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the optimization problems

the optimal size
problem

what is the minimal number of comparators in a sorting
network on n channels (sn)?

the optimal
depth problem

what is the minimal number of layers in a sorting
network on n channels (tn)?
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tn 0 1 3 3 5 5 6 6
7 7
6 6

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56
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8 8 9 9 9 9 11
7 7 7 7 7 7 7
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the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

knuth 1973 n 8 9 10 11 12 13 14 15 16 17

tn 6
7 7 8 8 9 9 9 9 11
6 6 7 7 7 7 7 7 7

upper bounds obtained by concrete examples (1960s)

lower bounds obtained by mathematical arguments

exhaustive analysis of space state

huge number of networks
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parberry 1991 n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7
8 8 9 9 9 9 11
7 7 7 7 7 7 7

exploration of symmetries  fixed first layer

exhaustive search (200 hours of computation)

update (2015) now takes only 12 seconds

still does not finish for n = 11
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bundala &
závodný 2013

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9
11
9

reduced set of two-layer prefixes

intensive sat-solving

prefixes very expensive to compute

cannot handle n = 14 directly



the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

ehlers & müller
2014

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9
10
9

heuristics to reduce search space

intensive sat-solving



the optimal depth problem

optimal depth tn: minimal number of steps to sort n inputs

ehlers & müller
2015

n 8 9 10 11 12 13 14 15 16 17

tn 6 7 7 8 8 9 9 9 9 10

reduced set of two-layer prefixes∗

constraints on last layers∗

iterative sat-solving

optimal arrangement of prefixes

(∗results from yours truly)



the optimal size problem

optimal size sn: minimal number of comparisons to sort n inputs

knuth 1973
n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19
25 29
23 27

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
31 35 39 43 47 51 56

values for n ≤ 4 from information theory

values for n = 5 and n = 7 by exhaustive case analysis

knuth sn+1 ≥ sn + 3  values for n = 6, 8

van voorhis sn+1 ≥ sn + lg(n)  other lower bounds
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yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9
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optimal size sn: minimal number of comparisons to sort n inputs

yours truly
2014

n 1 2 3 4 5 6 7 8 9 10

sn 0 1 3 5 9 12 16 19 25 29

n 11 12 13 14 15 16 17

sn
35 39 45 51 56 60 73
33 37 41 45 49 53 58

generate-and-prune algorithm

intensive parallel computing

∼ 16 years of cpu time to compute s9

first formally verified proof of values for n ≤ 9

more info at types 2015
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sorting networks in practice

origins military & airspace research (1950s)

different compared to usual sorting

oblivious sorting algorithms

suitable for hardware implementations

interpretation the optimization problems

optimal size = lowest production cost

optimal size = lowest energy consumption

optimal depth = lowest execution time
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sorting networks in software

case study the quicksort implementation in the standard c library

usual recursive procedure

reverts to insertion sort for n ≤ 4

our experiments obtain improvements by

full unrolling (no cycle)

(oblivious) conditional move (no branching)

compressing (maximum parallelization)

 

 so why not use a better sorting network?
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results & directions

so far. . .

switching to sorting networks on n ≤ 32

up to 1.5× speedup on large instances

using systematic constructions of non-optimal networks

n = 9 used for benchmarking and testing

size matters

depth matters

too much parallelism does not help

mysteries not always working as expected

we can predict bad performance

we cannot predict good performance

need better understanding of cpu parallelism
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comparator networks

comparator
network

a comparator network C on n channels is a sequence of
comparators (i , j) with 1 ≤ i < j ≤ n

output C (~x) denotes the output of C on ~x = x1 . . . xn

binary outputs the set of binary outputs of C is
outputs(C ) = {C (~x) | x ∈ {0, 1}n}

sorting network a comparator network C is a sorting network if C (~x) is
sorted for every input ~x
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two essential results

0/1 lemma
(knuth 1973)

C is a sorting network on n channels iff C sorts all
inputs in {0, 1}n

output lemma
(parberry 1991)

if outputs(C ) ⊆ outputs(C ′) and C ′;N is a sorting
network, then C ;N is a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains

⌊
n
2

⌋
comparators

permuted
output lemma

if there is a permutation π such that
π(outputs(C )) ⊆ outputs(C ′) and C ′ extends to a
sorting network, then C extends to a sorting network

corollary there is a minimal-depth sorting network on n channels
whose first layer contains (1, 2), (3, 4), (5, 6), &c
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generate-and-prune

subsumption C �π C ′ if π(outputs(C )) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

 subsumption is reflexive and transitive
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subsumption C �π C ′ if π(outputs(C )) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k



generate-and-prune

subsumption C �π C ′ if π(outputs(C )) ⊆ outputs(C ′)
C � C ′ if C �π for some permutation π

init set Rn
0 = {∅} and k = 0

repeat until k > 1 and |Rn
k | = 1

generate Nn
k+1 extend each net in Rn

k by one
comparator in all possible ways

prune to Rn
k+1 keep only one element from each

minimal equivalence class w.r.t. �T

step increase k

termination
condition

if C is a sorting network on n channels of size k , then
|Rn

k | = 1



optimizations

only generate networks when the extra comparator does
something

prove and implement criteria for when subsumption will
fail

restrict the search space of possible permutations

optimize data structures

parallelize to 288 nodes



some numerology

n sn max |Nn
k | max |Rn

k | execution time

3 3 2 2 ∼0
4 5 12 4 ∼0
5 9 65 11 ∼0
6 12 380 53 2 sec
7 16 7,438 678 2 min
8 19 253,243 16,095 6 hours
9 25 18,420,674 914,444 16 years

parallel runtime for n = 9: 3 weeks

the hard part going “over the peak” consumes most execution time
0 12 14 16
•• • • • • • •
11 13 15 25
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why should we trust this result?

de bruijn
criterium

non-trivial “trusted code” kept to a minimum:
subsumption check

manual verification of kernel (12 lines of prolog code)

very simple structure of remaining code

optimizations are safe!

grounds for
skepticism

still, humans make mistakes. . .

independent
verifications

subsequent validations of the code using logged
witnesses for successful pruning steps

sat-based verification (uses R9
14)

independent (skeptic) java verifier

coq checker using an offline oracle
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subsumption i/ii

equivalence if C and C ′ can be obtained from each other by
renaming of channels, then C � C ′ and C ′ � C

strategy bundala & závodný, 2013

generate all two-layer prefixes

represent them as graphs

use graph isomorphism tool to select representatives

but. . .

incomplete method (due to encoding)

does not scale beyond n = 13

yours truly symbolic representation based on paths

bipartite graphs (easy)

generate representatives: regular grammar + simple test
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subsumption ii/ii

saturation C is not saturated if C ; (i , j) � C for some i , j
(new network still has depth 2)

 not true in general, see knuth

strategy bundala & závodný, 2013

syntactic criteria necessary for saturation

generate only saturated two-layer prefixes

yours truly full syntactic characterization of saturation

can encode in upgraded grammar

eliminates need for subsumption

reflection observation by knuth to b&z

also encodable in grammar

not captured by subsumption
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last-layer constraints

new insight necessary conditions on shape of comparators

insight on semantics of sorting networks

significant reduction of search space

on 17 channels:

2583 last layers, was: 211 million

dual notions

add redundancy where possible

co-saturation (syntactic criterium)
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significant reduction of search space

dual notions

add redundancy where possible

co-saturation (syntactic criterium)

on 17 channels:

89 last layers, was: 211 million
∼ 40000 possibilities for two last layers, was: 4× 1016



last-layer constraints

new insight necessary conditions on shape of comparators

insight on semantics of sorting networks

significant reduction of search space

dual notions

add redundancy where possible

co-saturation (syntactic criterium)

trivia

fibonacci and padovan numbers

can re-use regular grammar (but pointless)

very sat-encodable

partly applies to optimal size
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results

optimal depth

efficient generation of two-layer prefixes

last-layer constraints

optimal size

exact values of s9 and s10

formal verification

applications

experiments with quicksort

analysis of relevant measure to optimize



on the next episodes

optimal depth

formalization

proof of saturation conjecture

optimal size

exact values of s11 (and s12. . . )

generalization of van voorhis’ lower bound

applications

better implementation of quicksort

optimal sorting networks for base cases



thank you!
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