sorting networks the end game

$\frac{|\text{uis cruz-filipe}^1 \quad \text{michael codish}^2}{\text{peter schneider-kamp}^1}$

¹department of mathematics and computer science university of southern denmark

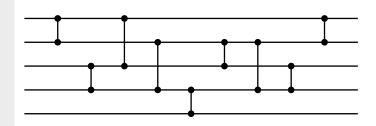
²department of computer science ben-gurion university of the negev, israel

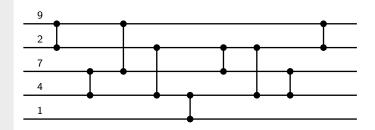
arco workshop november 14th, 2014

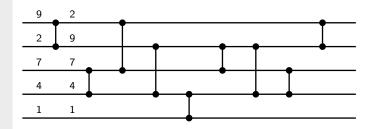
outline

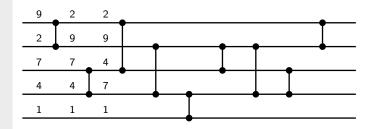
(日)、

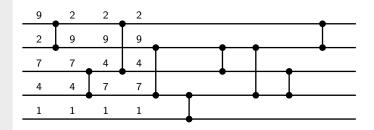
sorting networks in a nutshell

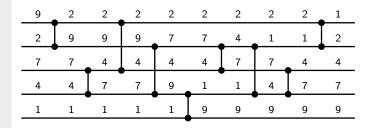






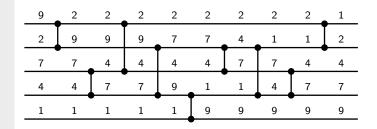






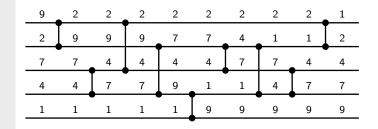
・ロト ・聞ト ・ヨト ・ヨト

æ.



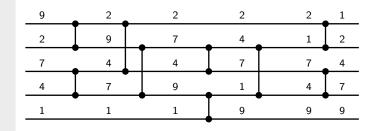
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

size this net has 5 *channels* and 9 *comparators*



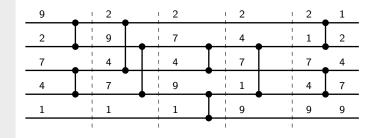
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで



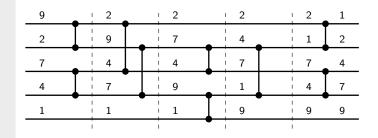
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



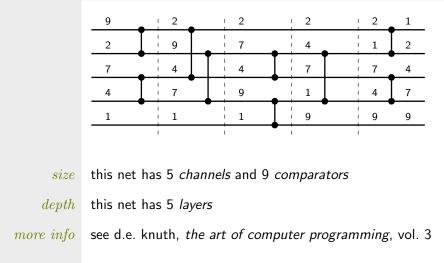
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

size this net has 5 channels and 9 comparatorsdepth this net has 5 layers



the optimal size problem

the optimal depth problem what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

the optimal size problem

the optimal depth problem

knuth 1973

what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

n	1	2	3	4	5	6	7	8	9	10
tn	0	1	3	3	5	5	6	6	7 6	7 6
		n	11	12	13		14	15	16 9 6	17
		+	8	8	9		9	9	9	11
		Ln	6	6	6		6	6	6	6

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the optimal size problem

the optimal depth problem

parberry 1991

what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

п	1	2	3	4	5	6	7	8	9	10
tn	0	1	3	3	5	5	6	6	7	10 7
										17 11 7
		+	8	8	9		9	9	9	11
		Ln	7	7	7		7	7	7	7

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the optimal size problem

the optimal depth problem

bundala & závodný 2013 what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on *n* channels (t_n) ?

n	1	2	3	4	5	6	7	8	9	10
tn	0	1	3	3	5	5	6	6	7	10 7
		n	11	12	13		14	15	16 9	17
		tn	8	8	9		9	9	9	11
		-11	-	•	•		-	2	-	9

the optimal size problem

the optimal depth problem

ehlers & müller 2014 what is the minimal number of *comparators* on a sorting network on n channels (s_n) ?

what is the minimal number of *layers* on a sorting network on n channels (t_n) ?

п	1	2	3	4	5	6	7	8	9	10
tn	0	1	3	3	5	5	6	6	7	10 7
		n	11	12	13		14	15	16	17
		tn	8	8	9		9	9	9	17 10 9

upper bounds obtained by concrete examples (1960s)

- Iower bounds obtained by mathematical arguments
- huge number of nets

upper bounds obtained by concrete examples (1960s)
lower bounds obtained by mathematical arguments
huge number of nets

parberry 1991

- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)

upper bounds obtained by concrete examples (1960s)
lower bounds obtained by mathematical arguments
huge number of nets

parberry 1991

- exploration of symmetries ~> fixed first layer
- exhaustive search (200 hours of computation)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

bundala & závodný 2013

- reduced set of two-layer prefixes
- intensive sat-solving

upper bounds obtained by concrete examples (1960s)
 lower bounds obtained by mathematical arguments
 huge number of nets
 parberry 1991 exploration of symmetries → fixed first layer

exhaustive search (200 hours of computation)

bundala & závodný 2013

reduced set of two-layer prefixes

intensive sat-solving

however...

- these techniques do not scale for t₁₇
 sat-solvers cannot handle two-layer prefixes
 - too many possibilities for third layer

our proposal

main idea

study the properties of the last layers of sorting networks

- (surprisingly) never done before
- very different problem
- significant drop on sat-solving times
- maybe can handle n = 17 (experiment running...)

outline

(日)、

sorting networks in a nutsheli

properties of the last two layers

> re-adding redundancy

conclusions & future work

redundancy

comparator

```
redundant let C; (i, j); C' be a comparator network
              the comparator (i, j) is redundant if x_i \leq x_i for all
              sequences x_1 \dots x_n \in \text{outputs}(C)
```

lemma if D and D' only differ in redundant comparators, then D is a sorting network iff D' is a sorting network

redundancy

redundant comparator	let C ; (i, j) ; C' be a comparator network the comparator (i, j) is <i>redundant</i> if $x_i \le x_j$ for all sequences $x_1 \dots x_n \in \text{outputs}(C)$
lemma	if D and D' only differ in redundant comparators, then D is a sorting network iff D' is a sorting network
goal	restrict the search space by disallowing redundant comparators
problem	redundancy is a semantic property → not easily encodable in sat

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

the last layer

lemma

all comparators in the last layer of a non-redundant sorting network are of the form (i, i + 1)

$the \ last \ layer$

lemma all comparators in the last layer of a non-redundant sorting network are of the form (i, i + 1)

theorem there are $f_{n+1} - 1$ possible last layers in an *n*-channel sorting network with no redundancy

fibonacci sequence

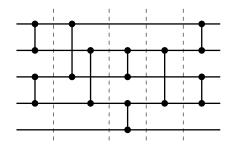
$$f_1 = f_2 = 1$$
, $f_{n+2} = f_{n+1} + f_n$

 \rightsquigarrow this reduces the number of possible last layers on 17 channels from 211,799,312 to just 2,583

k-block a *k*-block in a sorting network is a set of channels that are connected after layer *k*

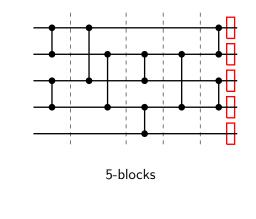
k-block

a k-block in a sorting network is a set of channels that are connected after layer k



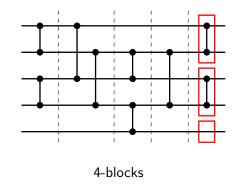
k-block

a k-block in a sorting network is a set of channels that are connected after layer k



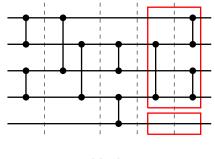
k-block

a k-block in a sorting network is a set of channels that are connected after layer k



k-block

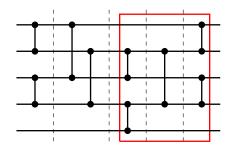
a k-block in a sorting network is a set of channels that are connected after layer k



3-blocks

k-block

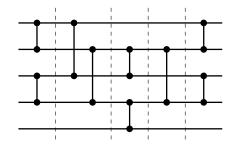
a k-block in a sorting network is a set of channels that are connected after layer k



2-blocks

k-block

a k-block in a sorting network is a set of channels that are connected after layer k



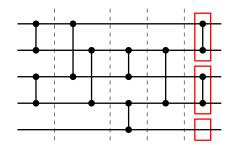
lemma

for every input $\bar{x} \in \{0,1\}^n$, there is at most one k-block that receives both 0s and 1s as inputs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

k-block

a k-block in a sorting network is a set of channels that are connected after layer k



4-blocks

lemma

for every input $\bar{x} \in \{0,1\}^n$, there is at most one k-block that receives both 0s and 1s as inputs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

theorem

every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

corollary restrictions on the last two layers

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

corollary restrictions on the last two layers

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

corollary restrictions on the last two layers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

corollary restrictions on the last two layers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

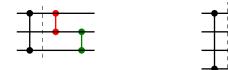
corollary restrictions on the last two layers

this substantially reduces the number of possibilities for the two last layers

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

theorem every comparator at layer *k* of a non-redundant sorting network connects adjacent *k*-blocks

corollary restrictions on the last two layers



this substantially reduces the number of possibilities for the two last layers

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

... but it is not enough

outline

(日)、(四)、(E)、(E)、(E)

sorting networks in a nutsheli

properties of the last two layers

> re-adding redundancy

conclusions & future work

new idea we can reduce the search state even more by *adding* redundant comparators!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

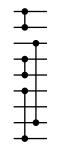
- *new idea* we can reduce the search state even more by *adding* redundant comparators!
 - *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

new idea we can reduce the search state even more by *adding* redundant comparators!

- *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels

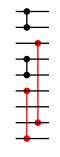
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



new idea we can reduce the search state even more by *adding* redundant comparators!

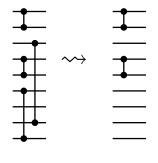
- *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



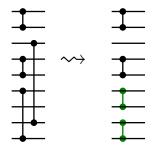
new idea we can reduce the search state even more by *adding* redundant comparators!

- *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels



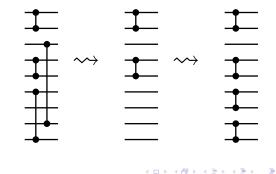
new idea we can reduce the search state even more by *adding* redundant comparators!

- *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels



new idea we can reduce the search state even more by *adding* redundant comparators!

- *llnf* a sorting network is in *last layer normal form* if
 - its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels



some more numerology

llnf a sorting network is in *last layer normal form* if

- its last layer only contains comparators between adjacent channels
 - its last layer does not contain adjacent unused channels

some more numerology

llnf a sorting network is in *last layer normal form* if

 its last layer only contains comparators between adjacent channels

its last layer does not contain adjacent unused channels

theorem there are p_{n+5} last layers in llnf on *n* channels

padovan sequence

$$p_0 = 1, \ p_1 = p_2 = 0, \ p_{n+3} = p_{n+1} + p_n$$

some more numerology

llnf	a sorting network is in <i>last layer normal form</i> if					
•	 its last layer only contains comparators between adjacent channels 					
-	its last layer does not contain adjacent unused channels					
theorem	there are p_{n+5} last layers in llnf on n channels					
padovan sequence	$p_0 = 1, \ p_1 = p_2 = 0, \ p_{n+3} = p_{n+1} + p_n$					
e cy acriec	\sim this further reduces the number of possible last layers					

on 17 channels from 2,583 to only 86

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

generalization we can apply the same reasoning to previous layers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

generalization

we can apply the same reasoning to previous layers

lemma

if i < j are two channels unused in layer k of a sorting network belonging to different blocks, then the comparator (i, j) in layer k is redundant

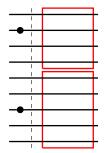
generalization

lemma

we can apply the same reasoning to previous layers

if i < j are two channels unused in layer k of a sorting network belonging to different blocks, then the comparator (i, j) in layer k is redundant

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

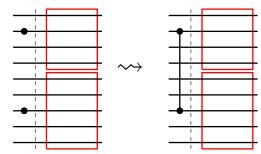


generalization

lemma

we can apply the same reasoning to previous layers

if i < j are two channels unused in layer k of a sorting network belonging to different blocks, then the comparator (i, j) in layer k is redundant



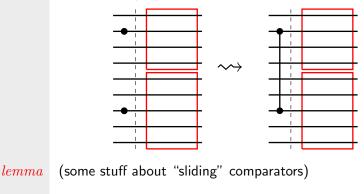
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

generalization

lemma

we can apply the same reasoning to previous layers

if i < j are two channels unused in layer k of a sorting network belonging to different blocks, then the comparator (i, j) in layer k is redundant



co-saturation

we can characterize the networks resulting from applying these transformations to the two last layers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

co-saturation

we can characterize the networks resulting from applying these transformations to the two last layers

co-saturation theorem if there is a sorting network on n channels, then there is a co-saturated sorting network on n channels with the same depth

co-saturation

co-saturation theorem we can characterize the networks resulting from applying these transformations to the two last layers

if there is a sorting network on n channels, then there is a co-saturated sorting network on n channels with the same depth

 \rightsquigarrow for n = 17, there are only 45,664 possibilities for the last two layers of a co-saturated sorting network

practical impact

the good news we can encode co-saturation in sat

			unrestricted last two layers				
			slowest instance			total	
	n	#cases	#clauses	# vars	time	time	
	15	262	278,312	18,217	754.74	130,551.42	
	16	211	453,810	27,007	1,779.14	156,883.21	

		co-saturated last two layers			
		slowest instance			total
n	#cases	#clauses	#vars	time	time
15	262	335,823	25,209	148.35	19,029.26
16	211	314,921	22,901	300.07	24,604.53

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

sorting networks in a nutsheli

properties of the last two layers

> re-adding redundancy

conclusions & future work

results

- 6× speedup on optimal depth problem
- similar techniques give 4× speedup on optimal size problem
- can find 10-layer sorting network on 17 channels in one hour

• exact value of t_{17} being computed as we speak

thank you!