a formalized checker for size-optimal sorting networks

luís cruz-filipe

(joint work with peter schneider-kamp)

department of mathematics and computer science university of southern denmark

types meeting may 20th, 2015

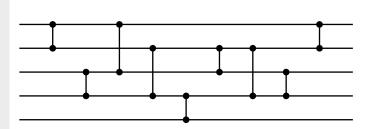
outline

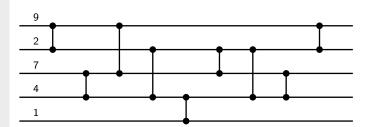
sorting networks in a nutshell

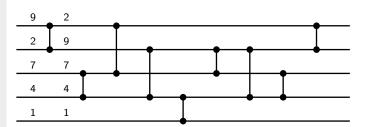
sorting networks, coq style

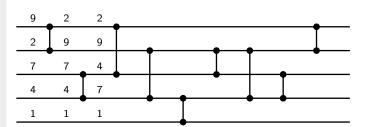
generate-andprune

conclusions & future work









9	2	2	2			
2	9	9	9			
7	7	4	4			
4	4	7	7	,		
1	1	1	1			

9	2	2	2	2	2	2	2	2	1
2	9	9	9	7	7	4	1	1	2
7	7	4	4	4	4	7	7	4	4
4	4	7	7	9	1	1	4	7	7
1	1	1	1	1	9	9	9	9	9

2 9 9 9 7 7 4 1 1 2 7 7 4 4 4 4 7 7 4 4 4 4 7 7 9 1 1 4 7 7 1 1 1 1 1 9 9 9 9 9		9	2	2	2	2	2	2	2	2	1
7 7 4 4 4 4 7 7 4 4 4 4 7 7 9 1 1 4 7 7 1 1 1 1 1 1 9 9 9 9 9 9		2	9	9	9	7	7	4	1	1	2
4 4 7 7 9 1 1 4 7 7	_	7	7	4	4	4	4	7	7	4	4
1 1 1 1 0 0 0 0		4	4	7	7	9	1	1	4	7	7
	_	1	1	1	1	1	9	9	9	9	9

size this net has 5 channels and 9 comparators

9	2	2	2	2	2	2	2	2	1
2	9	9	9	7	7	4	1	1	2
7	7	4	4	4	4	7	7	4	4
4	4	7	7	9	1	1	4	7	7
1	1	1	1	1	9	9	9	9	9

size

this net has 5 channels and 9 comparators

more info see d.e. knuth, *the art of computer programming*, vol. 3

9	2	2	2	2	2	2	2	2	1
2	9	9	9	7	7	4	1	1	2
7	7	4	4	4	4	7	7	4	4
4	4	7	7	9	1	1	4	7	7
1	1	1	1	1	9	9	9	9	9

size

this net has 5 channels and 9 comparators

more info

see d.e. knuth, the art of computer programming, vol. 3

the optimal size problem

what is the minimal number of *comparators* in a sorting network on n channels (s_n) ?

history

optimal size

 s_n : minimal number of comparisons to sort n inputs

knuth 1973

n		1	2	3	4	5	6	7	8	9	10
		^	1	2	_	0	10	16	10	25	29
S_n		U	1	3	5	9	12	10	19	23	27
			n	11	12	13		14	15	16	17
		_	35 31	39	45		51	56	60	73	
			S_n	31	35	39	1	43	47	51	56

- values for $n \le 4$ from information theory
- values for n = 5 and n = 7 by exhaustive case analysis

knuth
$$s_n \geq s_{n-1} + 3$$

$$\rightsquigarrow$$

values for n = 6.8

$$van \ voorhis$$
 $s_n \geq s_{n-1} + \lg(n)$

other lower bounds

history

optimal size s_n : minimal number of comparisons to sort n inputs

yours truly

					-				-	
n	1	2	3	4	5	6	7	8	9	10
Sn	0	1	3	5	9	12	16	19	25	10 29
	'									
		Sn	35	39	45	,	51	56 40	60	73 58
			ാാ	31	41	. '	43	49	23	20

- generate-and-prune algorithm
- intensive parallel computing
- \sim 16 years of cpu time to compute s_9

history

$optimal\ size$

 s_n : minimal number of *comparisons* to sort n inputs

yours truly 2014

					-				-	
n	1	2	3	4	5	6	7	8	9	10
Sn	0	1	3	5	9	12	16	19	25	10 29
										17 73 58
		_	35	39	45	,	51	56	60	73
		Sn	33	37	41		45	49	53	58

- generate-and-prune algorithm
- intensive parallel computing
- \sim 16 years of cpu time to compute s_9
- but how do we know that these results are correct?

outline

sorting networks in a nutshell

sorting networks, coq style

generate-andprune

conclusions & future work

pros and cons

the easy stuff

- (very) constructive theory
- everything is decidable
- many proofs by exhaustive case analysis
- elementary definitions

pros and cons

the easy stuff

- (very) constructive theory
- everything is decidable
- many proofs by exhaustive case analysis
- elementary definitions

main challenges

- all finite domains (channels, inputs, . . .)
- reasoning about permutations (in proofs)
- very informal proofs ("trivial", "exercise", "clearly")

comparator networks

comparator sequence of *comparators* (i, j) with $1 \le i \ne j \le n$ network n is the number of channels.

```
Definition comparator : Set := (prod nat nat).
Definition comp_net : Set := list comparator.
Definition comp_channels (n:nat) (c:comparator) :=
  let (i,j) := c in (i < n) / (j < n) / (i <> j).
Definition channels (n:nat) (C:comp_net) :=
  forall c:comparator, (In c C) -> (comp_channels n c).
```

comparator networks

comparator

sequence of *comparators* (i, j) with $1 \le i \ne j \le n$ *network* n is the number of channels.

```
Definition comparator : Set := (prod nat nat).
Definition comp_net : Set := list comparator.
Definition comp_channels (n:nat) (c:comparator) :=
  let (i,j) := c in (i < n) / (j < n) / (i <> j).
Definition channels (n:nat) (C:comp_net) :=
  forall c:comparator, (In c C) -> (comp_channels n c).
```

intuition

(1,3),(2,4) is a comparator network on 4 channels, but also on 6 channels

comparator networks

comparator sequence of *comparators* (i, j) with $1 \le i \ne j \le n$ network n is the number of channels.

Definition comparator : Set := (prod nat nat).

```
Definition comp_net : Set := list comparator.
Definition comp_channels (n:nat) (c:comparator) :=
  let (i,j) := c in (i < n) / (j < n) / (i <> j).
Definition channels (n:nat) (C:comp_net) :=
  forall c:comparator, (In c C) -> (comp_channels n c).
```

standard i < j for all $(i, j) \in C$

```
Definition comp_standard (n:nat) (c:comparator) :=
  let (i,j) := c in (i < n) / (j < n) / (i < j).
Definition standard (n:nat) (C:comp_net) :=
  forall c:comparator, (In c C) -> (comp_standard n c).
```

0/1 lemma C is a sorting network on n channels iff C sorts all (knuth 1973) inputs in $\{0,1\}^n$

0/1 lemma C is a sorting network on n channels iff C sorts all (*knuth* 1973) inputs in $\{0,1\}^n$

```
Inductive bin_seq : nat -> Set :=
  | empty : bin_seq 0
  | zero : forall n:nat, bin_seq n -> bin_seq (S n)
  | one : forall n:nat, bin_seq n -> bin_seq (S n).
Fixpoint get n (s:bin_seq n) (i:nat) : nat := ...
Fixpoint set n (s:bin_seq n) (i:nat) (x:nat)
             : (bin_seq n) := ...
```

- similar to Vector from the standard library
- definition of sorted (property) and sort (operation)
- induction principles, exhaustive enumeration
- ~ 70 lemmas in total

output $C(\vec{x})$ denotes the *output* of C on $\vec{x} = x_1 \dots x_n$

```
Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n) :=
let (i,j):=c in let x:=(get s i) in let y:=(get s j) in
   match (le_lt_dec x y) with
   | left _ => s
   | right _ => set (set s j x) i y
   end.

Fixpoint full_apply (C:comp_net) n (s:bin_seq n)
   : (bin_seq n) :=
   match C with
   | nil => s
   | cons c C' => full_apply C' _ (apply c s)
   end.
```

output
$$C(\vec{x})$$
 denotes the *output* of C on $\vec{x} = x_1 \dots x_n$

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).

Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n)

binary outputs

outputs(
$$C$$
) = { $C(\vec{x}) | x \in \{0,1\}^n$ }

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n)) := (map (full_apply C (n:=n)) (all_bin_seqs n)).

output
$$C(\vec{x})$$
 denotes the *output* of C on $\vec{x} = x_1 \dots x_n$

Fixpoint apply (c:comparator) n (s:bin_seq n) : (bin_seq n).

Fixpoint full_apply (C:comp_net) n (s:bin_seq n) : (bin_seq n)

binary outputs outputs
$$(C) = \{C(\vec{x}) \mid x \in \{0, 1\}^n\}$$

Definition outputs (C:comp_net) (n:nat) : (list (bin_seq n)) := (map (full_apply C (n:=n)) (all_bin_seqs n)).

sorting network

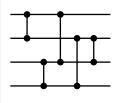
$C(\vec{x})$ is sorted for every input \vec{x}

Definition sort_net (n:nat) (C:comp_net) := (channels n C) /\

forall s:bin_seq n, sorted (full_apply C s).

Theorem SN_char : forall C n, channels n C -> (forall s, In s (outputs C n) -> sorted s) -> sort net n C.

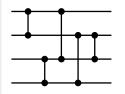
sanity check



```
Definition SN4 :=
  (0[<]1 :: 2[<]3 :: 0[<]2 ::
    1[<]3 :: 1[<]2 :: nil).</pre>
```

Theorem SN4_SN: sort_net 4 SN4.

sanity check



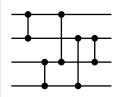
Definition SN4 :=
 (0[<]1 :: 2[<]3 :: 0[<]2 ::
 1[<]3 :: 1[<]2 :: nil).</pre>

Theorem SN4_SN: sort_net 4 SN4.

the bad news

does not scale for 9 channels

sanity check



```
Definition SN4 :=
(0[<]1 :: 2[<]3 :: 0[<]2 ::
1[<]3 :: 1[<]2 :: nil).
```

Theorem $SN4_SN: sort_net 4 SN4.$

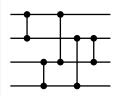
the bad news

does not scale for 9 channels

the good news

"C is a sorting network" is decidable

sanity check



```
Definition SN4 :=

(0[<]1 :: 2[<]3 :: 0[<]2 ::

1[<]3 :: 1[<]2 :: nil).
```

Theorem SN4_SN: sort_net 4 SN4.

the bad news

does not scale for 9 channels

the good news

"C is a sorting network" is decidable

```
Lemma SN_dec : forall n C, channels n C \rightarrow {sort_net n C} + {~sort_net n C}.
```

- program extraction ~ haskell program (tests all inputs)
- nearly best possible algorithm (known result)
- short formalization (\sim 35 lemmas)

output lemma (parberry 1991)

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

output lemma (parberry 1991) if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

 $\begin{array}{c} permuted \\ output \ lemma \end{array}$

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

output lemma (parberry 1991)

if $\operatorname{outputs}(C) \subseteq \operatorname{outputs}(C')$ and C'; N is a sorting network, then C; N is a sorting network

 $\begin{array}{c} permuted \\ output \ lemma \end{array}$

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} X \downarrow_{\pi} \\ \{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

output lemma (parberry 1991) if $\operatorname{outputs}(C) \subseteq \operatorname{outputs}(C')$ and C'; N is a sorting network, then C; N is a sorting network

 $\begin{array}{c} permuted \\ output \ lemma \end{array}$

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{\pi(N)} \pi(S)$$

$$\downarrow^{\pi} \downarrow^{\pi}$$

$$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

output lemma (parberry 1991)

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

 $\begin{array}{c} permuted \\ output \ lemma \end{array}$

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{st(\pi(N))} S$$

$$\downarrow^{\pi} \downarrow^{\pi}$$

$$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

output lemma (parberry 1991)

if outputs(C) \subseteq outputs(C') and C'; N is a sorting network, then C; N is a sorting network

 $\begin{array}{c} permuted \\ output \ lemma \end{array}$

if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ for some permutation π and C' extends to a sorting network, then C extends to a sorting network

proof

$$\{0,1\}^n \xrightarrow{C} X \xrightarrow{st(\pi(N))} S$$

$$\downarrow^{\pi}$$

$$\{0,1\}^n \xrightarrow{C'} X' \xrightarrow{N} S$$

→ how do we formalize this?

standardization (i/ii)

standardization

take the first non-standard comparator (i,j) and interchange i and j in all subsequent positions; repeat until network is standard

lemma

if C is a sorting network, then so is st(C)

standardization

take the first non-standard comparator (i, j) and interchange i and j in all subsequent positions; repeat until network is standard

lemma

if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by permuting all elements of outputs(C) in the same way; since st(C) does not change sorted inputs, this permutation must be the identity

standardization

take the first non-standard comparator (i, j) and interchange i and j in all subsequent positions; repeat until network is standard

lemma

if C is a sorting network, then so is st(C)

proof the elements of outputs(st(C)) are obtained by permuting all elements of outputs(C) in the same way; since st(C) does not change sorted inputs, this permutation must be the identity

→ in our case: need a (simple?) generalization

standardization

```
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
| nil => nil
| cons c C' => let (x,y) := c in
    match (le_lt_dec x y) with
    | left _ => (x[<]y :: standardize C')
    | right _ => (y[<]x :: standardize (permute x y C'))
    end
end.</pre>
```

standardization

```
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
  | nil => nil
  | cons c C' => let (x,y) := c in
        match (le_lt_dec x y) with
        | left _ => (x[<]y :: standardize C')
        | right _ => (y[<]x :: standardize (permute x y C'))
        end
end.</pre>
```

- not structurally decreasing
- lots of implicit properties
- preserves size and number of channels
- preserves standard prefix
- result is standard
- idempotent

standardization

```
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
  | nil => nil
  | cons c C' => let (x,y) := c in
        match (le_lt_dec x y) with
        | left _ => (x[<]y :: standardize C')
        | right _ => (y[<]x :: standardize (permute x y C'))
        end
end.</pre>
```

- not structurally decreasing
- lots of implicit properties

lemma

```
Theorem standardization_sort : forall C n,
    sort_net n C -> sort_net n (standardize C).
```

standardization

```
Function standardize (C:comp_net) {measure length C}
: comp_net := match C with
| nil => nil
| cons c C' => let (x,y) := c in
    match (le_lt_dec x y) with
    | left _ => (x[<]y :: standardize C')
    | right _ => (y[<]x :: standardize (permute x y C'))
    end
end.</pre>
```

- not structurally decreasing
- lots of implicit properties

lemma

 \rightarrow requires \sim 60 lemmas about permutations

subsumption

definition $C \leq_{\pi} C'$ if $\pi(\text{outputs}(C)) \subseteq \text{outputs}(C')$ $C \preceq C'$ if $C \preceq_{\pi} C'$ for some permutation π

→ subsumption is reflexive and transitive

subsumption

```
definition C \leq_{\pi} C' if \pi(\text{outputs}(C)) \subseteq \text{outputs}(C')
                 C \prec C' if C \leq_{\pi} C' for some permutation \pi
```

```
Variable n:nat.
Variables C C':comp_net.
Variable P:permut.
Variable HP:permutation n P.
Definition subsumption :=
    forall s:bin_seq n, In s (outputs C n) ->
                        In (apply_perm P s) (outputs C' n).
Theorem BZ : standard n C -> subsumption ->
    sort_net n (C'++N) ->
    sort_net n (standardize (C ++ apply_perm_to_net P N)).
```

outline

sorting networks in a nutshell

 $sorting \\ networks, coq \\ style$

 $\begin{array}{c} generate\text{-}and\text{-}\\ prune \end{array}$

conclusions & future work

the algorithm

the algorithm

pruning

- quadratic step
- inner loop searches among all permutations typically fails
- record successful subsumptions

the algorithm

$$init \quad \text{set } R_0^n = \{\emptyset\} \text{ and } k = 0$$

repeat until k>1 and $|R_k^n|=1$

generate N_{k+1}^n extend each net in R_k^n by one comparator in all possible ways

prune to R_{k+1}^n keep only one element from each minimal equivalence class w.r.t. \preceq^T

step increase k

certified checker

using recorded subsumptions as an oracle

- replace pruning cycle by oracle calls
- skeptic approach towards oracle
- use program extraction
- verifies all cases up to s_8 , requires ~ 18 years for s_9 ...

checker soundness

```
Definition Oracle := list (comp_net * comp_net * (list nat)).
Inductive Answer : Set :=
  | ves : nat -> nat -> Answer
  | no : forall n k:nat, forall R:list comp_net,
         NoDup R ->
        (forall C. In C R -> length C = k) ->
        (forall C, In C R -> standard n C) -> Answer
  | maybe : Answer.
Fixpoint Generate_and_Prune (m n:nat) (0:list Oracle) :
   Answer.
Theorem GP_no : forall m n O R HRO HR1 HR2,
   Generate and Prune m n O = no m n R HRO HR1 HR2 ->
   forall C, sort_net m C -> length C > n.
Theorem GP_yes : forall m n 0 k,
  Generate_and_Prune m n O = yes m k ->
  (forall C, sort_net m C -> length C >= k) /\
   exists C, sort_net m C / length C = k.
```

an offline oracle

$typical\ approach$

- call oracle to solve difficult tasks
- check result
- oracle is online, waiting for the next problem

an offline oracle

$typical\ approach$

- call oracle to solve difficult tasks
- check result
- oracle is online, waiting for the next problem

in our case

- oracle is pre-computed (offline)
- information from oracle guides algorithm
- potential for optimizations

old algorithm

while oracle has a next subsumption $C \leq_{\pi} C'$

- **I** check that $C \leq_{\pi} C'$
- check that C, C' are in the current set
- remove C' from the current set
 (laziness performs the last two steps together)

old algorithm

while oracle has a next subsumption $C \leq_{\pi} C'$

- check that $C \leq_{\pi} C'$
- check that C, C' are in the current set
- remove C' from the current set (laziness performs the last two steps together)

new algorithm

while oracle has a next subsumption $C \preceq_{\pi} C'$

- check that $C \leq_{\pi} C'$
- store C
- remove C' from the current set after: check that all stored networks are in the final set

new algorithm

while oracle has a next subsumption $C \preceq_{\pi} C'$

- check that $C \leq_{\pi} C'$
- store C
- remove C' from the current set after: check that all stored networks are in the final set

requirement

cannot have subsumption chains, e.g. $C_1 \leq C_2 \leq C_3$

$pre ext{-}processing$

replace chains by endpoint subsumptions (e.g. $C_1 \leq C_3$) computing adequate permutation

→ don't care how, they will be checked anyway!

new algorithm

while oracle has a next subsumption $C \leq_{\pi} C'$

- **T** check that $C \leq_{\pi} C'$
- store C
- remove C' from the current set after: check that all stored networks are in the final set

optimizations

- provide *C*'s in the order they were generated (replaces quadratic step by linear)
- replace lists by search trees (improves performance)
- extract naturals to native integers (unfortunately necessary, but clearly sound)
- represent comparators as a single number (reduces memory consumption)

philosophical considerations

the good news

checker verifies s_9 in around 6 days using "moderate" resources

moderate

not-so-new commonplace cpu, 64 gb ram

$philosophical\ considerations$

the good news

checker verifies s_9 in around 6 days using "moderate" resources

more good news

- (almost) no changes to the formalization
- relatively quick changes (a few hours each)
- mostly require proving that optimized version coincides with original version

philosophical considerations

the good news

checker verifies so in around 6 days using "moderate" resources

more good news

- (almost) no changes to the formalization
- relatively quick changes (a few hours each)
- mostly require proving that optimized version coincides with original version

offline oracles a new methodology?

outline

sorting networks in a nutshell

sorting networks, coq style

generate-andprune

conclusions & future work

conclusions & future work

results

- formal verification of exact values of s_n for $n \leq 9$
- new methodology (offline oracles)
- $lue{}$ able to deal with \sim 27 gb of proof witnesses
- clean separation between formalization ("mathematics")
 and optimization of checker ("computer science")

next episodes

- formal proof of van voorhis' $s_n \ge s_{n-1} + \lg(n)$ to obtain s_{10}
- other problems in sorting networks
- application of this method to other search-intensive proofs

thank you!