
sorting networks
the end game
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lower bounds obtained by mathematical arguments
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exhaustive search (200 hours of computation)
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reduced set of two-layer prefixes

intensive sat-solving

however. . . these techniques do not scale for t17

sat-solvers cannot handle two-layer prefixes

too many possibilities for third layer
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redundancy

redundant
comparator

let C ; (i , j);C ′ be a comparator network
the comparator (i , j) is redundant if xi ≤ xj for all
sequences x1 . . . xn ∈ outputs(C )

lemma if D and D ′ only differ in redundant comparators,
then D is a sorting network iff D ′ is a sorting network

goal restrict the search space by disallowing redundant
comparators

problem redundancy is a semantic property
 not easily encodable in sat
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lemma all comparators in the last layer of a non-redundant
sorting network are of the form (i , i + 1)

theorem there are fn+1 − 1 possible last layers in an n-channel
sorting network with no redundancy

fibonacci
sequence

f1 = f2 = 1, fn+2 = fn+1 + fn

 this reduces the number of possible last layers on 17
channels from 211,799,312 to just 2,583
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new idea we can reduce the search state even more by adding
redundant comparators!

llnf a sorting network is in last layer normal form if

its last layer only contains comparators between
adjacent channels

its last layer does not contain adjacent unused channels
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 this further reduces the number of possible last layers
on 17 channels from 2,583 to only 86
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network belonging to different k-blocks, then the
comparator (i , j) in layer k is redundant
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co-saturation we can characterize the networks resulting from applying
these transformations to the two last layers

co-saturation
theorem

if there is a sorting network on n channels, then there is
a co-saturated sorting network on n channels with the
same depth

 for n = 17, there are only 45,664 possibilities for the
last two layers of a co-saturated sorting network
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practical impact

the good news we can encode co-saturation in sat

unrestricted last two layers
slowest instance total

n #cases #clauses #vars time time

15 262 278,312 18,217 754.74 130,551.42
16 211 453,810 27,007 1,779.14 156,883.21

co-saturated last two layers
slowest instance total

n #cases #clauses #vars time time

15 262 335,823 25,209 148.35 19,029.26
16 211 314,921 22,901 300.07 24,604.53
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results

necessary conditions on last two layers
(was: sufficient conditions on first two layers)

co-saturation

6× speedup on optimal depth problem

similar techniques give 4× speedup on optimal size
problem

can find 10-layer sorting network on 17 channels in one
hour

key ingredient in computing exact value of t17
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