advances in sorting networks

luís cruz-filipe

(joint work with michael codish², michael frank² and peter schneider-kamp¹)

¹department of mathematics and computer science university of southern denmark

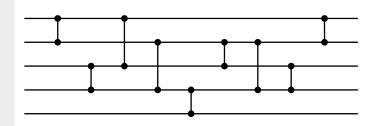
²department of computer science ben-gurion university of the negev, israel

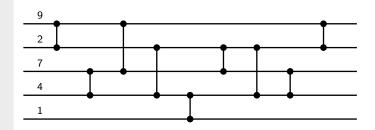
radboud university april 28th, 2015

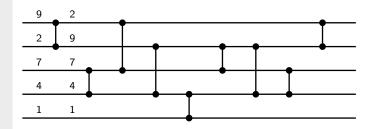
outline

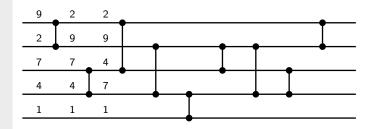
(日) (個) (E) (E) (E)

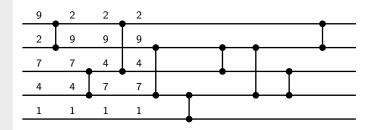
sorting networks in a nutshell

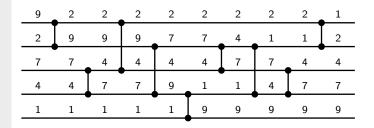






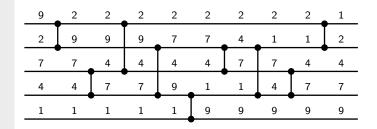






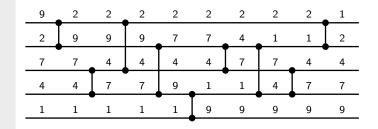
・ロト ・聞ト ・ヨト ・ヨト

æ.



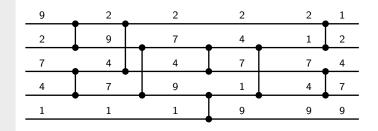
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 *channels* and 9 *comparators*



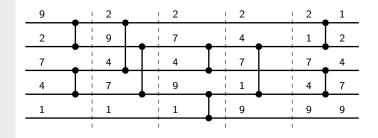
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



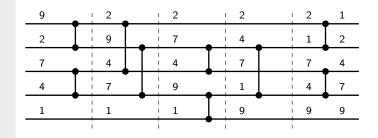
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



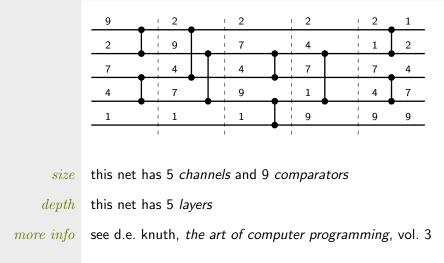
size this net has 5 *channels* and 9 *comparators* some of the comparisons may be performed in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

size this net has 5 channels and 9 comparatorsdepth this net has 5 layers



outline

・ロト ・ 一 ト ・ モト ・ モト

æ

sorting networks in a nutsheli

a bit of history

why do we care?

conquering s

meanwhile, on the the depth front...

conclusions & future work

the optimization problems

the optimal size problem

the optimal depth problem what is the minimal number of *comparators* in a sorting network on n channels (s_n) ?

what is the minimal number of *layers* in a sorting network on *n* channels (t_n) ?

the optimization problems

the optimal size problem

the optimal depth problem

knuth 1973

what is the minimal number of *comparators* in a sorting network on n channels (s_n) ?

what is the minimal number of *layers* in a sorting network on n channels (t_n) ?

п	1	2	3	4	5	6	7	8	9	10
Sn	0	1	3	5	٥	12	16	19	25	29
									23	27
+	0	1	3	3	5	5	6	6	7 6	7
۲n		1	5	5	5	5	0	0	6	6
			11	12		3	14	15	16	17
		s _n	35 31	39	45	5	51	56	60	73
								47	51	56
		+	8 7	8	9		9	9	9	11
		Ln	7	7	7		7	7	7	7

optimal depth

knuth 1973

 t_n : minimal number of steps to sort n inputs

п	8	9	10	11	12	13	14	15	16	17
+	6	7	7	8	8	9	9	9	9	11
ι _n	0	6	6	7	7	7	7	7	7	11 7

upper bounds obtained by concrete examples (1960s)
lower bounds obtained by mathematical arguments
exhaustive analysis of space state

huge number of networks

optimal depth parberry 1991 t_n : minimal number of *steps* to sort *n* inputs

exploration of symmetries ~> fixed first layer
 exhaustive search (200 hours of computation)

optimal depth

parberry 1991

 t_n : minimal number of *steps* to sort *n* inputs

exploration of symmetries → fixed first layer exhaustive search (200 hours of computation)

update (2015) now takes only 12 seconds

still does not finish for n = 11

optimal depth

bundala & závodný 2013 t_n : minimal number of steps to sort n inputs

	п	8	9	10	11	12	13	14	15	16	17
-	tn	6	7	7	8	8	9	9	9	9	11 9

reduced set of two-layer prefixes

intensive sat-solving

optimal depth

bundala & závodný 2013 t_n : minimal number of *steps* to sort *n* inputs

n	8	9	10	11	12	13	14	15	16	17
+	6	7	7	8	8	Q	9	Q	Q	11
۲n		'	'	U	0	5	5	5	5	9

- reduced set of two-layer prefixes
- intensive sat-solving
- prefixes very expensive to compute
- cannot handle n = 14 directly

optimal depth ehlers & müller 2014

optimal depth t_n : minimal number of *steps* to sort *n* inputs

	n	8	9	10	11	12	13	14	15	16	17
-	tn	6	7	7	8	8	9	9	9	9	10 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

heuristics to reduce search space

intensive sat-solving

optimal depth ehlers & müller 2015 t_n : minimal number of *steps* to sort *n* inputs

п	8	9	10	11	12	13	14	15	16	17
tn	6	7	7	8	8	9	9	9	9	10

- reduced set of two-layer prefixes*
- constraints on last layers*
- iterative sat-solving
- optimal arrangement of prefixes (*results from yours truly)

the optimal size problem

optimal size

knuth 1973 n

 s_n : minimal number of *comparisons* to sort n inputs

n	1	2	3	4	5	6	7	8	9	10	
~	0	1	2	F	0	10	16	10	25	29	
5 _n	0	T	3	5	9	12	10	19	23	27	
			11 35 31								
		6	35	39	45	5	51	56	60	73	
		S _n	31	35	39	9	43	47	51	56	

values for $n \leq 4$ from information theory
values for n = 5 and n = 7 by exhaustive case analysis *knuth* $s_{n+1} \geq s_n + 3$ \rightsquigarrow values for n = 6, 8van voorhis $s_{n+1} \geq s_n + \lg(n)$ \rightsquigarrow other lower bounds

the optimal size problem

yours truly 2014

optimal size s_n : minimal number of *comparisons* to sort *n* inputs

n	1	2	3	4	5	6	7	8	9	10
s _n	0	1	3	5	9	12	16	19	25	29
		n	11	12	13	3	14	15	16	17
		s _n	35 33	39 37	45 41		51 45	56 49	60 53	17 73 58

- generate-and-prune algorithm
- intensive parallel computing
 - ~ 16 years of cpu time to compute s_0

the optimal size problem

yours truly 2014

optimal size s_n: minimal number of *comparisons* to sort *n* inputs

п	1	2	3	4	5	6	7	8	9	10
s _n	0	1	3	5	9	12	16	19	25	10 29
		s _n	35 33	39 37	45 41		51 45	56 49	60 53	17 73 58

- generate-and-prune algorithm
- intensive parallel computing
 - ~ 16 years of cpu time to compute s_0
 - first formally verified proof of values for $n \leq 9$ more info at types 2015

outline

・ロン ・四マ ・ヨマ ・ヨマ

æ

sorting networks in a nutshel

a bit of history

why do we care?

conquering s

meanwhile, on the the depth front...

conclusions & future work

sorting networks in practice

	sorting networks in practice
origins	military & airspace research (1950s)
	(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

- oblivious sorting algorithms
- suitable for *hardware* implementations

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

- oblivious sorting algorithms
- suitable for *hardware* implementations

interpretation

the optimization problems

- optimal size = lowest production cost
- optimal size = lowest energy consumption

optimal depth = lowest execution time

case study

the quicksort implementation in the standard c library

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- usual recursive procedure
- reverts to insertion sort for $n \leq 4$

case study

the quicksort implementation in the standard c library usual recursive procedure

reverts to insertion sort for $n \leq 4$

our experiments obtain improvements by

- full unrolling (no cycle)
 - (oblivious) conditional move (no branching)
- compressing (maximum parallelization)

case study

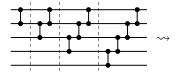
- the quicksort implementation in the standard c library usual recursive procedure
- reverts to insertion sort for $n \leq 4$

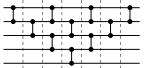
 $our\ experiments$

ts obtain improvements by

- full unrolling (no cycle)
- (oblivious) conditional move (no branching)

compressing (maximum parallelization)





case study

 $\sim \rightarrow$

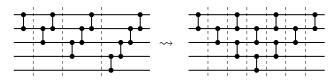
- the quicksort implementation in the standard c library usual recursive procedure
- reverts to insertion sort for $n \leq 4$

our experiments

ts obtain improvements by

- full unrolling (no cycle)
- (oblivious) conditional move (no branching)

compressing (maximum parallelization)



so why not use a better sorting network?

results & directions

so far...

- switching to sorting networks on $n \leq 32$
- up to $1.5 \times$ speedup on large instances
 - using systematic constructions of non-optimal networks

results & directions

so far...

- switching to sorting networks on $n \leq 32$
- up to 1.5× speedup on large instances
- using systematic constructions of non-optimal networks

- n = 9 used for benchmarking and testing
 - size matters
 - depth matters
 - too much parallelism does not help

results & directions

so far...

- switching to sorting networks on $n \leq 32$
- up to 1.5× speedup on large instances
- using systematic constructions of non-optimal networks
- n = 9 used for benchmarking and testing
 - size matters
 - depth matters
 - too much parallelism does not help

mysteries not always working as expected

- we can predict *bad* performance
- we cannot predict good performance
 - need better understanding of cpu parallelism

outline

・ロン ・四マ ・ヨマ ・ヨマ

æ

sorting networks in a nutshel

a bit of history why do we care?

conquering s_9

meanwhile, on the the depth front... conclusions &

$comparator\ networks$

comparator network	a <i>comparator network</i> C on n channels is a sequence of comparators (i, j) with $1 \le i < j \le n$	
output	$C(\vec{x})$ denotes the <i>output</i> of C on $\vec{x} = x_1 \dots x_n$	
binary outputs	the set of binary outputs of C is $outputs(C) = \{C(ec{x}) \mid x \in \{0,1\}^n\}$	
sorting network	a comparator network C is a sorting network if $C(\vec{x})$ sorted for every input \vec{x}	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0/1 lemma C is a sorting network on n channels iff C sorts all (*knuth 1973*) inputs in $\{0, 1\}^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0/1 lemma C is a sorting network on n channels iff C sorts all (knuth 1973) inputs in $\{0, 1\}^n$

> "C is a sorting network on n channels" is co-NP (complete)

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

0/1 lemma (knuth 1973) output lemma (parberry 1991)

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

0/1 lemma (knuth 1973) output lemma (parberry 1991)

proof

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

$$\{0,1\}^n \xrightarrow{C} X \\ \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

0/1 lemma (knuth 1973) output lemma (parberry 1991)

proof

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{N} S$$
$$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

0/1 lemma (knuth 1973) output lemma (parberry 1991)

corollary

C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$

if $outputs(C) \subseteq outputs(C')$ and C'; N is a sorting network, then C; N is a sorting network

there is a minimal-depth sorting network on *n* channels whose first layer contains $\lfloor \frac{n}{2} \rfloor$ comparators

0/1 lemma (knuth 1973)	C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$	
output lemma (parberry 1991)		
corollary	there is a minimal-depth sorting network on <i>n</i> channels whose first layer contains $\lfloor \frac{n}{2} \rfloor$ comparators	
permuted output lemma	if there is a permutation π such that $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ and C' extends to a sorting network, then C extends to a sorting network	

/	C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$		
output lemma (parberry 1991)			
corollary	there is a minimal-depth sorting network on <i>n</i> channels whose first layer contains $\lfloor \frac{n}{2} \rfloor$ comparators		
	if there is a permutation π such that $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ and C' extends to a sorting network, then C extends to a sorting network		
proof	$\{0,1\}^n \xrightarrow{C} X \qquad $		
	$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$		

4日 + 4日 + 4日 + 4日 + 10 - 900

 $0/1 \ lemma$ C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$ (knuth 1973) if outputs(C) \subseteq outputs(C') and C'; N is a sorting output lemma (parberry 1991) network, then C; N is a sorting network corollary there is a minimal-depth sorting network on *n* channels whose first layer contains $\left|\frac{n}{2}\right|$ comparators permuted if there is a permutation π such that $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ and C' extends to a output lemma sorting network, then C extends to a sorting network $\{0,1\}^{n} \xrightarrow{C} X \xrightarrow{\pi^{-1}(N)} \pi^{-1}(S)$ $\downarrow^{\pi}_{\sqrt{\gamma}} \{0,1\}^{n} \xrightarrow{C'} X' \xrightarrow{N} S$ proof

・ロ・・雪・・声・ 声・ うへぐ

0/1 lemma C is a sorting network on n channels iff C sorts all (knuth 1973) inputs in $\{0,1\}^n$ if outputs(C) \subseteq outputs(C') and C'; N is a sorting output lemma (parberry 1991) network, then C; N is a sorting network corollary there is a minimal-depth sorting network on *n* channels whose first layer contains $\left|\frac{n}{2}\right|$ comparators if there is a permutation π such that permuted $\pi(\operatorname{outputs}(C)) \subseteq \operatorname{outputs}(C')$ and C' extends to a output lemma sorting network, then C extends to a sorting network proof $\{0,1\}^n \xrightarrow{C} X \xrightarrow{t(\pi^{-1}(N))} S$ $\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$

0/1 lemma (knuth 1973)	C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^n$		
output lemma (parberry 1991)			
corollary	there is a minimal-depth sorting network on <i>n</i> channels whose first layer contains $\lfloor \frac{n}{2} \rfloor$ comparators		
permuted output lemma	if there is a permutation π such that $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ and C' extends to a sorting network, then C extends to a sorting network		
corollary	there is a minimal-depth sorting network on n channels whose first layer contains $(1, 2)$, $(3, 4)$, $(5, 6)$, &c		

subsumption $C \preceq_{\pi} C'$ if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ $C \preceq C'$ if $C \preceq_{\pi}$ for some permutation π

subsumption $C \preceq_{\pi} C'$ if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ $C \prec C'$ if $C \preceq_{\pi}$ for some permutation π

 \rightsquigarrow subsumption is reflexive and transitive

```
subsumption C \preceq_{\pi} C' if \pi(\text{outputs}(C)) \subseteq \text{outputs}(C')
                     C \prec C' if C \prec_{\pi} for some permutation \pi
            init set R_0^n = \{\emptyset\} and k = 0
         <u>repeat</u> until k > 1 and |R_{k}^{n}| = 1
```

generate N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways prune to R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \prec^{T} step increase k

subsumption $C \preceq_{\pi} C'$ if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ $C \prec C'$ if $C \prec_{\pi}$ for some permutation π *init* set $R_0^n = \{\emptyset\}$ and k = 0<u>repeat</u> until k > 1 and $|R_{k}^{n}| = 1$ generate N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways prune to R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \prec^{T} step increase k

condition $|R_{k}^{n}| = 1$

termination if C is a sorting network on n channels of size k, then

optimizations

- only generate networks when the extra comparator does something
- prove and implement criteria for when subsumption will fail

- restrict the search space of possible permutations
- optimize data structures
- parallelize to 288 nodes

some numerology

I	n	s _n	$\max N_k^n $	$\max R_k^n $	execution time
	3	3	2	2	~0
2	4	5	12	4	~0
ĺ	5	9	65	11	~0
6	5	12	380	53	2 sec
7	7	16	7,438	678	2 min
8	3	19	253,243	16,095	6 hours
Ç	9	25	18,420,674	914,444	16 years

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

some numerology

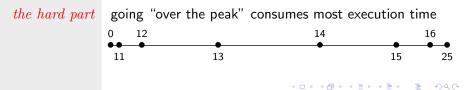
n	s _n	$\max N_k^n $	$\max R_k^n $	execution time
3	3	2	2	\sim 0
4	5	12	4	${\sim}0$
5	9	65	11	${\sim}0$
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	18,420,674	914,444	16 years

parallel runtime for n = 9: 3 weeks

some numerology

n	s _n	$\max N_k^n $	$\max R_k^n $	execution time
3	3	2	2	~0
4	5	12	4	\sim 0
5	9	65	11	\sim 0
6	12	380	53	2 sec
7	16	7,438	678	2 min
8	19	253,243	16,095	6 hours
9	25	18,420,674	914,444	16 years

parallel runtime for n = 9: 3 weeks



why should we trust this result?

de bruijn criterium non-trivial "trusted code" kept to a minimum: subsumption check

manual verification of kernel (12 lines of prolog code)

- very simple structure of remaining code
- optimizations are safe!

why should we trust this result?

de bruijn criterium non-trivial "trusted code" kept to a minimum: subsumption check

manual verification of kernel (12 lines of prolog code)

- very simple structure of remaining code
- optimizations are safe!

grounds for skepticism

still, humans make mistakes...

why should we trust this result?

de bruijn criterium non-trivial "trusted code" kept to a minimum: subsumption check

- manual verification of kernel (12 lines of prolog code)
 - very simple structure of remaining code
 - optimizations are safe!

grounds for skepticism

still, humans make mistakes...

independent verifications subsequent validations of the code using logged witnesses for successful pruning steps

- sat-based verification (uses R_{14}^9)
- independent (skeptic) java verifier
- coq checker using an offline oracle

outline

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ

sorting networks in a nutshel

a bit of history why do we care?

conquering s

meanwhile, on the the depth front...

conclusions & future work

subsumption i/ii

equivalence if C and C' can be obtained from each other by renaming of channels, then $C \preceq C'$ and $C' \preceq C$

bundala & závodný, 2013 strategy

- generate all two-layer prefixes
- represent them as graphs
 - use graph isomorphism tool to select representatives

but...

- incomplete method (due to encoding)
- does not scale beyond n = 13

subsumption i/ii

equivalence if C and C' can be obtained from each other by renaming of channels, then $C \preceq C'$ and $C' \preceq C$

bundala & závodný, 2013 strategy

- generate all two-layer prefixes
- represent them as graphs
 - use graph isomorphism tool to select representatives

but...

- incomplete method (due to encoding)
- does not scale beyond n = 13

yours truly symbolic representation based on paths

- bipartite graphs (easy)
- generate representatives: regular grammar + simple test

subsumption ii/ii

saturation

C is not saturated if C; $(i,j) \leq C$ for some i,j(new network still has depth 2) \rightarrow not true in general, see knuth

$subsumption \ ii/ii$

saturation

C is not saturated if C; $(i,j) \leq C$ for some i,j(new network still has depth 2)

strategy bundala & závodný, 2013

- syntactic criteria necessary for saturation
- generate only saturated two-layer prefixes

$subsumption \ ii/ii$

C is not saturated if C; $(i, j) \preceq C$ for some i, jsaturation (new network still has depth 2) strategy bundala & závodný, 2013 syntactic criteria necessary for saturation generate only saturated two-layer prefixes full syntactic characterization of saturation yours truly can encode in upgraded grammar eliminates need for subsumption

subsumption ii/ii

C is not saturated if C; $(i, j) \preceq C$ for some i, jsaturation (new network still has depth 2) bundala & závodný, 2013 strategy syntactic criteria necessary for saturation generate only saturated two-layer prefixes full syntactic characterization of saturation yours truly can encode in upgraded grammar eliminates need for subsumption reflection observation by knuth to b&z also encodable in grammar not captured by subsumption

last-layer constraints

new insight

necessary conditions on shape of comparators

- insight on semantics of sorting networks
- significant reduction of search space
- on 17 channels:
 - 2583 last layers, was: 211 million

last-layer constraints

new insight

necessary conditions on shape of comparators insight on semantics of sorting networks significant reduction of search space

$dual \ notions$

- add redundancy where possible
- co-saturation (syntactic criterium)
- on 17 channels:
 - 89 last layers, was: 211 million
 - \sim 40000 possibilities for two last layers, was: 4 $imes 10^{16}$

last-layer constraints

new insight

necessary conditions on shape of comparators insight on semantics of sorting networks significant reduction of search space

$dual \ notions$

- add redundancy where possible
- co-saturation (syntactic criterium)

trivia

- fibonacci and padovan numbers
- can re-use regular grammar (but pointless)

- very sat-encodable
- partly applies to optimal size

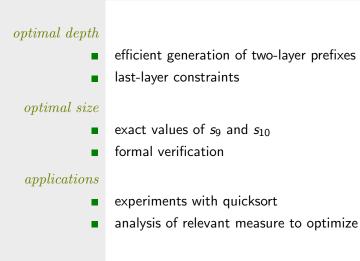
outline

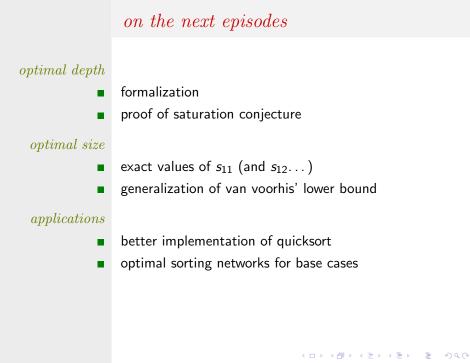
・ロト ・ 一下・ ・ モト・ ・ モト・

æ

conclusions \mathcal{E} future work

results





thank you!