+		8	8		9	9	9	9	
			Ln	7	7		7	7	7	7

parberry 1991

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

the optimal size problem

the optimal depth problem

bundala & závodný 2013 what is the minimal number of *comparators* on a sorting network on *n* channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

n	1	2	3	4	5	6	7	8	9	10
c	0	1	З	5	0	12	16	10	25	29
3 _n	0	0 1	5	5	9	9 12	10	19	23	27
tn	0	1	3	3	5	5	6	6	7	7
			n	11	12		13	14	15	16
			6	35	39		45	51	56	60
			Sn	31	35		39	43	47	51
			tn	8	8		9	9	9	9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

the optimal size problem

the optimal depth problem what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

our contribution

n	1	2	3	4	5	6	7	8	9	10
s _n	0	1	3	5	9	12	16	19	25	29
tn	0	1	3	3	5	5	6	6	7	7
			n	11	12	2	13	14	15	16
			Sn	35 33	39 3 7	9 7	45 41	51 45	56 49	60 53
			tn	8	8	;	9	9	9	9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

an exponential explosion

parberry 1991

- exploration of symmetries ~→ fixed first layer
- exhaustive search (200 hours of computation)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

an exponential explosion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

an exponential explosion parberry 1991 exploration of symmetries \rightsquigarrow fixed first layer exhaustive search (200 hours of computation) bundala & závodný 2013 reduced set of two-layer prefixes intensive sat-solving techniques not directly applicable to the size problem however... 9 channels 2620 possibilities for each layer $\sim 2620^6 \approx 3.2 \times 10^{20}$ 6-layer networks (depth) 9 channels 36 possibilities for each comparator $\sim 36^{24} \approx 2.2 \times 10^{37}$ 24-comparator networks (size)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

outline

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

sorting networks in a nutshel

encoding the size problem in sat

conclusions & future work

$comparator\ networks$

comparator network	a comparator network C on n channels is a sequence of comparators (i, j) with $1 \le i < j \le n$
output	$C(\vec{x})$ denotes the <i>output</i> of C on $\vec{x} = x_1 \dots x_n$
binary outputs	the set of binary outputs of C is $outputs(C) = \{C(\vec{x}) \mid x \in \{0,1\}^n\}$
sorting network	a comparator network <i>C</i> is a <i>sorting network</i> if $C(\vec{x})$ is sorted for every input \vec{x}

comparator networks

comparator network	a comparator network C on n channels is a sequence of comparators (i, j) with $1 \le i < j \le n$
output	$C(\vec{x})$ denotes the <i>output</i> of C on $\vec{x} = x_1 \dots x_n$
binary outputs	the set of binary outputs of C is $outputs(\mathcal{C}) = \{\mathcal{C}(ec{x}) \mid x \in \{0,1\}^n\}$
sorting network	a comparator network <i>C</i> is a <i>sorting network</i> if $C(\vec{x})$ is sorted for every input \vec{x}
0–1 lemma (knuth 1973)	C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$

comparator networks

a comparator network C on n channels is a sequence of comparators (i, j) with $1 \le i < j \le n$
$C(\vec{x})$ denotes the <i>output</i> of C on $\vec{x} = x_1 \dots x_n$
the set of binary outputs of C is $outputs(C) = \{C(ec{x}) \mid x \in \{0,1\}^n\}$
a comparator network <i>C</i> is a <i>sorting network</i> if $C(\vec{x})$ is sorted for every input \vec{x}
C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$ "C is a sorting network on n channels" is co-NP (complete)

$$ext{Network} = \langle \mathsf{c}(\mathtt{I}_1, \mathtt{J}_1), \dots, \mathsf{c}(\mathtt{I}_k, \mathtt{J}_k)
angle$$
 $ext{valid}_{n,k}(ext{Network}) = \bigwedge_{i=1}^k egin{array}{c} & \texttt{new_int}(\mathtt{I}_i, 1, n) \\ & \land \texttt{new_int}(\mathtt{J}_i, 1, n) \\ & \land \texttt{int_lt}(\mathtt{I}_i, \mathtt{J}_i) \end{pmatrix}$

 $\texttt{Network} = \langle \texttt{c}(\texttt{I}_1, \texttt{J}_1), \dots, \texttt{c}(\texttt{I}_k, \texttt{J}_k) \rangle$ valid_{n,k}(Network)

・ロト・日本・モト・モート ヨー うへで

 $\texttt{Network} = \langle \texttt{c}(\texttt{I}_1, \texttt{J}_1), \dots, \texttt{c}(\texttt{I}_k, \texttt{J}_k) \rangle$ valid_{n,k}(Network)

$$\begin{split} \varphi_{\mathrm{I},\mathrm{J}}(\vec{x},\vec{y}) &= \bigwedge_{1 \leq i < j \leq n} \stackrel{\mathrm{int_eq}(\mathrm{I},i) \land \mathrm{int_eq}(\mathrm{J},j)}{\to ((y_i \leftrightarrow x_i \land x_j) \land (y_j \leftrightarrow x_i \lor x_j))} \\ \psi_{\mathrm{I},\mathrm{J}}(\vec{x},\vec{y}) &= \bigwedge_{i=1}^n \stackrel{\neg \mathrm{int_eq}(\mathrm{I},i) \land \neg \mathrm{int_eq}(\mathrm{J},i)}{\to (y_i \leftrightarrow x_i)} \end{split}$$

・ロト・日本・モト・モート ヨー うへで

 $\texttt{Network} = \langle \texttt{c}(\texttt{I}_1, \texttt{J}_1), \dots, \texttt{c}(\texttt{I}_k, \texttt{J}_k) \rangle$ $\texttt{valid}_{n,k}(\texttt{Network})$

$$\begin{split} \varphi_{\mathrm{I},\mathrm{J}}(\vec{x},\vec{y}) &= \bigwedge_{1 \leq i < j \leq n} \begin{array}{c} \mathrm{int_eq}(\mathrm{I},i) \land \mathrm{int_eq}(\mathrm{J},j) \\ &\to ((y_i \leftrightarrow x_i \land x_j) \land (y_j \leftrightarrow x_i \lor x_j)) \\ \psi_{\mathrm{I},\mathrm{J}}(\vec{x},\vec{y}) &= \bigwedge_{i=1}^n \begin{array}{c} -\mathrm{int_eq}(\mathrm{I},i) \land -\mathrm{int_eq}(\mathrm{J},i) \\ &\to (y_i \leftrightarrow x_i) \end{array} \end{split}$$

$$\begin{split} \texttt{sorts}_{n,k}(\texttt{Network}, \vec{b}) &= \bigwedge_{i=1}^{k} \begin{array}{c} \varphi_{\texttt{I}_{i},\texttt{J}_{i}}(\vec{x}_{i-1}, x_{i}) \\ \wedge \psi_{\texttt{I}_{i},\texttt{J}_{i}}(\vec{x}_{i-1}, \vec{x}_{i}) \\ \vec{x}_{0} &= \vec{b}, \qquad \vec{x}_{k} = \texttt{sort}(\vec{b}) \end{split}$$

・ロト・日本・モト・モート ヨー うへで

 $\texttt{Network} = \langle \texttt{c}(\texttt{I}_1, \texttt{J}_1), \dots, \texttt{c}(\texttt{I}_k, \texttt{J}_k) \rangle$ $\texttt{valid}_{n,k}(\texttt{Network}) \qquad \texttt{sorts}_{n,k}(\texttt{Network}, \vec{b})$

・ロト・日本・モート モー うへぐ

$$egin{aligned} & ext{Network} = \langle \mathtt{c}(\mathtt{I}_1, \mathtt{J}_1), \dots, \mathtt{c}(\mathtt{I}_k, \mathtt{J}_k)
angle \ & ext{valid}_{n,k}(ext{Network}) & ext{sorts}_{n,k}(ext{Network}, ec{b}) \end{aligned}$$
 $& ext{sorts}_{n,k}(ext{Network}) \ & \wedge \bigwedge_{ec{b} \in \{0,1\}^n} ext{sorts}_{n,k}(ext{Network}, ec{b}) \end{aligned}$

 $ext{Network} = \langle c(I_1, J_1), \dots, c(I_k, J_k)
angle$ $ext{valid}_{n,k}(ext{Network}) \qquad ext{sorts}_{n,k}(ext{Network}, ec{b})$ $ext{sorter}_{n,k}(ext{Network}) = ext{valid}_{n,k}(ext{Network})$ $imes \bigwedge_{ec{b} \in \{0,1\}^n} ext{sorts}_{n,k}(ext{Network}, ec{b})$

this is compiled with the bee constraint compiler into a cnf formula $\Psi(n, k)$

theorem

 $\Psi(n, k)$ is satisfiable iff there is a sorting network on n channels with k comparators

practical evaluation

	optimal sorting networks (sat)						
n	k	bee	#clauses	#vars	sat		
4	5	0.18	1916	486	0.01		
5	9	1.03	10159	2550	0.03		
6	12	4.55	35035	8433	2.45		
7	16	21.68	114579	26803	16.70		
8	19	82.93	321445	73331	∞		
9	25	452.55	977559	219950	∞		

	smaller networks (unsat)						
n	k	bee	#clauses	#vars	sat		
4	4	0.15	1480	356	0.01		
5	8	0.90	8963	2221	1.27		
6	11	3.99	32007	7657	242.02		
7	15	19.04	107227	25000	∞		
8	18	73.34	304145	69221	∞		
9	24	406.67	937773	210715	∞		

(times in seconds, timeout = 1 week)

divide and conquer

main idea

consider

divide the "big" sat problem into smaller problems all possible choices for the first ℓ comparators in

 $\texttt{Network} = \langle \texttt{c}(\texttt{I}_1,\texttt{J}_1), \dots, \texttt{c}(\texttt{I}_k,\texttt{J}_k) \rangle$

divide and conquer

main idea

consider

divide the "big" sat problem into smaller problems all possible choices for the first ℓ comparators in Network = $\langle c(I_1, J_1), \dots, c(I_k, J_k) \rangle$

find "minimal" set \mathcal{F} of choices for $I_1, J_1, \ldots, I_\ell, J_\ell$ such that

 $\Psi_{n,k}$ is satisfiable iff $\bigvee_{f\in\mathcal{F}}\Psi_{n,k,f}$ is satisfiable

where $f = \langle \mathtt{I}_1, \mathtt{J}_1, \ldots, \mathtt{I}_\ell, \mathtt{J}_\ell \rangle$

divide and conquer

main idea consider

find

divide the "big" sat problem into smaller problems all possible choices for the first ℓ comparators in Network = $\langle c(I_1, J_1), \dots, c(I_k, J_k) \rangle$ "minimal" set \mathcal{F} of choices for $I_1, J_1, \dots, I_\ell, J_\ell$ such that

 $\Psi_{n,k}$ is satisfiable iff $\bigvee_{f \in \mathcal{F}} \Psi_{n,k,f}$ is satisfiable

where $f = \langle I_1, J_1, \dots, I_\ell, J_\ell \rangle$ reduce the size of \mathcal{F} using symmetry-breaking techniques

output lemma (parberry 1991)

C and C' are comparator networks outputs(C) \subseteq outputs(C') if C'; N is a sorting network, then so is C; N

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

output lemma (parberry 1991)

C and C' are comparator networks outputs(C) \subseteq outputs(C') if C'; N is a sorting network, then so is C; N

$$\{0,1\}^n \xrightarrow{C} X$$
$$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

output lemma (parberry 1991)

C and C' are comparator networks outputs(C) \subseteq outputs(C') if C'; N is a sorting network, then so is C; N

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{N} S$$
$$= \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

permuted output lemma (bundala & Závodný 2013)

- C and C' comparator networks of depth 2
- $\pi(\operatorname{outputs}(\mathcal{C})) \subseteq \operatorname{outputs}(\mathcal{C}')$ for some permutation π
- C' can be extended to a sorting network then C can also be extended to a sorting network of depth 2

permuted output lemma (bundala & Závodný 2013)

- C and C' comparator networks of depth 2
- $\pi(\mathsf{outputs}(C)) \subseteq \mathsf{outputs}(C') \text{ for some permutation } \pi$
- C' can be extended to a sorting network
 then C can also be extended to a sorting network of depth 2

permuted output lemma (bundala & Závodný 2013)

- C and C' comparator networks of depth 2
- $\pi(\mathsf{outputs}(C)) \subseteq \mathsf{outputs}(C') \text{ for some permutation } \pi$
- C' can be extended to a sorting network
 then C can also be extended to a sorting network of depth 2

permuted output lemma (bundala & Závodný 2013)

- C and C' comparator networks of depth 2
- $\pi(\mathsf{outputs}(\mathcal{C})) \subseteq \mathsf{outputs}(\mathcal{C}') \text{ for some permutation } \pi$
- C' can be extended to a sorting network then C can also be extended to a sorting network of **depth 2**

$$\{0,1\}^{n} \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$$
$$\downarrow^{\pi}_{\sqrt{N}} \{0,1\}^{n} \xrightarrow{C'} X' \xrightarrow{N} S$$

permuted output lemma (generalized)

- C and C' comparator networks of equal size
- $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π
- C' can be extended to a sorting network
 then C can also be extended to a sorting network of the same size

$$\{0,1\}^{n} \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$$
$$\downarrow^{\pi}_{\sqrt{n}} \{0,1\}^{n} \xrightarrow{C'} X' \xrightarrow{N} S$$

permuted output lemma (generalized)

- C and C' comparator networks of equal size
- $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ for some permutation π
- C' can be extended to a sorting network then C can also be extended to a sorting network of the same size

subsumption $C \preceq C'$ when

 $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some permutation π

the generate-and-prune approach

 $init \quad set \ R_0^n = \{\emptyset\} \text{ and } k = 0$ $repeat \quad until \ k > 1 \text{ and } |R_k^n| = 1$ $generate \quad construct \ N_{k+1}^n \text{ by extending each net in} \\ R_k^n \text{ by one comparator in all possible ways}$ $prune \quad construct \ R_{k+1}^n \text{ from } N_{k+1}^n \text{ by keeping only} \\ one \ element \ of \ each \ minimal \ equivalence \\ class \ w.r.t. \ the \ transitive \ closure \ of \ \preceq$ $step \ increase \ k$

$the \ generate-and-prune \ approach$

init	set $R_0^n = \{\emptyset\}$ and $k = 0$
repeat	until $k > 1$ and $ R_k^n = 1$ generate construct N_{k+1}^n by extending each net in R_k^n by one comparator in all possible ways
	prune construct R_{k+1}^n from N_{k+1}^n by keeping only one element of each minimal equivalence class w.r.t. the transitive closure of \leq step increase k
termination condition	if C is a sorting network on n channels of size k, then $ R_k^n = 1$

optimizations

- only generate networks when the extra comparator does something
- prove and implement criteria for when subsumption will fail

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- restrict the search space of possible permutations
- optimize data structures
- parallelize to 288 nodes

some numerology

n	s _n	largest $ N_k^n $	largest $ R_k^n $	execution time
3	3	2	2	~ 0
4	5	12	4	${\sim}0$
5	9	65	11	${\sim}0$
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	18,420,674	914,444	16 years

some numerology

n	s _n	largest $ N_k^n $	largest $ R_k^n $	execution time
3	3	2	2	~0
4	5	12	4	~ 0
5	9	65	11	~ 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	18,420,674	914,444	16 years

parallel runtime for n = 9: 3 weeks

some numerology

п	s _n	largest $ N_k^n $	largest $ R_k^n $	execution time
3	3	2	2	~0
4	5	12	4	~0
5	9	65	11	~ 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	18,420,674	914,444	16 years

parallel runtime for n = 9: 3 weeks

find "minimal" set $\mathcal F$ of choices for ${\tt I}_1,\,{\tt J}_1,\ldots,\,{\tt I}_\ell,\,{\tt J}_\ell$ such that

 $\Psi_{n,k}$ is satisfiable iff $\bigvee_{f\in\mathcal{F}}\Psi_{n,k,f}$ is satisfiable

・ロト・日本・モート モー うへぐ

where $f = \langle I_1, J_1, \dots, I_\ell, J_\ell \rangle$

find "minimal" set $\mathcal F$ of choices for $\mathtt I_1,\,\mathtt J_1,\ldots,\,\mathtt I_\ell,\,\mathtt J_\ell$ such that

 $\Psi_{n,k}$ is satisfiable iff $\bigvee_{f\in\mathcal{F}}\Psi_{n,k,f}$ is satisfiable

where $f = \langle I_1, J_1, \dots, I_\ell, J_\ell \rangle$

taking $\mathcal{F} = R_{11}^9$ gives 188,730 *independent* problems that can be solved in parallel – which is much faster than letting the original program terminate

find "minimal" set $\mathcal F$ of choices for $\mathtt I_1,\,\mathtt J_1,\ldots,\,\mathtt I_\ell,\,\mathtt J_\ell$ such that

 $\Psi_{n,k}$ is satisfiable iff $\bigvee_{f\in\mathcal{F}}\Psi_{n,k,f}$ is satisfiable

where $f = \langle I_1, J_1, \dots, I_\ell, J_\ell \rangle$

taking $\mathcal{F} = R_{11}^9$ gives 188,730 *independent* problems that can be solved in parallel – which is much faster than letting the original program terminate

different values of k give different total running times

outline

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

sorting networks in a nutshel

encoding the size problem in sat

conclusions & future work

results & future work

- exact values of s_9 and s_{10}
- technique may be adapted to settle higher values which are still unknown
- algorithms may be useful for *finding* smaller-than-currently-known networks
- further theoretical results may help proving optimality of best known upper bounds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

thank you!