optimizing a certified proof checker
 for a large-scale computer-generated proof

luís cruz-filipe

(joint work with peter schneider-kamp)
department of mathematics and computer science university of southern denmark
cicm 2015
july 16th, 2015

outline

sorting
 networks in a
 nutshell
 checking the result
 making the checker work

conclusions 8
future work
a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

a sorting network

size this net has 5 channels and 9 comparators
a sorting network

size this net has 5 channels and 9 comparators
more info see d.e. knuth, the art of computer programming, vol. 3

a sorting network

9	2	2	2	2	2	2	2	2	1
2	9	9	9	7	7	4	1	1	2
7	7	4	4	4	4	7	7	4	4
4	4	7	7	9	1	1	4	7	7
1	1	1	1	1	9	9	9	9	9

size this net has 5 channels and 9 comparators
more info see die. knuth, the art of computer programming, vol. 3
the optimal size problem
what is the minimal number of comparators in a sorting network on n channels $\left(s_{n}\right)$?

history

optimal size
s_{n} : minimal number of comparisons to sort n inputs
knuth 1973

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	25	29
									23	27
		n	11	12	13	14	15	16	17	
		s_{n}	35	39	45	51	56	60	73	
			31	35	39	43	47	51	56	

- values for $n \leq 4$ from information theory
- values for $n=5$ and $n=7$ by exhaustive case analysis
knuth $\quad s_{n} \geq s_{n-1}+3 \quad \rightsquigarrow \quad$ values for $n=6,8$
van voorhis
$s_{n} \geq s_{n-1}+\lg (n)$
$\rightsquigarrow \quad$ other lower bounds

history

optimal size
s_{n} : minimal number of comparisons to sort n inputs
yours truly 2014

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	$\mathbf{2 5}$	$\mathbf{2 9}$
		n	11	12	13	14	15	16	17	
		35	39	45	51	56	60	73		
		s_{n}	$\mathbf{3 3}$	$\mathbf{3 7}$	$\mathbf{4 1}$	$\mathbf{4 5}$	$\mathbf{4 9}$	$\mathbf{5 3}$	$\mathbf{5 8}$	

- generate-and-prune algorithm
- intensive parallel computing
- ~ 16 years of cpu time to compute s_{9}

history

optimal size
s_{n} : minimal number of comparisons to sort n inputs
yours truly 2014

n	1	2	3	4	5	6	7	8	9	10
s_{n}	0	1	3	5	9	12	16	19	25	$\mathbf{2 9}$

n	11	12	13	14	15	16	17
s_{n}	35	39	45	51	56	60	73
	$\mathbf{3 3}$	$\mathbf{3 7}$	$\mathbf{4 1}$	$\mathbf{4 5}$	$\mathbf{4 9}$	$\mathbf{5 3}$	$\mathbf{5 8}$

- generate-and-prune algorithm
- intensive parallel computing
- ~ 16 years of cpu time to compute s_{9}

■ but how do we know that these results are correct?

outline

sorting

net works in a nutshell
checking the
result
making the checker work
conclusions \S
future work

sorting networks

comparator network
sequence of comparators (i, j) with $1 \leq i<j \leq n$ n is the number of channels

sorting networks

comparator network

0/1 lemma (knuth 1973)
sequence of comparators (i, j) with $1 \leq i<j \leq n$ n is the number of channels
C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$

sorting networks

comparator network

0/1 lemma (knuth 1973)
output
sorting network
sequence of comparators (i, j) with $1 \leq i<j \leq n$ n is the number of channels
C is a sorting network on n channels iff C sorts all inputs in $\{0,1\}^{n}$
$C(\vec{x})$ denotes the output of C on $\vec{x}=x_{1} \ldots x_{n}$
$C(\vec{x})$ is sorted for every input \vec{x}

sorting networks

comparator network

0/1 lemma (knuth 1973)
output
sorting network
typical result

- program extraction \rightsquigarrow haskell program (tests all inputs)
- nearly best possible algorithm (known result)
- short formalization (~ 35 lemmas)

the key result

output lemma if outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$ and $C^{\prime} ; N$ is a sorting (parberry 1991) network, then $C ; N$ is a sorting network

the key result

output lemma (parberry 1991)
permuted output lemma
if outputs $(C) \subseteq$ outputs $\left(C^{\prime}\right)$ and $C^{\prime} ; N$ is a sorting network, then $C ; N$ is a sorting network if $\pi($ outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π and C^{\prime} extends to a sorting network, then C extends to a sorting network

the key result

output lemma (parberry 1991)
permuted output lemma
definition
if outputs $(C) \subseteq \operatorname{outputs}\left(C^{\prime}\right)$ and $C^{\prime} ; N$ is a sorting network, then $C ; N$ is a sorting network
if π (outputs $(C)) \subseteq$ outputs $\left(C^{\prime}\right)$ for some permutation π and C^{\prime} extends to a sorting network, then C extends to a sorting network
$C \preceq_{\pi} C^{\prime}$ if π (outputs $\left.(C)\right) \subseteq$ outputs $\left(C^{\prime}\right)$
$C \preceq C^{\prime}$ if $C \preceq_{\pi} C^{\prime}$ for some permutation π
the algorithm
init set $R_{0}^{n}=\{\emptyset\}$ and $k=0$
repeat until $k>1$ and $\left|R_{k}^{n}\right|=1$
generate N_{k+1}^{n} extend each net in R_{k}^{n} by one comparator in all possible ways
prune to R_{k+1}^{n} keep only one element from each minimal equivalence class w.r.t. \preceq^{T} step increase k
the algorithm
init set $R_{0}^{n}=\{\emptyset\}$ and $k=0$
repeat until $k>1$ and $\left|R_{k}^{n}\right|=1$
generate N_{k+1}^{n} extend each net in R_{k}^{n} by one comparator in all possible ways
prune to R_{k+1}^{n} keep only one element from each minimal equivalence class w.r.t. \preceq^{T}
step increase k
pruning

- quadratic step
- inner loop searches among all permutations typically fails
- record successful subsumptions
the algorithm
init set $R_{0}^{n}=\{\emptyset\}$ and $k=0$
repeat until $k>1$ and $\left|R_{k}^{n}\right|=1$
generate N_{k+1}^{n} extend each net in R_{k}^{n} by one comparator in all possible ways
prune to R_{k+1}^{n} keep only one element from each minimal equivalence class w.r.t. \preceq^{T}
step increase k
certified checker
- replace pruning cycle by oracle calls
- skeptic approach towards oracle
- use program extraction
- verifies all cases up to s_{8}, requires ~ 18 years for $s_{9} \ldots$

checker soundness

```
Definition Oracle := list (comp_net * comp_net * (list nat)).
Inductive Answer : Set :=
    | yes : nat -> nat \(->\) Answer
    | no : forall m n:nat, forall R:list comp_net,
            NoDup R ->
            (forall C, In C R \(\rightarrow\) length \(C=n\) ) \(\rightarrow\)
            (forall C, In C R -> standard m C) -> Answer
    | maybe : Answer.
Fixpoint Generate_and_Prune (m n:nat) (O:list Oracle) :
    Answer.
Theorem GP_no : forall m n O R HRO HR1 HR2,
    Generate_and_Prune m n 0 = no m n R HRO HR1 HR2 ->
    forall C, sort_net m C -> length C > n.
Theorem GP_yes : forall m n 0 k ,
    Generate_and_Prune m n \(0=\) yes m k \(->\)
    (forall C, sort_net m C \(\rightarrow\) length \(C>=k\) ) /
    exists C, sort_net m C / length C = k.
```


outline

sorting
 net works in a nutshell
 checking the result
 making the
 checker work

conclusions ξ^{6}
future work

an offline oracle

typical approach

- call oracle to solve difficult tasks
- check result
- oracle is online, waiting for the next problem

typical approach

- call oracle to solve difficult tasks
- check result
- oracle is online, waiting for the next problem
in our case
- oracle is pre-computed (offline)
- information from oracle guides algorithm potential for optimizations
improving the pruning step
old algorithm while oracle has a next subsumption $C \preceq_{\pi} C^{\prime}$
1 check that $C \preceq_{\pi} C^{\prime}$
2 check that C, C^{\prime} are in the current set
3 remove C^{\prime} from the current set (laziness performs the last two steps together)
old algorithm while oracle has a next subsumption $C \preceq_{\pi} C^{\prime}$
1 check that $C \preceq_{\pi} C^{\prime}$
2 check that C, C^{\prime} are in the current set
3 remove C^{\prime} from the current set
(laziness performs the last two steps together)

old algorithm while oracle has a next subsumption $C \preceq_{\pi} C^{\prime}$
1 check that $C \preceq_{\pi} C^{\prime}$
2 check that C, C^{\prime} are in the current set
3 remove C^{\prime} from the current set (laziness performs the last two steps together)
new algorithm
1 check that $C \preceq_{\pi} C^{\prime}$
2 store C
3 remove C^{\prime} from the current set after: check that all stored networks are in the final set
improving the pruning step
new algorithm
1 check that $C \preceq_{\pi} C^{\prime}$
』 store C
3 remove C^{\prime} from the current set after: check that all stored networks are in the final set
requirement
pre-processing
\rightsquigarrow don't care how, they will be checked anyway!
improving the pruning step
new algorithm
\square check that $C \preceq_{\pi} C^{\prime}$
- store C
© remove C^{\prime} from the current set after: check that all stored networks are in the final set
optimizations
provide C^{\prime} 's in the order they were generated (replaces quadratic step by linear)
improving the pruning step
new algorithm
\square check that $C \preceq_{\pi} C^{\prime}$
- store C
(3) remove C^{\prime} from the current set after: check that all stored networks are in the final set
optimizations
- provide $C^{\prime} s$ in the order they were generated (replaces quadratic step by linear)
- store Cs in a search tree (improves performance)
new algorithm
1 check that $C \preceq_{\pi} C^{\prime}$
』 store C
3 remove C^{\prime} from the current set after: check that all stored networks are in the final set
optimizations
provide $C^{\prime} s$ in the order they were generated (replaces quadratic step by linear)
- store Cs in a search tree (improves performance)
- use search trees in some other places (duh?)
improving the pruning step
new algorithm while oracle has a next subsumption $C \preceq_{\pi} C^{\prime}$
\square check that $C \preceq_{\pi} C^{\prime}$
- store C
(5) remove C^{\prime} from the current set after: check that all stored networks are in the final set

improving the pruning step
new algorithm
1 check that $C \preceq_{\pi} C^{\prime}$
- store C
(3) remove C^{\prime} from the current set after: check that all stored networks are in the final set
less memory
- extract naturals to native integers (unfortunately necessary, but clearly sound)
new algorithm while oracle has a next subsumption $C \preceq_{\pi} C^{\prime}$
\square check that $C \preceq_{\pi} C^{\prime}$
『 store C
© remove C^{\prime} from the current set after: check that all stored networks are in the final set
less memory
- extract naturals to native integers (unfortunately necessary, but clearly sound)
- represent comparators as a single number (halves memory consumption)

philosophical considerations

the good news
checker verifies s_{9} in around 6 days using "moderate" resources not-so-new commonplace cpu, 64 gb ram

philosophical considerations

the good news
checker verifies s_{9} in around 6 days using "moderate" resources
(almost) no changes to the formalization
relatively quick changes (a few hours each)
mostly require proving that optimized version coincides with original version

philosophical considerations

the good news
more good news

- relatively quick changes (a few hours each)
- mostly require proving that optimized version coincides with original version
a new methodology?

sorting

networks in a

 nutshell
checking the

 resultmaking the checker work
conclusions \mathcal{G} future work

conclusions $\begin{aligned} & \text { future work }\end{aligned}$

- formal verification of exact values of s_{n} for $n \leq 9$
- new methodology (offline oracles)
- able to deal with $\sim 27 \mathrm{gb}$ of proof witnesses
- clean separation between formalization ("mathematics") and optimization of checker ("computer science")
next episodes
- formal proof of van voorhis' $s_{n} \geq s_{n-1}+\lg (n)$ to obtain S_{10}
- other problems in sorting networks
- application of this method to other search-intensive proofs

