
a turing-complete choreography calculus

lúıs cruz-filipe

(joint work with fabrizio montesi)

department of mathematics and computer science
university of southern denmark

labmag seminar
july 21th, 2015

outline

the zoo of
communication

communication
& computation

practical
consequences

models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

actor systems

even more abstract

avoid “implementation details” (channels, sessions)

models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

actor systems

even more abstract

avoid “implementation details” (channels, sessions)

models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

actor systems

even more abstract

avoid “implementation details” (channels, sessions)

computational expressiveness

 trivially turing-complete
(arbitrary computation at each process)

focus: communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

computational expressiveness

 trivially turing-complete
(arbitrary computation at each process)

focus: communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

computational expressiveness

 trivially turing-complete
(arbitrary computation at each process)

focus: communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

A

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

A
computes // A′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

A
computes //

co
m
p
il
es

��

A′

co
m
p
il
es

��
PA PA′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

A
computes //

co
m
p
il
es

��

A′

co
m
p
il
es

��
PA

computes // PA′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

A
computes // A′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C C′

A
computes //

==

tra
ns
la
te
s

A′

<<

tra
ns
la
te
s

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes // C′

A
computes //

==

tra
ns
la
te
s

A′

<<

tra
ns
la
te
s

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes // C′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��
PC PC′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��
PC

computes // PC′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

A
computes //

co
m
p
il
es

��

==

tra
ns
la
te
s

A′

co
m
p
il
es

��

<<

tra
ns
la
te
s

PC
computes// PC′

PA
computes // PA′

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

A
computes //

co
m
p
il
es

��

==

tra
ns
la
te
s

A′

co
m
p
il
es

��

<<

tra
ns
la
te
s

PC
computes// PC′

PA
computes //

bi
sim

ila
r

PA′

bi
sim

ila
r

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

A
computes //

co
m
p
il
es

��

==

tra
ns
la
te
s

A′

co
m
p
il
es

��

<<

tra
ns
la
te
s

PC
computes// PC′

PA
computes //

bi
sim

ila
r

PA′

bi
sim

ila
r

our contribution

i/o-based notion of function implementation

computation by message-passing

reminiscent of memory models (e.g. urm)

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

A
computes //

co
m
p
il
es

��

==

tra
ns
la
te
s

A′

co
m
p
il
es

��

<<

tra
ns
la
te
s

PC
computes// PC′

PA
computes //

bi
sim

ila
r

PA′

bi
sim

ila
r

our contribution

focus of this talk:

turing-completeness of actor choreographies

the embedding into channel choreographies

C
computes //

co
m
p
il
es

��

C′

co
m
p
il
es

��

A
computes //

co
m
p
il
es

��

==

tra
ns
la
te
s

A′

co
m
p
il
es

��

<<

tra
ns
la
te
s

PC
computes// PC′

PA
computes //

bi
sim

ila
r

PA′

bi
sim

ila
r

outline

the zoo of
communication

communication
& computation

practical
consequences

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C | (νr)C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

| p[A]→ q[B] : k〈k ′[C]〉

| p̃[A] start q̃[B] : a(k)

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C | (νr)C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

| p[A]→ q[B] : k〈k ′[C]〉

| p̃[A] start q̃[B] : a(k)

l ::= infinite set of labels

e ::= expressions over some language /2

 fresh names are cool, but irrelevant

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

| p[A]→ q[B] : k〈k ′[C]〉

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

| p[A]→ q[B] : k〈k ′[C]〉

l ::= infinite set of labels

e ::= expressions over some language /2

 role passing important in practice, but not needed

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l]

l ::= infinite set of labels

e ::= expressions over some language /2

 . . . but now roles are irrelevant

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p.e → q.x : k

| p→ q : k[l]

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p.e → q.x : k

| p→ q : k[l]

l ::= infinite set of labels

e ::= expressions over some language /2

 communication can take place over only one channel

from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p.e → q.x

| p→ q[l]

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X (D̃) = A2 inA1 | X 〈Ẽ 〉

η ::= p.e → q.x

| p→ q[l]

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X (D̃) = A2 inA1 | X 〈Ẽ 〉

η ::= p.e → q.x

| p→ q[l]

l ::= infinite set of labels

e ::= expressions over some language /2

 parameters suddenly do very little

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q.x

| p→ q[l]

l ::= infinite set of labels

e ::= expressions over some language /2

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q.x

| p→ q[l]

l ::= infinite set of labels

e ::= expressions over some language /2

 only two labels, only one memory cell. . .

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q

| p→ q[l]

l ::= l | r

e ::= expressions over some language /2

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q

| p→ q[l]

l ::= l | r

e ::= expressions over some language /2

 . . . and minimal set of expressions. . .

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if p.(e = e ′) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q

| p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

 . . . requiring a different conditional

from channels to actors. . .

actor
choreographies

A ::= 0 | η;A

| if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q

| p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

. . . and back again

actor
choreographies

A ::= 0 | η;A

| if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q

| p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

. . . and back again

actor
choreographies

A ::= 0 | η;A

| if (p[p].c = q[q].c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p[p].e → q[q] : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | c | s · c /2

 reintroduce roles and (one) channel

. . . and back again

actor
choreographies

A ::= 0 | η;A

| if (p[p].c = q[q].c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p[p].e → q[q] : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | c | s · c /2

. . . and back again

actor
choreographies

A ::= 0 | η;A

| q[q].x → p[p].y : k ;if p[p].(x = y) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p[p].e → q[q].x : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | x | s · x /2

 one variable for content, another for testing

. . . and back again

actor
choreographies

A ::= 0 | η;A

| q[q].x → p[p].y : k ; if p[p].(x = y) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p[p].e → q[q].x : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | x | s · x /2

. . . and back again

actor
choreographies

A ::= 0 | η;A

| q[q].x → p[p].y : k ; if p[p].(x = y) thenA1 elseA2

| def X (D̃) = A2 inA1 | X 〈Ẽ 〉

η ::= p[p].e → q[q].x : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | x | s · x /2

 extensively annotate recursive definitions (trivial)

. . . and back again

actor
choreographies

A ::= 0 | η;A

| q[q].x → p[p].y : k ; if p[p].(x = y) thenA1 elseA2

| def X (D̃) = A2 inA1 | X 〈Ẽ 〉

η ::= p[p].e → q[q].x : k

| p[p]→ q[q] : k[l]

l ::= l | r

e ::= ε | x | s · x /2

actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

urm machine classical model of computation

similar to physical memory

memory cells store natural numbers

memory operations: zero, successor, copy

jump-on-equal

actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

urm machine classical model of computation

similar to physical memory

memory cells store natural numbers processes

memory operations: zero, successor, copy

jump-on-equal conditional

actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

but. . . ! very different computation model

no centralized control

no self-change

actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

on selections

not needed for computational completeness

essential for projectability (e.g. to π-calculus)

known algorithms for inferring selections

implementation

state a state of an actor choreography is a mapping from the
set of process names to the set of values

implementation choreography A implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi) = pxiq,

if f (x̃) is defined, then A, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then A, σ 6→∗ 0 (diverges)

implementation

state a state of an actor choreography is a mapping from the
set of process names to the set of values

implementation choreography A implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi) = pxiq,

if f (x̃) is defined, then A, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then A, σ 6→∗ 0 (diverges)

an example: addition

addition from
p, q to r

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X

an example: addition

addition from
p, q to r

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X

 does not compile!

projection of p does not know whether to send a
message to r or t

projection of t does not know whether to wait for a
message or terminate

an example: addition

addition from
p, q to r

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X

 does not compile!

projection of p does not know whether to send a
message to r or t

projection of t does not know whether to wait for a
message or terminate

an example: addition

addition from
p, q to r

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X

 compiles!

projections of p and t wait for notification from r

projection of q also needs to be notified

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}

partial recursive functions ii/vi

zero Z : N→ N such that S(x) = 0 for all x

implementation
[[Z]]p 7→q = p.ε→ q

soundness

p.ε→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ p0q

}

partial recursive functions iii/vi

projections Pn
m : N→ N such that Pn

m(x1, . . . , xn) = xm for all x̃

implementation
[[Pn

m]]p1,...,pn 7→q = pm.c→ q

soundness

pm.c→ q, {pi 7→ pxiq} −→ 0,

{
pi 7→ pxiq
q 7→ pxmq

}

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
A # A′ is obtained by replacing 0 (in A) by A′

 works as expected

if A, σ →∗ 0, σ′ and A′, σ′ →∗ 0, σ′′, then
A # A′, σ →∗ 0, σ′′

if A, σ →∗ 0, σ′ and A′, σ′ diverges, then A # A′, σ
diverges

if A, σ diverges, then A # A′, σ → 0, σ′′ diverges

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
A # A′ is obtained by replacing 0 (in A) by A′

 works as expected

if A, σ →∗ 0, σ′ and A′, σ′ →∗ 0, σ′′, then
A # A′, σ →∗ 0, σ′′

if A, σ →∗ 0, σ′ and A′, σ′ diverges, then A # A′, σ
diverges

if A, σ diverges, then A # A′, σ → 0, σ′′ diverges

intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
A # A′ is obtained by replacing 0 (in A) by A′

 works as expected

if A, σ →∗ 0, σ′ and A′, σ′ →∗ 0, σ′′, then
A # A′, σ →∗ 0, σ′′

if A, σ →∗ 0, σ′ and A′, σ′ diverges, then A # A′, σ
diverges

if A, σ diverges, then A # A′, σ → 0, σ′′ diverges

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

 r′i are auxiliary processes numbered from `: r′i = r`+i−1
in recursive calls we increment the counter:
`i+1 = `i + π(gi)

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness [[C (f , g̃)]]p1,...,pn 7→q
` , {pi 7→ pxiq}

−→∗ [[f]]
r′1,...,r

′
k 7→q

`k+1
,

{
pi 7→ pxiq
r′j 7→ pgj(x̃)q

}

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness [[C (f , g̃)]]p1,...,pn 7→q
` , {pi 7→ pxiq}

−→∗ [[f]]
r′1,...,r

′
k 7→q

`k+1
,

{
pi 7→ pxiq
r′j 7→ pgj(x̃)q

}

−→∗ 0,

pi 7→ pxiq
r′j 7→ pgj(x̃)q

q 7→ pf (g̃(x̃))q

partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

. . .

[[gk]]
p1,...,pn 7→r′k
`k

[[f]]
r′1,...,r

′
k 7→q

`k+1

soundness if gj(x̃) is undefined the corresponding step diverges

and likewise for f (g̃(x̃))

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =

def T = if rc.c = p0.c then q′.c→ q; 0

else [[g]]rc,q
′,p1,...,pn 7→rt

`g
rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f]]p1,...,pn 7→q′

`f
rt.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

partial recursive functions vi/vi

minimization f : Nn+1 → N M(f) : Nn → N
x̃ 7→ µy .f (~x , y) = 0

implementation [[M(f)]]p1,...,pn 7→q =

def T = [[f]]p1,...,pn,rc 7→q′

`f
rc.ε→ rz;

if rz.c = q′.c then rc.c→ q; 0

else rc.c→ rz; rz.(s · c)→ rc; T

in rz.ε→ rc; T

soundness by induction (simple)

minimality

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

no exit points nothing terminates

no communication no output

less expressions cannot compute base cases

no selection not everything is projectable

no conditions termination is decidable

no recursion everything terminates

minimality

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l]

l ::= l | r

e ::= ε | c | s · c /2

only zero-testing termination is decidable
(skipping proof. . .)

only (arbitrary) constant-testing termination is
decidable

outline

the zoo of
communication

communication
& computation

practical
consequences

what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as actor
processes

by adding necessary selections and embedding into
channel choreographies sound encoding of partial
recursive functions as channel processes (π-calculus)

what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as actor
processes

by adding necessary selections and embedding into
channel choreographies sound encoding of partial
recursive functions as channel processes (π-calculus)

what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as actor
processes

by adding necessary selections and embedding into
channel choreographies sound encoding of partial
recursive functions as channel processes (π-calculus)

what we get

sound encoding of partial recursive functions as actor
choreographies

by embedding into channel choreographies sound
encoding of partial recursive functions as channel
choreographies

by adding necessary selections (deterministically)
sound encoding of partial recursive functions as actor
processes

by adding necessary selections and embedding into
channel choreographies sound encoding of partial
recursive functions as channel processes (π-calculus)

making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding

state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)

operational proof of completeness for π-calculus

by slight tweaking: process that “waits” for parallel
components with input and output

making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding

state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)

operational proof of completeness for π-calculus

by slight tweaking: process that “waits” for parallel
components with input and output

making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding

state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)

operational proof of completeness for π-calculus

by slight tweaking: process that “waits” for parallel
components with input and output

conclusions

turing-completeness of actor choreographies

minimal set of primitives

identifies a deadlock-free, turing-complete fragment of
π-calculus

thank you!

	the zoo of communication
	communication & computation
	practical consequences

