
advances in sorting networks

lúıs cruz-filipe

(joint work with michael codish2, michael frank2 and
peter schneider-kamp1)

1department of mathematics and computer science
university of southern denmark

2department of computer science
ben-gurion university of the negev, israel

radboud university
april 28th, 2015

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

a sorting network

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

4

7

9

2

1

7

4

9

2

1

7

4

9

2

1

9

4

7

2

9

1

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

some of the comparisons may be performed in parallel

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

depth this net has 5 layers

more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

1

4

7

2

9

1

7

4

9

2

1

9

4

7

2

9

1

7

4

2

9

4

7

1

2

9

7

4

2

1

size this net has 5 channels and 9 comparators

depth this net has 5 layers

more info see d.e. knuth, the art of computer programming, vol. 3

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

the optimization problems

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers in a sorting
network on n channels (tn)?

knuth 1973 n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

tn 0 1 3 3 5 5 6 6
7 7
6 6

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

tn
8 8 9 9 9 9 11
7 7 7 7 7 7 7

the optimization problems

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers in a sorting
network on n channels (tn)?

knuth 1973 n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

tn 0 1 3 3 5 5 6 6
7 7
6 6

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

tn
8 8 9 9 9 9 11
7 7 7 7 7 7 7

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

knuth 1973 n 8 9 10 11 12 13 14 15 16 17

tn 6
7 7 8 8 9 9 9 9 11
6 6 7 7 7 7 7 7 7

upper bounds obtained by concrete examples (1960s)

lower bounds obtained by mathematical arguments

exhaustive analysis of space state

huge number of networks

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

parberry 1991 n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7
8 8 9 9 9 9 11
7 7 7 7 7 7 7

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

parberry 1991 n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7
8 8 9 9 9 9 11
7 7 7 7 7 7 7

exploration of symmetries fixed first layer

exhaustive search (200 hours of computation)

update (2015) now takes only 12 seconds

still does not finish for n = 11

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

bundala &
závodný 2013

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9
11
9

reduced set of two-layer prefixes

intensive sat-solving

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

bundala &
závodný 2013

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9
11
9

reduced set of two-layer prefixes

intensive sat-solving

prefixes very expensive to compute

cannot handle n = 14 directly

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

ehlers & müller
2014

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9
10
9

heuristics to reduce search space

intensive sat-solving

the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

ehlers & müller
2015

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9 10

reduced set of two-layer prefixes∗

constraints on last layers∗

iterative sat-solving

optimal arrangement of prefixes

(∗results from yours truly)

the optimal size problem

optimal size sn: minimal number of comparisons to sort n inputs

knuth 1973
n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

values for n ≤ 4 from information theory

values for n = 5 and n = 7 by exhaustive case analysis

knuth sn+1 ≥ sn + 3 values for n = 6, 8

van voorhis sn+1 ≥ sn + lg(n) other lower bounds

the optimal size problem

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

the optimal size problem

optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

first formally verified proof of values for n ≤ 9

more info at types 2015

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

oblivious sorting algorithms

suitable for hardware implementations

interpretation the optimization problems

optimal size = lowest production cost

optimal size = lowest energy consumption

optimal depth = lowest execution time

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

oblivious sorting algorithms

suitable for hardware implementations

interpretation the optimization problems

optimal size = lowest production cost

optimal size = lowest energy consumption

optimal depth = lowest execution time

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

oblivious sorting algorithms

suitable for hardware implementations

interpretation the optimization problems

optimal size = lowest production cost

optimal size = lowest energy consumption

optimal depth = lowest execution time

sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

oblivious sorting algorithms

suitable for hardware implementations

interpretation the optimization problems

optimal size = lowest production cost

optimal size = lowest energy consumption

optimal depth = lowest execution time

sorting networks in software

case study the quicksort implementation in the standard c library

usual recursive procedure

reverts to insertion sort for n ≤ 4

our experiments obtain improvements by

full unrolling (no cycle)

(oblivious) conditional move (no branching)

compressing (maximum parallelization)

 so why not use a better sorting network?

sorting networks in software

case study the quicksort implementation in the standard c library

usual recursive procedure

reverts to insertion sort for n ≤ 4

our experiments obtain improvements by

full unrolling (no cycle)

(oblivious) conditional move (no branching)

compressing (maximum parallelization)

 so why not use a better sorting network?

sorting networks in software

case study the quicksort implementation in the standard c library

usual recursive procedure

reverts to insertion sort for n ≤ 4

our experiments obtain improvements by

full unrolling (no cycle)

(oblivious) conditional move (no branching)

compressing (maximum parallelization)

 so why not use a better sorting network?

sorting networks in software

case study the quicksort implementation in the standard c library

usual recursive procedure

reverts to insertion sort for n ≤ 4

our experiments obtain improvements by

full unrolling (no cycle)

(oblivious) conditional move (no branching)

compressing (maximum parallelization)

 so why not use a better sorting network?

results & directions

so far. . .

switching to sorting networks on n ≤ 32

up to 1.5× speedup on large instances

using systematic constructions of non-optimal networks

n = 9 used for benchmarking and testing

size matters

depth matters

too much parallelism does not help

mysteries not always working as expected

we can predict bad performance

we cannot predict good performance

need better understanding of cpu parallelism

results & directions

so far. . .

switching to sorting networks on n ≤ 32

up to 1.5× speedup on large instances

using systematic constructions of non-optimal networks

n = 9 used for benchmarking and testing

size matters

depth matters

too much parallelism does not help

mysteries not always working as expected

we can predict bad performance

we cannot predict good performance

need better understanding of cpu parallelism

results & directions

so far. . .

switching to sorting networks on n ≤ 32

up to 1.5× speedup on large instances

using systematic constructions of non-optimal networks

n = 9 used for benchmarking and testing

size matters

depth matters

too much parallelism does not help

mysteries not always working as expected

we can predict bad performance

we cannot predict good performance

need better understanding of cpu parallelism

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

“C is a sorting network on n channels” is co-NP
(complete)

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

proof {0, 1}n C // X⊆

{0, 1}n C ′ // X ′
N // S

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

proof {0, 1}n C // X
N // S⊆

{0, 1}n C ′ // X ′
N // S

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C)) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C)) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

proof
{0, 1}n C // X

π
��

{0, 1}n C ′ // X ′
N // S

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C)) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

proof
{0, 1}n C // X

π
��

π−1(N) // π−1(S)

{0, 1}n C ′ // X ′
N // S

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C)) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

proof
{0, 1}n C // X

π
��

t(π−1(N))// S

{0, 1}n C ′ // X ′
N // S

two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C)) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains (1, 2), (3, 4), (5, 6), &c

generate-and-prune

subsumption C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

generate-and-prune

subsumption C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

 subsumption is reflexive and transitive

generate-and-prune

subsumption C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

generate-and-prune

subsumption C �π C ′ if π(outputs(C)) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

termination
condition

if C is a sorting network on n channels of size k , then
|Rn

k | = 1

optimizations

only generate networks when the extra comparator does
something

prove and implement criteria for when subsumption will
fail

restrict the search space of possible permutations

optimize data structures

parallelize to 288 nodes

some numerology

n sn max |Nn
k | max |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

some numerology

n sn max |Nn
k | max |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

some numerology

n sn max |Nn
k | max |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25

why should we trust this result?

de bruijn
criterium

non-trivial “trusted code” kept to a minimum:
subsumption check

manual verification of kernel (12 lines of prolog code)

very simple structure of remaining code

optimizations are safe!

grounds for
skepticism

still, humans make mistakes. . .

independent
verifications

subsequent validations of the code using logged
witnesses for successful pruning steps

sat-based verification (uses R9
14)

independent (skeptic) java verifier

coq checker using an offline oracle

why should we trust this result?

de bruijn
criterium

non-trivial “trusted code” kept to a minimum:
subsumption check

manual verification of kernel (12 lines of prolog code)

very simple structure of remaining code

optimizations are safe!

grounds for
skepticism

still, humans make mistakes. . .

independent
verifications

subsequent validations of the code using logged
witnesses for successful pruning steps

sat-based verification (uses R9
14)

independent (skeptic) java verifier

coq checker using an offline oracle

why should we trust this result?

de bruijn
criterium

non-trivial “trusted code” kept to a minimum:
subsumption check

manual verification of kernel (12 lines of prolog code)

very simple structure of remaining code

optimizations are safe!

grounds for
skepticism

still, humans make mistakes. . .

independent
verifications

subsequent validations of the code using logged
witnesses for successful pruning steps

sat-based verification (uses R9
14)

independent (skeptic) java verifier

coq checker using an offline oracle

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

subsumption i/ii

equivalence if C and C ′ can be obtained from each other by
renaming of channels, then C � C ′ and C ′ � C

strategy bundala & závodný, 2013

generate all two-layer prefixes

represent them as graphs

use graph isomorphism tool to select representatives

but. . .

incomplete method (due to encoding)

does not scale beyond n = 13

yours truly symbolic representation based on paths

bipartite graphs (easy)

generate representatives: regular grammar + simple test

subsumption i/ii

equivalence if C and C ′ can be obtained from each other by
renaming of channels, then C � C ′ and C ′ � C

strategy bundala & závodný, 2013

generate all two-layer prefixes

represent them as graphs

use graph isomorphism tool to select representatives

but. . .

incomplete method (due to encoding)

does not scale beyond n = 13

yours truly symbolic representation based on paths

bipartite graphs (easy)

generate representatives: regular grammar + simple test

subsumption ii/ii

saturation C is not saturated if C ; (i , j) � C for some i , j
(new network still has depth 2)

 not true in general, see knuth

strategy bundala & závodný, 2013

syntactic criteria necessary for saturation

generate only saturated two-layer prefixes

yours truly full syntactic characterization of saturation

can encode in upgraded grammar

eliminates need for subsumption

reflection observation by knuth to b&z

also encodable in grammar

not captured by subsumption

subsumption ii/ii

saturation C is not saturated if C ; (i , j) � C for some i , j
(new network still has depth 2)

strategy bundala & závodný, 2013

syntactic criteria necessary for saturation

generate only saturated two-layer prefixes

yours truly full syntactic characterization of saturation

can encode in upgraded grammar

eliminates need for subsumption

reflection observation by knuth to b&z

also encodable in grammar

not captured by subsumption

subsumption ii/ii

saturation C is not saturated if C ; (i , j) � C for some i , j
(new network still has depth 2)

strategy bundala & závodný, 2013

syntactic criteria necessary for saturation

generate only saturated two-layer prefixes

yours truly full syntactic characterization of saturation

can encode in upgraded grammar

eliminates need for subsumption

reflection observation by knuth to b&z

also encodable in grammar

not captured by subsumption

subsumption ii/ii

saturation C is not saturated if C ; (i , j) � C for some i , j
(new network still has depth 2)

strategy bundala & závodný, 2013

syntactic criteria necessary for saturation

generate only saturated two-layer prefixes

yours truly full syntactic characterization of saturation

can encode in upgraded grammar

eliminates need for subsumption

reflection observation by knuth to b&z

also encodable in grammar

not captured by subsumption

last-layer constraints

new insight necessary conditions on shape of comparators

insight on semantics of sorting networks

significant reduction of search space

on 17 channels:

2583 last layers, was: 211 million

dual notions

add redundancy where possible

co-saturation (syntactic criterium)

last-layer constraints

new insight necessary conditions on shape of comparators

insight on semantics of sorting networks

significant reduction of search space

dual notions

add redundancy where possible

co-saturation (syntactic criterium)

on 17 channels:

89 last layers, was: 211 million
∼ 40000 possibilities for two last layers, was: 4× 1016

last-layer constraints

new insight necessary conditions on shape of comparators

insight on semantics of sorting networks

significant reduction of search space

dual notions

add redundancy where possible

co-saturation (syntactic criterium)

trivia

fibonacci and padovan numbers

can re-use regular grammar (but pointless)

very sat-encodable

partly applies to optimal size

outline

sorting
networks in a

nutshell

a bit of history

why do we
care?

conquering s9

meanwhile, on
the the depth

front. . .

conclusions &
future work

results

optimal depth

efficient generation of two-layer prefixes

last-layer constraints

optimal size

exact values of s9 and s10

formal verification

applications

experiments with quicksort

analysis of relevant measure to optimize

on the next episodes

optimal depth

formalization

proof of saturation conjecture

optimal size

exact values of s11 (and s12. . .)

generalization of van voorhis’ lower bound

applications

better implementation of quicksort

optimal sorting networks for base cases

thank you!

	sorting networks in a nutshell
	a bit of history
	why do we care?
	conquering s9
	meanwhile, on the the depth front…
	conclusions & future work

