sorting networks the end game
luís cruz-filipe ${ }^{1} \quad$ michael codish 2
peter schneider-kamp ${ }^{1}$
${ }^{1}$ department of mathematics and computer science university of southern denmark
${ }^{2}$ department of computer science ben-gurion university of the negev, israel
lata 2015, nice
march 5th, 2015

outline

sorting
 networks in a
 nutshell
 the last two layers
 re-adding redundancy

conclusions 8
future work:
a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

size this net has 5 channels and 9 comparators
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators some of the comparisons may be performed in parallel
a sorting network

size this net has 5 channels and 9 comparators
depth this net has 5 layers

a sorting network

size this net has 5 channels and 9 comparators
depth this net has 5 layers
more info see d.e. knuth, the art of computer programming, vol. 3

the optimization problems

the optimal size problem
the optimal depth problem
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

the optimization problems

the optimal size problem
the optimal depth problem
knuth 1973
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
t_{n}	0	1	3	3	5	5	6	6	7	7
									6	6
		n	11	12	13	14	15	16	17	
		8	8	9	9	9	9	11		
		t_{n}	6	6	6	6	6	6	6	

the optimization problems

the optimal size problem
the optimal depth problem
parberry 1991
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
t_{n}	0	1	3	3	5	5	6	6	$\mathbf{7}$	$\mathbf{7}$
		n	11	12	13	14	15	16	17	
		t_{n}	8	8	9	9	9	9	11	
			$\mathbf{7}$							

the optimization problems

the optimal size problem
the optimal depth problem
bundala \mathcal{E} závodný 2013
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
t_{n}	0	1	3	3	5	5	6	6	7	7

n	11	12	13	14	15	16	17
t_{n}	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	11 $\mathbf{9}$

the optimization problems

the optimal size problem
the optimal depth problem
ehlers 8 müller 2014
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
t_{n}	0	1	3	3	5	5	6	6	7	7
		n	11	12	13		14	15	16	17
		t_{n}	8	8	9		9	9	9	10 9

the optimization problems

the optimal size problem
the optimal depth problem
ehlers $\underbrace{8}$ müller 2015
what is the minimal number of comparators on a sorting network on n channels $\left(s_{n}\right)$?
what is the minimal number of layers on a sorting network on n channels $\left(t_{n}\right)$?

n	1	2	3	4	5	6	7	8	9	10
t_{n}	0	1	3	3	5	5	6	6	7	7
		n	11	12	13	14	15	16	17	
	n		12	8	9	9	9	9	$\mathbf{1 0}$	

- upper bounds obtained by concrete examples (1960s)
- lower bounds obtained by mathematical arguments
- huge number of nets

an exponential explosion

- upper bounds obtained by concrete examples (1960s)
- lower bounds obtained by mathematical arguments
- huge number of nets
parberry 1991
- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)

an exponential explosion

- upper bounds obtained by concrete examples (1960s)
- lower bounds obtained by mathematical arguments
- huge number of nets
parberry 1991
- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
bundala ${ }^{8}$
závodný 2013
reduced set of two-layer prefixes
- intensive sat-solving

an exponential explosion

- upper bounds obtained by concrete examples (1960s)
- lower bounds obtained by mathematical arguments
- huge number of nets
parberry 1991
- exploration of symmetries \rightsquigarrow fixed first layer
- exhaustive search (200 hours of computation)
bundala ${ }^{8}$ závodný 2013
- reduced set of two-layer prefixes
- intensive sat-solving
however... these techniques do not scale for t_{17}
- sat-solvers cannot handle two-layer prefixes
- too many possibilities for third layer
inspirational sources

inspirational sources

main idea

study the properties of the last layers of sorting networks

main idea
study the properties of the last layers of sorting networks
- (surprisingly) never done before
- very different problem

outline

sorting

netuorks in a nutshell
the last two
layers

re-adding redundancy

conclusions \S
future work
redundant let $C ;(i, j) ; C^{\prime}$ be a comparator network
comparator the comparator (i, j) is redundant if $x_{i} \leq x_{j}$ for all sequences $x_{1} \ldots x_{n} \in$ outputs (C)
lemma if D and D^{\prime} only differ in redundant comparators, then D is a sorting network iff D^{\prime} is a sorting network

redundancy

redundant let $C ;(i, j) ; C^{\prime}$ be a comparator network
comparator the comparator (i, j) is redundant if $x_{i} \leq x_{j}$ for all sequences $x_{1} \ldots x_{n} \in$ outputs (C)
lemma if D and D^{\prime} only differ in redundant comparators, then D is a sorting network iff D^{\prime} is a sorting network
goal restrict the search space by disallowing redundant comparators
problem redundancy is a semantic property
\rightsquigarrow not easily encodable in sat
the last layer
lemma all comparators in the last layer of a non-redundant sorting network are of the form $(i, i+1)$

the last layer

lemma
all comparators in the last layer of a non-redundant sorting network are of the form $(i, i+1)$
theorem there are $f_{n+1}-1$ possible last layers in an n-channel sorting network with no redundancy
fibonacci $f_{1}=f_{2}=1, f_{n+2}=f_{n+1}+f_{n}$
sequence
\rightsquigarrow this reduces the number of possible last layers on 17 channels from 211,799,312 to just 2,583
blocks $i / i i$
k-block a k-block in a sorting network is a set of channels that are connected after layer k
blocks i/ii
k-block a k-block in a sorting network is a set of channels that are connected after layer k

blocks i/ii
a k-block in a sorting network is a set of channels that are connected after layer k

5-blocks
blocks i/ii
k-block
a k-block in a sorting network is a set of channels that are connected after layer k

4-blocks
blocks i/ii
a k-block in a sorting network is a set of channels that are connected after layer k

3-blocks
blocks i/ii
a k-block in a sorting network is a set of channels that are connected after layer k

2-blocks

blocks i/ii

k-block
a k-block in a sorting network is a set of channels that are connected after layer k

lemma for every input $\bar{x} \in\{0,1\}^{n}$, there is at most one k-block that receives both 0 s and 1 s as inputs

blocks i/ii

k-block
a k-block in a sorting network is a set of channels that are connected after layer k

4-blocks
lemma for every input $\bar{x} \in\{0,1\}^{n}$, there is at most one k-block that receives both 0 s and 1 s as inputs

blocks ii/ii

theorem every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks

blocks ii/ii

theorem every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks
corollary restrictions on the last two layers

blocks ii/ii

theorem every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks
corollary restrictions on the last two layers

blocks ii/ii

theorem
every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks
corollary restrictions on the last two layers

blocks ii/ii

theorem
every comparator at layer k of a non-redundant sorting network connects adjacent k-blocks
corollary restrictions on the last two layers

blocks ii/ii

restrictions on the last two layers

this substantially reduces the number of possibilities for the two last layers

blocks ii/ii

restrictions on the last two layers

this substantially reduces the number of possibilities for the two last layers
. . . but it is not enough

outline

sorting
networks in a nutshell
the last two layers
re-adding redundancy
conclusions $\&$
future work

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

revisiting the last layer

new idea we can reduce the search state even more by adding redundant comparators!
llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

some more numerology

llnf a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels

some more numerology

$\ln f$
a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels
theorem

$$
p_{0}=1, p_{1}=p_{2}=0, p_{n+3}=p_{n+1}+p_{n}
$$ there are p_{n+5} last layers in Ilnf on n channels

some more numerology

a sorting network is in last layer normal form if

- its last layer only contains comparators between adjacent channels
- its last layer does not contain adjacent unused channels
theorem there are p_{n+5} last layers in Inf on n channels
$p_{0}=1, p_{1}=p_{2}=0, p_{n+3}=p_{n+1}+p_{n}$
sequence
\rightsquigarrow this further reduces the number of possible last layers on 17 channels from 2,583 to only 86

co-saturation $i / i i$

generalization
we can apply the same reasoning to previous layers

co-saturation $i / i i$

generalization
lemma if $i<j$ are two channels unused in layer k of a sorting network belonging to different k-blocks, then the comparator (i, j) in layer k is redundant

co-saturation $i / i i$

generalization
lemma if $i<j$ are two channels unused in layer k of a sorting network belonging to different k-blocks, then the comparator (i, j) in layer k is redundant

co-saturation $i / i i$

generalization
lemma if $i<j$ are two channels unused in layer k of a sorting network belonging to different k-blocks, then the comparator (i, j) in layer k is redundant

co-saturation $i / i i$

generalization
lemma if $i<j$ are two channels unused in layer k of a sorting network belonging to different k-blocks, then the comparator (i, j) in layer k is redundant

lemma (some stuff about "sliding" comparators)
co-saturation ii/ii
co-saturation
we can characterize the networks resulting from applying these transformations to the two last layers

co-saturation $i i / i i$

co-saturation
co-saturation theorem
we can characterize the networks resulting from applying these transformations to the two last layers
if there is a sorting network on n channels, then there is a co-saturated sorting network on n channels with the same depth

co-saturation ii/ii

co-saturation
co-saturation theorem
we can characterize the networks resulting from applying these transformations to the two last layers
if there is a sorting network on n channels, then there is a co-saturated sorting network on n channels with the same depth
\rightsquigarrow for $n=17$, there are only 45,664 possibilities for the last two layers of a co-saturated sorting network

practical impact

the good news we can encode co-saturation in sat

		unrestricted last two layers			
		slowest instance			total time
n	\#cases	\#clauses	\#vars	time	timen
15	262	278,312	18,217	754.74	$\mathbf{1 3 0 , 5 5 1 . 4 2}$
16	211	453,810	27,007	$1,779.14$	$\mathbf{1 5 6 , 8 8 3 . 2 1}$

		co-saturated last two layers			
		slowest instance			total
n	\#cases	\#clauses	\#vars	time	time
15	262	335,823	25,209	148.35	$\mathbf{1 9 , 0 2 9 . 2 6}$
16	211	314,921	22,901	300.07	$\mathbf{2 4 , 6 0 4 . 5 3}$

sorting

networks in a

 nutshell the last two layersre-adding redundancy
conclusions \mathcal{G}
future work

results

- necessary conditions on last two layers (was: sufficient conditions on first two layers)
- co-saturation
- $6 \times$ speedup on optimal depth problem
- similar techniques give $4 \times$ speedup on optimal size problem
- can find 10 -layer sorting network on 17 channels in one hour
- key ingredient in computing exact value of t_{17}

