a turing-complete choreography calculus

luís cruz-filipe

(joint work with fabrizio montesi)
department of mathematics and computer science
university of southern denmark
labmag seminar
july 21th, 2015

outline

the zoo of communication

communication

 3 computationpractical
consequences

models of communicating systems

process calculi π-calculus and its variants

- low-level modeling of communication
- too technical for many purposes
- many interesting fragments are undecidable

models of communicating systems

process calculi
π-calculus and its variants

- low-level modeling of communication
- too technical for many purposes
- many interesting fragments are undecidable
choreographies
global view of the system
- directed communication (from alice to bob)
- deadlock-free by design
- compilable to process calculi

models of communicating systems

process calculi
π-calculus and its variants

- low-level modeling of communication
- too technical for many purposes
- many interesting fragments are undecidable
choreographies
global view of the system
- directed communication (from alice to bob)
- deadlock-free by design
- compilable to process calculi
actor systems
- even more abstract
- avoid "implementation details" (channels, sessions)
computational expressiveness
\rightsquigarrow trivially turing-complete (arbitrary computation at each process)

computational expressiveness

\rightsquigarrow trivially turing-complete (arbitrary computation at each process)
focus: communication

- reduce local computation to a minimum
- reduce system primitives to a minimum
- how far can we go?

computational expressiveness

\rightsquigarrow trivially turing-complete (arbitrary computation at each process)
focus: communication

- reduce local computation to a minimum
- reduce system primitives to a minimum
- how far can we go?
π-calculus direct encoding of λ-calculus is unsatisfactory
- counter-intuitive notion of computation
- data and programs at the same level

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

A

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

- i/o-based notion of function implementation
- computation by message-passing
- reminiscent of memory models (e.g. urm)

our contribution

focus of this talk:

- turing-completeness of actor choreographies
- the embedding into channel choreographies

outline

the zoo of communication
communication
\& computation

practical

conseanences

from channels to actors...

channel choreographies

$$
\begin{aligned}
C::= & \mathbf{0}|\eta ; C|(\nu r) C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/] \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k\left\langle k^{\prime}[\mathrm{C}]\right\rangle \\
& \mid \widetilde{\mathrm{p}[\mathrm{~A}]} \text { start } \widetilde{\mathrm{q}[\mathrm{~B}]: a(k)} \\
I::= & \text { infinite set of labels }
\end{aligned}
$$

$e::=$ expressions over some language

from channels to actors...

channel
choreographies

$$
\begin{aligned}
C::= & \mathbf{0}|\eta ; C|(\nu r) C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/] \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k\left\langle k^{\prime}[\mathrm{C}]\right\rangle \\
& \mid \overline{\mathrm{p}[\mathrm{~A}]} \text { start } \overline{\mathrm{q}[\mathrm{~B}]: a(k)}
\end{aligned}
$$

$\mid::=$ infinite set of labels
$e::=$ expressions over some language
$\rightsquigarrow \quad$ fresh names are cool, but irrelevant

from channels to actors...

channel choreographies

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/] \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k\left\langle k^{\prime}[\mathrm{C}]\right\rangle
\end{aligned}
$$

I ::= infinite set of labels
$e::=$ expressions over some language

from channels to actors...

channel

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/] \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k\left\langle k^{\prime}[\mathrm{C}]\right\rangle
\end{aligned}
$$

I $::=$ infinite set of labels
$e::=$ expressions over some language
\rightsquigarrow role passing important in practice, but not needed

from channels to actors...

channel $\quad C::=\mathbf{0} \mid \eta ; C$
choreographies

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/]
\end{aligned}
$$

I ::= infinite set of labels
$e::=$ expressions over some language

from channels to actors...

channel
choreographies

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p}[\mathrm{~A}] \cdot e \rightarrow \mathrm{q}[\mathrm{~B}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{~A}] \rightarrow \mathrm{q}[\mathrm{~B}]: k[/]
\end{aligned}
$$

I ::= infinite set of labels
$e::=$ expressions over some language
$\rightsquigarrow \quad$...but now roles are irrelevant

from channels to actors...

channel $\quad C::=\mathbf{0} \mid \eta ; C$
choreographies

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} .\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \text { p.e } \rightarrow \mathrm{q} \cdot x: k \\
& \mid \mathrm{p} \rightarrow \mathrm{q}: k[l]
\end{aligned}
$$

I ::= infinite set of labels
$e::=$ expressions over some language

from channels to actors...

channel
choreographies

$$
\begin{aligned}
C::= & \mathbf{0} \mid \eta ; C \\
& \mid \text { if } \mathrm{p} .\left(e=e^{\prime}\right) \text { then } C_{1} \text { else } C_{2} \\
& \mid \operatorname{def} X(\tilde{D})=C_{2} \text { in } C_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \text { p.e } \rightarrow \mathrm{q} \cdot x: k \\
& \mid \mathrm{p} \rightarrow \mathrm{q}: k[/]
\end{aligned}
$$

$\mid::=$ infinite set of labels
$e::=$ expressions over some language
$\rightsquigarrow \quad$ communication can take place over only one channel

from channels to actors...

channel $\quad C::=\mathbf{0} \mid \eta ; C$
choreographies | if p. $\left(e=e^{\prime}\right)$ then C_{1} else C_{2} $\mid \operatorname{def} X(\tilde{D})=C_{2}$ in $C_{1} \mid X\langle\tilde{E}\rangle$
$\eta::=\mathrm{p} . \mathrm{e} \rightarrow \mathrm{q} \cdot \mathrm{x}$ $\mid p \rightarrow q[/]$

I ::= infinite set of labels
$e::=$ expressions over some language

from channels to actors...

choreographies

$$
\begin{aligned}
\text { actor } \quad A::= & \mathbf{0} \mid \eta ; A \\
& \mid \text { if } \mathrm{p} .\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \mid \operatorname{def} X(\tilde{D})=A_{2} \text { in } A_{1} \mid X\langle\tilde{E}\rangle \\
& \\
& \\
& ::= \\
& \mid \mathrm{p} . e \rightarrow \mathrm{q} \cdot x
\end{aligned}
$$

$l::=$ infinite set of labels
$e::=$ expressions over some language

from channels to actors...

actor
choreographies

$$
\begin{aligned}
A::= & \mathbf{0} \mid \eta ; A \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \mid \operatorname{def} X(\tilde{D})=A_{2} \text { in } A_{1} \mid X\langle\tilde{E}\rangle \\
\eta::= & \mathrm{p} \cdot \mathrm{e} \rightarrow \mathrm{q} \cdot x \\
& \mid \mathrm{p} \rightarrow \mathrm{q}[/]
\end{aligned}
$$

$l::=$ infinite set of labels
$e::=$ expressions over some language
$\rightsquigarrow \quad$ parameters suddenly do very little

from channels to actors...

actor
choreographies

$$
\begin{aligned}
A::= & \mathbf{0} \mid \eta ; A \\
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \mid \text { def } X=A_{2} \text { in } A_{1} \mid X \\
\eta::= & \mathrm{p} . \mathrm{e} \rightarrow \mathrm{q} \cdot x \\
& \mid \mathrm{p} \rightarrow \mathrm{q}[/]
\end{aligned}
$$

I $::=$ infinite set of labels
$e::=$ expressions over some language

from channels to actors...

actor
choreographies

$$
\begin{aligned}
A::= & \mathbf{0} \mid \eta ; A \\
& \mid \text { if } \mathrm{p} .\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \mid \text { def } X=A_{2} \text { in } A_{1} \mid X \\
\eta::= & \mathrm{p} . e \rightarrow \mathrm{q} \cdot \times \\
& \mid \mathrm{p} \rightarrow \mathrm{q}[/]
\end{aligned}
$$

$e::=$ expressions over some language
$\rightsquigarrow \quad$ only two labels, only one memory cell...

from channels to actors...

$$
\begin{aligned}
& \text { actor } \quad A:=\mathbf{0} \mid \eta ; A \\
& \text { choreographies } \quad \mid \text { if p. }\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \operatorname{def} X=A_{2} \text { in } A_{1} \mid X \\
& \eta::=\mathrm{p} . \mathrm{e} \rightarrow \mathrm{q} \\
& \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& 1::=\mathrm{L} \mid \mathrm{R}
\end{aligned}
$$

$e::=$ expressions over some language

from channels to actors...

actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies
| if p. $\left(e=e^{\prime}\right)$ then A_{1} else A_{2}
$\operatorname{def} X=A_{2}$ in $A_{1} \mid X$
$\eta::=$ p.e $\rightarrow \mathrm{q}$
$\mid p \rightarrow q[/]$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$e::=$ expressions over some language
$\rightsquigarrow \quad .$. and minimal set of expressions...

from channels to actors...

actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies

$$
\begin{aligned}
& \mid \text { if } \mathrm{p} \cdot\left(e=e^{\prime}\right) \text { then } A_{1} \text { else } A_{2} \\
& \mid \text { def } X=A_{2} \text { in } A_{1} \mid X
\end{aligned}
$$

$$
\eta::=\mathrm{p} . \mathrm{e} \rightarrow \mathrm{q}
$$

$$
\mid \mathrm{p} \rightarrow \mathrm{q}[/]
$$

$$
\begin{aligned}
& l::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

$\rightsquigarrow \quad .$. requiring a different conditional

from channels to actors...

actor $\quad A::=\mathbf{0} \mid \eta ; A$
choreographies
| if (p.c = q. \mathbf{c}) then A_{1} else A_{2}
$\operatorname{def} X=A_{2}$ in $A_{1} \mid X$
$\eta::=$ p.e $\rightarrow \mathrm{q}$
$\mid p \rightarrow q[/]$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$$
e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}
$$

actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies
| if (p.c = q.c) then A_{1} else A_{2}
$\operatorname{def} X=A_{2}$ in $A_{1} \mid X$
$\eta::=$ p.e $\rightarrow \mathrm{q}$
$\mid p \rightarrow q[/]$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$$
e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}
$$

choreographies

$$
\begin{aligned}
\text { actor } \quad A::= & \mathbf{0} \mid \eta ; A \\
& \\
& \\
& \mid \operatorname{if}(\mathrm{p}[\mathrm{p}] . \mathbf{c}=\mathrm{q}[\mathrm{q}] . \mathbf{c}) \text { then } A_{1} \text { else } A_{2} \\
\eta::= & \mathrm{p}[\mathrm{p}] . e \rightarrow \mathrm{q}[\mathrm{q}]: k \\
& \mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[l]
\end{aligned}
$$

$\rightsquigarrow \quad$ reintroduce roles and (one) channel

$$
\begin{aligned}
& \text { actor } \quad A:=\mathbf{0} \mid \eta ; A \\
& \text { choreographies } \\
& \text { if }(\mathrm{p}[\mathrm{p}] . \mathbf{c}=\mathrm{q}[\mathrm{q}] . \mathbf{c}) \text { then } A_{1} \text { else } A_{2} \\
& \operatorname{def} X=A_{2} \text { in } A_{1} \mid X \\
& \eta::=\mathrm{p}[\mathrm{p}] . e \rightarrow \mathrm{q}[\mathrm{q}]: k \\
& \mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[/] \\
& l::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}
\end{aligned}
$$

... and back again

actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies
$\mid \mathrm{q}[\mathrm{q}] . x \rightarrow \mathrm{p}[\mathrm{p}] \cdot y: k$;if $\mathrm{p}[\mathrm{p}] .(x=y)$ then A_{1} else A_{2}
$\mid \operatorname{def} X=A_{2}$ in $A_{1} \mid X$
$\eta::=\mathrm{p}[\mathrm{p}] . e \rightarrow \mathrm{q}[\mathrm{q}] \cdot x: k$
$\mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[/]$

$$
\begin{aligned}
& l::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|x| \mathrm{s} \cdot x
\end{aligned}
$$

$\rightsquigarrow \quad$ one variable for content, another for testing
actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies

$$
\begin{aligned}
A::= & \mathbf{0} \mid \eta ; A \\
& \mid \mathrm{q}[\mathrm{q}] \cdot x \rightarrow \mathrm{p}[\mathrm{p}] \cdot y: k ; \text { if } \mathrm{p}[\mathrm{p}] \cdot(x=y) \text { then } A_{1} \text { else } A_{2} \\
& \mid \operatorname{def} X=A_{2} \text { in } A_{1} \mid X \\
\eta::= & \mathrm{p}[\mathrm{p}] \cdot e \rightarrow \mathrm{q}[\mathrm{q}] \cdot x: k \\
& \mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[/]
\end{aligned}
$$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$$
e::=\varepsilon|x| s \cdot x
$$

```
... and back again
```

actor $\quad A:=\mathbf{0} \mid \eta ; A$
choreographies

$$
\begin{aligned}
& \mathrm{q}[\mathrm{q}] \cdot x \rightarrow \mathrm{p}[\mathrm{p}] \cdot y: k \text {; if } \mathrm{p}[\mathrm{p}] \cdot(x=y) \text { then } A_{1} \text { else } A_{2} \\
& \operatorname{def} X(\tilde{D})=A_{2} \text { in } A_{1} \mid X\langle\tilde{E}\rangle
\end{aligned}
$$

$$
\eta::=\mathrm{p}[\mathrm{p}] \cdot e \rightarrow \mathrm{q}[\mathrm{q}] \cdot x: k
$$

$$
\mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[/]
$$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$$
e::=\varepsilon|x| s \cdot x
$$

$\rightsquigarrow \quad$ extensively annotate recursive definitions (trivial)
actor $\quad A:=\mathbf{0} \mid \eta ; A$
$\mathrm{q}[\mathrm{q}] \cdot x \rightarrow \mathrm{p}[\mathrm{p}] . y: k$; if $\mathrm{p}[\mathrm{p}] .(x=y)$ then A_{1} else A_{2} $\operatorname{def} X(\tilde{D})=A_{2}$ in $A_{1} \mid X\langle\tilde{E}\rangle$
$\eta::=\mathrm{p}[\mathrm{p}] . e \rightarrow \mathrm{q}[\mathrm{q}] \cdot x: k$
$\mid \mathrm{p}[\mathrm{p}] \rightarrow \mathrm{q}[\mathrm{q}]: k[/]$

$$
\begin{aligned}
& l::=\mathrm{L} \mid \mathrm{R} \\
& e::=\varepsilon|x| \mathrm{s} \cdot x
\end{aligned}
$$

actor choreographies

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2} $\operatorname{def} X=A_{2}$ in $A_{1} \mid X$

$$
\begin{aligned}
\eta & ::=\mathrm{p} \cdot \mathrm{e} \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
I & :=\mathrm{L} \mid \mathrm{R} \\
\mathrm{e} & ::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

actor choreographies

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies

$$
\mid \operatorname{def} X=A_{2} \text { in } A_{1} \mid X
$$

$$
\begin{aligned}
\eta & ::=\mathrm{p} \cdot e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
I & :=\mathrm{L} \mid \mathrm{R} \\
e & ::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

urm machine classical model of computation

- similar to physical memory
- memory cells store natural numbers
- memory operations: zero, successor, copy
- jump-on-equal

actor choreographies

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies

$$
\mid \operatorname{def} X=A_{2} \text { in } A_{1} \mid X
$$

$$
\begin{aligned}
\eta & ::=\mathrm{p} \cdot e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
I & :=\mathrm{L} \mid \mathrm{R} \\
e & ::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

urm machine classical model of computation

- similar to physical memory
- memory cells store natural numbers \rightsquigarrow processes
- memory operations: zero, successor, copy
- jump-on-equal \rightsquigarrow conditional

actor choreographies

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies $\mid \operatorname{def} X=A_{2}$ in $A_{1} \mid X$

$$
\begin{aligned}
\eta & ::=\mathrm{p} \cdot e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
I & :=\mathrm{L} \mid \mathrm{R} \\
e & ::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

but. . .! very different computation model

- no centralized control
- no self-change

actor choreographies

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies

$$
\mid \operatorname{def} X=A_{2} \text { in } A_{1} \mid X
$$

$$
\begin{aligned}
& \eta::=\mathrm{p} \cdot \boldsymbol{e} \rightarrow \mathbf{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/] \\
& /::=\mathrm{L} \mid \mathrm{R} \\
& \mathrm{e}::=\varepsilon|\mathbf{c}| \mathrm{s} \cdot \mathbf{c}
\end{aligned}
$$

on selections

- not needed for computational completeness
- essential for projectability (e.g. to π-calculus)
- known algorithms for inferring selections
implementation
state a state of an actor choreography is a mapping from the set of process names to the set of values

implementation

state a state of an actor choreography is a mapping from the set of process names to the set of values
implementation choreography A implements $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ with inputs p_{1}, \ldots, p_{n} and output q if: for every σ such that $\sigma\left(p_{i}\right)=\left\ulcorner x_{i}\right\urcorner$,

- if $f(\tilde{x})$ is defined, then $A, \sigma \rightarrow{ }^{*} \mathbf{0}, \sigma^{\prime}$ and $\sigma^{\prime}(q)=\ulcorner f(\tilde{x})\urcorner$
- if $f(\tilde{x})$ is not defined, then $A, \sigma \not \nrightarrow *^{*} \mathbf{0}$ (diverges)
an example: addition
addition from p, q to r
$\operatorname{def} X=$
if $(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c})$ then

$$
\text { p.c } \rightarrow \text { r; } \mathbf{0}
$$

else

$$
\text { p.c } \rightarrow \text { t; t.s } \cdot \mathbf{c} \rightarrow \text { p; r.c } \rightarrow \text { t; t.s } \cdot \mathbf{c} \rightarrow \text { r; } X
$$

$$
\text { int. } \varepsilon \rightarrow \mathrm{r} ; X
$$

an example: addition
addition from
p, q to r
$\operatorname{def} X=$
if $(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c})$ then
p. $\mathbf{c} \rightarrow \mathbf{r} \mathbf{0}$
else

$$
\mathrm{p.c} \rightarrow \mathrm{t} ; \mathrm{t} . \mathrm{s} \cdot \mathbf{c} \rightarrow \mathrm{p} ; \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} . \mathrm{s} \cdot \mathbf{c} \rightarrow \mathrm{r} ; X
$$

in t. $\varepsilon \rightarrow \mathrm{r} ; \mathrm{X}$
\rightsquigarrow does not compile!

- projection of p does not know whether to send a message to r or t
projection of t does not know whether to wait for a message or terminate
an example: addition
addition from
p, q to r

$$
\operatorname{def} X=
$$

$$
\begin{aligned}
& \text { if }(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c}) \text { then } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{~L}] ; \\
& \mathrm{p} . \mathbf{c} \rightarrow \mathrm{r} ; \mathbf{0}
\end{aligned}
$$

$$
\text { else } r \rightarrow \mathrm{p}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{R}] ;
$$

$$
\text { p.c } \rightarrow \text { t; t.s } \cdot \mathbf{c} \rightarrow \text { p; r.c } \rightarrow \text { t } ; \mathrm{t} . \mathrm{s} \cdot \mathbf{c} \rightarrow \mathrm{r} ; X
$$

$$
\text { int. } \varepsilon \rightarrow \mathrm{r} ; X
$$

\rightsquigarrow does not compile!

- projection of p does not know whether to send a message to r or t
projection of t does not know whether to wait for a message or terminate
addition from
p, q to r

$$
\begin{aligned}
& \operatorname{def} X= \\
& \quad \text { if }(\mathrm{r} . \mathbf{c}=\mathrm{q} . \mathbf{c}) \text { then } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{~L}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{~L}] ; \\
& \quad \text { p.c } \rightarrow \mathrm{r} ; \mathbf{0} \\
& \quad \text { else } \mathrm{r} \rightarrow \mathrm{p}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{q}[\mathrm{R}] ; \mathrm{r} \rightarrow \mathrm{t}[\mathrm{R}] ; \\
& \quad \text { p.c } \rightarrow \mathrm{t} ; \mathrm{t} . \mathrm{s} \cdot \mathbf{c} \rightarrow \mathrm{p} ; \mathrm{r} . \mathbf{c} \rightarrow \mathrm{t} ; \mathrm{t} . \mathrm{s} \cdot \mathbf{c} \rightarrow \mathrm{r} ; X \\
& \text { int. } \varepsilon \rightarrow \mathrm{r} ; X
\end{aligned}
$$

\rightsquigarrow compiles!

- projections of p and t wait for notification from r
- projection of q also needs to be notified

partial recursive functions $i / v i$

$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x

partial recursive functions $i / v i$

successor
$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x
implementation

$$
\llbracket S \rrbracket^{p \mapsto q}=\mathrm{p} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q}
$$

partial recursive functions $i / v i$

successor
$S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=x+1$ for all x
implementation

$$
\llbracket S \rrbracket^{p \mapsto q}=\mathrm{p} .(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q}
$$

soundness

$$
\text { p. }(\mathrm{s} \cdot \mathbf{c}) \rightarrow \mathrm{q},\{\mathrm{p} \mapsto\ulcorner x\urcorner\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p} \mapsto\ulcorner x\urcorner \\
\mathrm{q} \mapsto\ulcorner x+1\urcorner
\end{array}\right\}
$$

partial recursive functions ii/vi

$Z: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(x)=0$ for all x
implementation

$$
\llbracket Z \rrbracket^{\mathrm{p} \mapsto \mathrm{q}}=\mathrm{p} \cdot \varepsilon \rightarrow \mathrm{q}
$$

soundness

$$
\mathrm{p} . \varepsilon \rightarrow \mathrm{q},\{\mathrm{p} \mapsto\ulcorner x\urcorner\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p} \mapsto\ulcorner\mathrm{x}\urcorner \\
\mathrm{q} \mapsto\ulcorner\mathrm{p}\urcorner
\end{array}\right\}
$$

projections implementation $P_{m}^{n}: \mathbb{N} \rightarrow \mathbb{N}$ such that $P_{m}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{m}$ for all \tilde{x}

$$
\llbracket P_{m}^{n} \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\mathrm{p}_{\mathrm{m}} \cdot \mathbf{c} \rightarrow \mathrm{q}
$$

soundness

$$
\mathrm{p}_{\mathrm{m}} \cdot \mathbf{c} \rightarrow \mathrm{q},\left\{\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\} \longrightarrow \mathbf{0},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{q} \mapsto\left\ulcorner x_{m}\right\urcorner
\end{array}\right\}
$$

$\rightsquigarrow \quad$ properties we use in inductive constructions

- execution preserves contents of input processes
- all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
$\rightsquigarrow \quad$ properties we use in inductive constructions
- execution preserves contents of input processes all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
sequential composition
for processes with only one exit point $A \% A^{\prime}$ is obtained by replacing $\mathbf{0}$ (in A) by A^{\prime}
$\rightsquigarrow \quad$ properties we use in inductive constructions
- execution preserves contents of input processes
- all choreographies have exactly one exit point (occurrence of $\mathbf{0}$)
sequential for processes with only one exit point composition $A \% A^{\prime}$ is obtained by replacing $\mathbf{0}$ (in A) by A^{\prime}
$\rightsquigarrow \quad$ works as expected
- if $A, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime}$ and $A^{\prime}, \sigma^{\prime} \rightarrow^{*} \mathbf{0}, \sigma^{\prime \prime}$, then $A ; A^{\prime}, \sigma \rightarrow{ }^{*} \mathbf{0}, \sigma^{\prime \prime}$
- if $A, \sigma \rightarrow^{*} \mathbf{0}, \sigma^{\prime}$ and $A^{\prime}, \sigma^{\prime}$ diverges, then $A \varsubsetneqq A^{\prime}, \sigma$ diverges
- if A, σ diverges, then $A \circ A^{\prime}, \sigma \rightarrow \mathbf{0}, \sigma^{\prime \prime}$ diverges

partial recursive functions iv/vi

composition

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

partial recursive functions iv/vi

composition
implementation

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, p_{n} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{p_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

partial recursive functions iv/vi

composition
implementation

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, p_{n} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} \circ \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

$\rightsquigarrow \quad r_{i}^{\prime}$ are auxiliary processes numbered from $\ell: r_{i}^{\prime}=r_{\ell+i-1}$ in recursive calls we increment the counter:
$\ell_{i+1}=\ell_{i}+\pi\left(g_{i}\right)$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathbf{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} ; \ldots \circ
$$

$$
\llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \mapsto r_{k}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{\mathrm{r}_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}},\left\{\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\}
$$

$$
\longrightarrow^{*} \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\mathrm{p}_{i} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner
\end{array}\right\}
$$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right)
\end{array}
$$

$$
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathbf{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=\llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} ; \ldots \circ
$$

$$
\llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{n} \mapsto r_{k}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{\mathrm{r}_{1}^{\prime}, \ldots, r_{k}^{\prime} \mapsto \mathrm{q}}
$$

$$
\begin{aligned}
& \llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\left.\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner\right\} \\
\longrightarrow \\
\longrightarrow^{*} \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{\mathrm{k}}^{\prime} \mapsto \mathrm{q}},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner
\end{array}\right\} \\
\longrightarrow * \mathbf{0},\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{i}} \mapsto\left\ulcorner x_{i}\right\urcorner \\
\mathrm{r}_{\mathrm{j}}^{\prime} \mapsto\left\ulcorner g_{j}(\tilde{x})\right\urcorner \\
\mathrm{q} \mapsto\ulcorner(\tilde{(\tilde{x}))\urcorner}
\end{array}\right\}
\end{array} .\right.
\end{aligned}
$$

partial recursive functions iv/vi

composition
implementation
soundness

$$
\begin{array}{ll}
g_{1}, \ldots, g_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad & C(f, \tilde{g}): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
f: \mathbb{N}^{k} \rightarrow \mathbb{N} & \tilde{x} \mapsto f\left(g_{1}(\tilde{x}), \ldots, g_{k}(\tilde{x})\right) \\
& \\
\llbracket C(f, \tilde{g}) \rrbracket_{\ell}^{p_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= & \llbracket g_{1} \rrbracket_{\ell_{1}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{1}^{\prime}} \circ \ldots \circ \\
& \llbracket g_{k} \rrbracket_{\ell_{k}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{k}}^{\prime}} ; \llbracket f \rrbracket_{\ell_{k+1}}^{r_{1}^{\prime}, \ldots, \mathrm{r}_{k}^{\prime} \mapsto \mathrm{q}}
\end{array}
$$

if $g_{j}(\tilde{x})$ is undefined the corresponding step diverges and likewise for $f(\widetilde{g(\tilde{x})})$
partial recursive functions $v / v i$
recursion

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

partial recursive functions $v / v i$

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

implementation

$$
\begin{aligned}
& \llbracket h \rrbracket^{\mathrm{p}_{0}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= \\
& \quad \operatorname{def} T=\text { if } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c}=\mathrm{p}_{0} \cdot \mathbf{c} \text { then } \mathrm{q}^{\prime} \cdot \mathbf{c} \rightarrow \mathrm{q} ; \mathbf{0} \\
& \quad \text { else } \llbracket g \rrbracket_{\ell_{g}}^{\mathrm{r}_{\mathrm{c}}, \mathbf{q}^{\prime}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{t}}} ; \mathrm{r}_{\mathrm{t}} \cdot \mathbf{c} \rightarrow \mathrm{q}^{\prime} ; \\
& \quad \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{t}} ; \mathrm{r}_{\mathrm{t}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned} \quad \begin{aligned}
& \text { in } \llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{t}} \cdot \varepsilon \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned}
$$

partial recursive functions $v / v i$

$$
\begin{aligned}
& f: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad g: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \\
& h=R(f, g): \mathbb{N}^{n+1} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \begin{cases}f(\vec{x}) & x_{0}=0 \\
g(k, h(k, \tilde{x}), \tilde{x}) & x_{0}=k+1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket h \rrbracket^{\mathrm{p}_{0}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}= \\
& \quad \operatorname{def} T=\text { if } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c}=\mathrm{p}_{0} \cdot \mathbf{c} \text { then } \mathrm{q}^{\prime} \cdot \mathbf{c} \rightarrow \mathrm{q} ; \mathbf{0} \\
& \quad \text { else } \llbracket g \rrbracket_{\ell_{g}}^{\mathrm{r}_{c}, \mathbf{q}^{\prime}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{r}_{\mathrm{t}}} ; \mathrm{r}_{\mathrm{t}} \cdot \mathbf{c} \rightarrow \mathrm{q}^{\prime} ; \\
& \quad \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{t}} ; \mathrm{r}_{\mathrm{t}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
\end{aligned}
$$

soundness by induction (simple)
partial recursive functions vi/vi
$\begin{array}{ll}\text { minimization } \quad f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\ & \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0\end{array}$

$$
\begin{array}{ll}
f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0
\end{array}
$$

implementation
$\llbracket M(f) \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=$ $\operatorname{def} T=\llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{r}_{\mathrm{c}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{c}} . \varepsilon \rightarrow \mathrm{r}_{\mathrm{z}} ;$ if $r_{z} \cdot \mathbf{c}=q^{\prime} . \mathbf{c}$ then $r_{c} \cdot \mathbf{c} \rightarrow q ; \mathbf{0}$ else $r_{c} . \mathbf{c} \rightarrow r_{z} ; r_{z} .(s \cdot \mathbf{c}) \rightarrow r_{c} ; T$ in $r_{z}, \varepsilon \rightarrow r_{c} ; T$

$$
\begin{array}{ll}
f: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \quad & M(f): \mathbb{N}^{n} \rightarrow \mathbb{N} \\
& \tilde{x} \mapsto \mu y \cdot f(\vec{x}, y)=0
\end{array}
$$

$$
\llbracket M(f) \rrbracket^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}} \mapsto \mathrm{q}}=
$$

$$
\operatorname{def} T=\llbracket f \rrbracket_{\ell_{f}}^{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{r}_{\mathrm{c}} \mapsto \mathrm{q}^{\prime}} ; \mathrm{r}_{\mathrm{c}} . \varepsilon \rightarrow \mathrm{r}_{\mathrm{z}}
$$

$$
\text { if } r_{z} \cdot \mathbf{c}=q^{\prime} \cdot \mathbf{c} \text { then } r_{c} \cdot \mathbf{c} \rightarrow q ; \mathbf{0}
$$

$$
\text { else } \mathrm{r}_{\mathrm{c}} \cdot \mathbf{c} \rightarrow \mathrm{r}_{\mathrm{z}} ; \mathrm{r}_{\mathrm{z}} \cdot(\mathrm{~s} \cdot \mathbf{c}) \rightarrow \mathrm{r}_{\mathrm{c}} ; T
$$

$$
\text { in } \mathrm{r}_{\mathrm{z}} \cdot \varepsilon \rightarrow \mathrm{r}_{\mathrm{c}} ; T
$$

minimality

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies

$$
\mid \operatorname{def} X=A_{2} \text { in } A_{1} \mid X
$$

$$
\eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/]
$$

$$
l::=\mathrm{L} \mid \mathrm{R}
$$

$$
e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}
$$

- no exit points \rightsquigarrow nothing terminates
- no communication \rightsquigarrow no output
- less expressions \rightsquigarrow cannot compute base cases
- no selection \rightsquigarrow not everything is projectable
- no conditions \rightsquigarrow termination is decidable
- no recursion \rightsquigarrow everything terminates

minimality

actor $\quad A::=\mathbf{0}|\eta ; A|$ if $(\mathbf{p . c}=\mathbf{q} . \mathbf{c})$ then A_{1} else A_{2}
choreographies $\mid \operatorname{def} X=A_{2}$ in $A_{1} \mid X$
$\eta::=\mathrm{p} . e \rightarrow \mathrm{q} \mid \mathrm{p} \rightarrow \mathrm{q}[/]$
$l::=\mathrm{L} \mid \mathrm{R}$
$e::=\varepsilon|\mathbf{c}| \mathbf{s} \cdot \mathbf{c}$

- only zero-testing \rightsquigarrow termination is decidable (skipping proof...)
- only (arbitrary) constant-testing \rightsquigarrow termination is decidable

outline

the zoo of

 communicationcommunication computation
practical
consequences
what we get
sound encoding of partial recursive functions as actor choreographies
what we get

- sound encoding of partial recursive functions as actor choreographies
- by embedding into channel choreographies \rightsquigarrow sound encoding of partial recursive functions as channel choreographies

what we get

- sound encoding of partial recursive functions as actor choreographies
- by embedding into channel choreographies \rightsquigarrow sound encoding of partial recursive functions as channel choreographies
- by adding necessary selections (deterministically) \rightsquigarrow sound encoding of partial recursive functions as actor processes

what we get

- sound encoding of partial recursive functions as actor choreographies
- by embedding into channel choreographies \rightsquigarrow sound encoding of partial recursive functions as channel choreographies
- by adding necessary selections (deterministically) \rightsquigarrow sound encoding of partial recursive functions as actor processes
- by adding necessary selections and embedding into channel choreographies \rightsquigarrow sound encoding of partial recursive functions as channel processes (π-calculus)
making it more beautiful
additional primitives give more structure
generation of fresh names "hides" auxiliary processes

making it more beautiful

additional primitives give more structure

- generation of fresh names "hides" auxiliary processes
improving the embedding
- state is encoded as a substitution
- ignoring state: functional process (needs a context to set up inputs)

making it more beautiful

additional primitives give more structure

- generation of fresh names "hides" auxiliary processes
improving the embedding
- state is encoded as a substitution
- ignoring state: functional process (needs a context to set up inputs)
operational proof of completeness for π-calculus
- by slight tweaking: process that "waits" for parallel components with input and output

conclusions

- turing-completeness of actor choreographies
- minimal set of primitives
- identifies a deadlock-free, turing-complete fragment of π-calculus

