
a turing-complete choreography calculus
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models of communicating systems

process calculi π-calculus and its variants

low-level modeling of communication

too technical for many purposes

many interesting fragments are undecidable

choreographies

global view of the system

directed communication (from alice to bob)

deadlock-free by design

compilable to process calculi

actor systems

even more abstract

avoid “implementation details” (channels, sessions)
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computational expressiveness

 trivially turing-complete
(arbitrary computation at each process)

focus: communication

reduce local computation to a minimum

reduce system primitives to a minimum

how far can we go?

π-calculus direct encoding of λ-calculus is unsatisfactory

counter-intuitive notion of computation

data and programs at the same level
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our contribution

focus of this talk:

turing-completeness of actor choreographies

the embedding into channel choreographies
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from channels to actors. . .

channel
choreographies

C ::= 0 | η;C | (νr)C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉

η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l ]

| p[A]→ q[B] : k〈k ′[C]〉

| p̃[A] start q̃[B] : a(k)

l ::= infinite set of labels

e ::= expressions over some language /2
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η ::= p[A].e → q[B].x : k

| p[A]→ q[B] : k[l ]

| p[A]→ q[B] : k〈k ′[C]〉

l ::= infinite set of labels

e ::= expressions over some language /2

 role passing important in practice, but not needed



from channels to actors. . .

channel
choreographies

C ::= 0 | η;C

| if p.(e = e ′) thenC 1 elseC 2

| def X (D̃) = C 2 inC 1 | X 〈Ẽ 〉
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 one variable for content, another for testing
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actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

urm machine classical model of computation

similar to physical memory

memory cells store natural numbers  processes

memory operations: zero, successor, copy

jump-on-equal  conditional



actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

but. . . ! very different computation model

no centralized control

no self-change



actor choreographies

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

on selections

not needed for computational completeness

essential for projectability (e.g. to π-calculus)

known algorithms for inferring selections



implementation

state a state of an actor choreography is a mapping from the
set of process names to the set of values

implementation choreography A implements f : Nn → N with inputs
p1, . . . , pn and output q if:
for every σ such that σ(pi ) = pxiq,

if f (x̃) is defined, then A, σ →∗ 0, σ′ and
σ′(q) = pf (x̃)q

if f (x̃) is not defined, then A, σ 6→∗ 0 (diverges)
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p, q to r

def X =

if (r.c = q.c) then

p.c→ r; 0

else

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X
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an example: addition

addition from
p, q to r

def X =

if (r.c = q.c) then r→ p[l]; r→ q[l]; r→ t[l];

p.c→ r; 0

else r→ p[r]; r→ q[r]; r→ t[r];

p.c→ t; t.s · c→ p; r.c→ t; t.s · c→ r; X

in t.ε→ r; X

 compiles!

projections of p and t wait for notification from r

projection of q also needs to be notified



partial recursive functions i/vi

successor S : N→ N such that S(x) = x + 1 for all x

implementation
[[S ]]p7→q = p.(s · c)→ q

soundness

p.(s · c)→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ px + 1q

}
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partial recursive functions ii/vi

zero Z : N→ N such that S(x) = 0 for all x

implementation
[[Z ]]p 7→q = p.ε→ q

soundness

p.ε→ q, {p 7→ pxq} −→ 0,

{
p 7→ pxq
q 7→ p0q

}



partial recursive functions iii/vi

projections Pn
m : N→ N such that Pn

m(x1, . . . , xn) = xm for all x̃

implementation
[[Pn

m]]p1,...,pn 7→q = pm.c→ q

soundness

pm.c→ q, {pi 7→ pxiq} −→ 0,

{
pi 7→ pxiq
q 7→ pxmq

}



intermezzo: properties of the encoding

 properties we use in inductive constructions

execution preserves contents of input processes

all choreographies have exactly one exit point
(occurrence of 0)

sequential
composition

for processes with only one exit point
A # A′ is obtained by replacing 0 (in A) by A′

 works as expected

if A, σ →∗ 0, σ′ and A′, σ′ →∗ 0, σ′′, then
A # A′, σ →∗ 0, σ′′

if A, σ →∗ 0, σ′ and A′, σ′ diverges, then A # A′, σ
diverges

if A, σ diverges, then A # A′, σ → 0, σ′′ diverges
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partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
` = [[g1]]

p1,...,pn 7→r′1
`1

# . . . #

[[gk ]]
p1,...,pn 7→r′k
`k

# [[f ]]
r′1,...,r

′
k 7→q

`k+1
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 r′i are auxiliary processes numbered from `: r′i = r`+i−1
in recursive calls we increment the counter:
`i+1 = `i + π(gi )
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partial recursive functions iv/vi

composition g1, . . . , gk : Nn → N C (f , g̃) : Nn → N
f : Nk → N x̃ 7→ f (g1(x̃), . . . , gk(x̃))

implementation [[C (f , g̃)]]p1,...,pn 7→q
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# . . . #

[[gk ]]
p1,...,pn 7→r′k
`k
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′
k 7→q
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soundness if gj(x̃) is undefined the corresponding step diverges

and likewise for f (g̃(x̃))



partial recursive functions v/vi

recursion f : Nn → N g : Nn+2 → N
h = R(f , g) : Nn+1 → N

x̃ 7→

{
f (~x) x0 = 0

g(k , h(k , x̃), x̃) x0 = k + 1

implementation [[h]]p0,...,pn 7→q =
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else [[g ]]rc,q
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`g
# rt.c→ q′;

rc.c→ rt; rt.(s · c)→ rc; T

in [[f ]]p1,...,pn 7→q′

`f
# rt.ε→ rc; T

soundness by induction (simple)
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minimality

actor
choreographies

A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

no exit points  nothing terminates

no communication  no output

less expressions  cannot compute base cases

no selection  not everything is projectable

no conditions  termination is decidable

no recursion  everything terminates
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actor
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A ::= 0 | η;A | if (p.c = q.c) thenA1 elseA2

| def X = A2 inA1 | X

η ::= p.e → q | p→ q[l ]

l ::= l | r

e ::= ε | c | s · c /2

only zero-testing  termination is decidable
(skipping proof. . . )

only (arbitrary) constant-testing  termination is
decidable
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making it more beautiful

additional primitives give more structure

generation of fresh names “hides” auxiliary processes

improving the embedding

state is encoded as a substitution

ignoring state: functional process
(needs a context to set up inputs)

operational proof of completeness for π-calculus

by slight tweaking: process that “waits” for parallel
components with input and output
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conclusions

turing-completeness of actor choreographies

minimal set of primitives

identifies a deadlock-free, turing-complete fragment of
π-calculus



thank you!
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